253 Policy Rules for Inflation Targeting

Mishkin, Frederic S., and Adam S. Posen. 1997. Inflation targeting: Lessons from four
countries. Federal Reserve Bank of New York Economic Policy Review 3, no. 3 (Au-
gust): 9-110.

Taylor, John B. 1993. Discretion versus policy rules in practice. Carnegie-Rochester
Conference Series on Public Policy 39:195-214.

Comment James H. Stock

Glenn Rudebusch and Lars Svensson have provided a clear and interesting
treatment of a large number of policy rules within a bivariate vector autoregres-
sion (VAR). They model the interest rate (the federal funds rate) as an exoge-
nous variable under the perfect control of the Fed. Changes in the interest rate
affect the deviation of real output from potential, which in turn affects inflation
through an output-based Phillips curve. Control rules are evaluated in terms of
their expected loss, which is a function of the variances of inflation, potential
GDP, and the interest rate.

Their paper is clearly and precisely written and the results are well pre-
sented. Their discussion of loss functions and targets is lucid and compelling.
The modeling decisions they made are sensible and permit the evaluation of a
large number of rules. In future work along these lines, it would be of interest
to consider a larger VAR that includes an additional interest rate (so that the
Fed is not implicitly given control over the entire term structure in the simula-
tions). Similarly, most methods for constructing potential GDP are question-
able, and theirs is no exception. The pitfalls of estimating potential GDP could
be sidestepped by specifying the Phillips curve in terms of unemployment
rather than potential GDP. It would be useful to see whether their findings,
particularly the importance of large coefficients in Taylor-type rules, hold up
under these extensions. These comments are relatively minor, however, and in
general their paper constitutes an excellent contribution to the literature on
monetary policy rules.

Because Rudebusch and Svensson’s paper is so clean and self-contained, in
the remainder of these comments I will turn to the broader question that is one
of the motivations for this conference, the construction and evaluation of con-
trol rules in the presence of model uncertainty. A policy rule that performs well
under reasonable perturbations of a model, or under different plausible models,
is robust to that model uncertainty. Although policy robustness is an underlying
theme of this conference, it is important to emphasize two limitations of the
robustness results reported in this volume.

James H. Stock is professor of political economy at the Kennedy School of Government, Harvard
University, and a research associate of the National Bureau of Economic Research. _
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First, the “conference rules” have been evaluated by various authors using
their estimated models, but each of the estimated models contains considerable
model uncertainty arising from the estimation of the model parameters. It is
possible that a rule is robust across point estimates of models, which might be
similar in important dynamic respects (after all, the models are estimated using
the same data), but that the rule is not robust to 1 standard error changes in
the parameters of the models. Robustness to sampling uncertainty needs to be
investigated more carefully before any conclusions can be drawn about the
robustness of the policy rules considered in this volume (I return to this point
below).

Second, a theme of several papers is that inflation-forecast-targeting rules
(in which the monetary authority adjusts the interest rate to move an inflation
forecast toward a target) perform well in many of the models considered here.
However, this conclusion is drawn by evaluating the performance of the
inflation-targeting rule using the same model that is used to compute the infla-
tion forecast. In contrast, the essence of policy robustness is whether a specific
quantitative rule performs well under a model other than that used to develop
the policy. Rudebusch and Svensson find that inflation-forecast-targeting rules,
based on conditional inflation forecasts produced by their models, work well
when evaluated using their model. The proper check of robustness, however,
is whether inflation-forecast-targeting rules based on, say, the Rudebusch-
Svensson model forecasts work well when the true model is something else.

To illustrate this point, suppose the Fed hires Rudebusch and Svensson 10
make their conditional forecasts: the Fed provides them a trial value of the
interest rate, Rudebusch and Svensson compute inflation forecasts, and they
iterate until the inflation forecasts from their model satisfy the Fed policymak-
ers. Now suppose, however, that Rudebusch and Svensson’s research assistant
mistakenly feeds the conditional U.S. interest rate into a model of the Swedish
economy rather than their U.S. model, so that Rudebusch and Svensson report
back Swedish rather than U.S. inflation. One would expect this inflation-
forecast-targeting rule, thus implemented, to produce outcomes for the U.S.
that are badly wrong: the model used to generate the inflation forecasts differs
sharply from the true model. While one would hope that such a gross mistake
would not happen in practice, the essential point is that evaluating the ro-
bustness of inflation-targeting rules requires the evaluation of the model’s con-
ditional forecasts when that model is false. T know of no research on monetary
policy rules that undertakes that evaluation.

The remainder of these comments take up this problem in the form of par-
ametric model uncertainty, by which I mean uncertainty that can be summar-
ized as uncertainty about the value of a finite-dimensional parameter. This
complements Sargent’s comments on Ball’s paper (chap. 3 of this volume), it
which Sargent considers the case of uncertainty that is nonparametic in the
sense that the uncertainty can be formalized as over elements of an infinite-
dimensional space. In particular, T will consider two approaches to parametfic
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uncertainty. The first 1S a Bayesian approach that grows out of Brainard’s
(1967) early work on parameter uncertainty. I will argue that while this ap-
proach is appealing from the perspective of decision theory, and while it can
yield intuitive results, in practice it places informational demands on policy-
makers that are wholly unrealistic and therefore fails to provide a useful frame-
work for constructing practical policies. In its place, I propose using minimax
methods to construct optimal robust policies and implement these methods
quantitatively in the Rudebusch-Svensson model.

Bayesian Approaches to Model Uncertainty

The Bayesian decision analytic approach to control under parametric uncer-
tainty posits a loss function that is a function of future macroeconomic vari-
ables. The decision maker is assumed to have priors over all parameters in the
model. Optimal policy is then solved by finding the policy that minimizes the
expected loss, integrating over the parameters with respect to the prior density.
This is conventionally done in the context of a single model. However, in this
volume several distinct models are presented, so it is of interest to consider the
result of this procedure when there is uncertainty over the class of models as
well, In particular, consider two stylized single-equation models of inflation:

(1 W, = Bx,, + €,

(2) W= aﬂt—l + 'YX[_] + Tlt’

r

where 7, is inflation and x, is the control variable. Evidently, the two models
differ only in whether lagged inflation has an effect on future inflation. Sup-
pose that the decision maker has Gaussian priors over B in the first model,
so that B ~ N(E, o). For the second model, the decision maker has the priors
Y~ N (?9 0-3)

Suppose the decision maker has quadratic loss, (w, — 7*)?, where 7* is the
target rate of inflation. If the decision maker were sure that model (1) is correct,
then the optimal policy would be

(3) x* = [B/(B? + ad)m*.

On the other hand, if the decision maker were sure that model (2) is correct,
the optimal policy would be

(4) x*2 = [J/( + o)l - am,,).

Now suppose that the decision maker does not know which model is correct
but is sure that one of them is; he or she assigns prior probability X to the event
that model (1) is the true model. In this case, the optimal policy is

() x¥ = Axml+ (1 - Nxk
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The noteworthy feature of this result here is that when there is uncertainty
over classes of models rather than just (smooth) uncertainty over the parame-
ters in a model, the optimal policy is a linear combination of the two optimal
policies in the individual models. At least in this simple example, then, one
could imagine giving a board of policymakers the optimal policies resulting
from the individual models and letting each policymaker compute his or her
individual weighted average of these model-based policies, based on each indi-
vidual's views of how likely a particular model is to be correct.

Although this result has intuitive appeal, there are reasons to doubt that its
simple lessons can be made general enough to be useful for practical policy
making. First, on a technical level, dynamic models with learning imply very
different rules, in which there can be experimentation to learn about the param-
eters of the model (cf. Wieland 1996, 1998). It is not clear how this would
generalize to the multimodel setting.

Second and more fundamentally, the calculations here require an unrealistic
amount of information. Key to these calculations are the existence of prior
distributions, which for nonlinear models need to be joint priors over all the
parameters, While it is plausible that policymakers might have opinions about
the value of the NAIRU or the slope of the Phillips curve, it is not plausible
that they would have opinions about, say, the covariance between «_, and B,
in equations (1) and (2) in Rudebusch and Svensson’s paper. Indeed, there has
been great debate about how to construct priors for large autoregressive roots
in univariate autoregressive models (see, e.g., the special issue of Econometric
Theory, August/October 1994); I believe that a fair summary of this debate is
that various Bayesians have agreed to disagree over how to construct their pri-
ors. If experts cannot construct priors for univariate autoregressions, it is en-
tirely unrealistic for noneconometrician policymakers to construct priors for
multiequation nonlinear dynamic models. Unfortunately, such priors are a ne-
cessity for the foregoing calculations, so the conventional decision analytic
approach does not seem to be a promising direction for developing practical
policy rules that address model uncertainty. It is therefore useful to explore an
alternative approach based on minimax approaches to model uncertainty.

Minimax Approaches to Model Uncertainty

An alternative approach is to evaluate policies by their worst-case perfor-
mance across the various models under consideration. The best policy from
this perspective is the minimax policy that has the lowest maximum risk. Be-.
cause Rudebusch and Svensson do not consider parameter uncertainty, as an
illustration I will consider the effect of parameter uncertainty on policy choice
using the Rudebusch-Svensson model.

Specifically, I consider their model (1)~(2), with their point estimates, and
focus on the effects of uncertainty in two of the parameters, a, and 3. These
are the two most interesting parameters of their model from an economic per-
spective: a is the slope of the (potential GDP) Phillips curve, and B, is the
impact effect on the GDP gap of a change in the interest rate.
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Fig. 5C.1 Risk functions for various policy rules, evaluated in the Rudebusch-
Svensson model for 0.04 < B =< 0.16 and a, = 0.20

The loss function considered here is the one of the Rudebusch-Svensson
loss functions,

(6) Loss = var(m) + var(y) + Y% var(Ai)

in their notation. To capture model uncertainty, values of parameters o, and B3,
within 2 standard errors of their point estimates were considered; that is, the
parameters were varied in the ranges 0.08 = o, = 0.20 and 0.04 = B_= 0.16.

The policy rules considered here are two-parameter modified Taylor rules of
the type considered by Rudebusch and Svensson, specifically,

(7) i: = gfn'—’ﬁr + gyyt'

Three types of policy rules were considered: the Taylor rule (g, = 1.5, g =
0.5) and a modified Taylor rule with somewhat more response to output fluc-
tuations (g_ = 1.5, g, = 1.0); model-specific optimal rules of the type (7), in
Wwhich the parameters are optimal for particular values of «, and B,; and the
minimax rule that minimizes expected loss over all parameter values.

Slices of the risk function surface are presented in figure 5C.1 for these
various policy rules; the slices present risk as a function of 8, for a, = 0.20.
The upper lines are the risks of the two conference rules, the Taylor rule (short
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Fig. 5C.2 Optimal parameter values for Taylor-type rules in the Rudebusch-
Svensson model for 0.04 = B, = 0.16 and &, = 0.14

dashes) and the rule with g_ = 1.5 and g, = 1.0 (long dashes). Each of the
light solid lines is the risk function for a policy that is optimal for a particular
value of («,, B); the lower envelope of these dotted lines constitutes an en-
velope of the lowest possible risk, across these parameter values. The heavy
solid line is the risk of the policy that is minimax over 0.08 = «, = 0.20 and
0.04 = B, = 0.16. (The model-optimal and minimax policies were computed
by a simulated annealing algorithm with 1,000 random trials.)

Several observations are apparent. First, the Taylor rule has very large maxi-
mum risk. The risk is greatest when B_is lowest. When monetary policy has
little effect (B, is small), the Taylor rule produces movements in interest rates
that are too small to stabilize output and inflation as quantified by the loss
function (6). It turns out that the minimax rule has a risk function that is tan-
gent to the risk envelope, with the point of tangency corresponding to the
model in which monetary policy has the smallest direct impact on the GDP
gap and the Phillips curve is flattest (8, = 0.04 and «, = 0.08). In the
Rudebusch-Svensson model, this corresponds to the case in which monetary
policy is least effective. Here the minimax policy is obtained by producing the
optimal rule in the least favorable case for monetary control of inflation and
output.

The model-specific optimal parameter values are plotted in figure 5C.2 for
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o, = 0.14. Evidently, when the impact effect of monetary policy is small, the
opumal response of monetary policy to inflation (solid line) and the output gap
(dashed line) is large. This is the case for the minimax policy, in which g_ =
3.86and g, = 1.48. The minimax risk across all models for this policy is 15.61.
For the Rudebusch-Svensson model with this parametric uncertainty, the
minimax-optimal Taylor-type rule exhibits very strong reactions to inflation
and the output gap to guard against the possibility that the true response of the
economy to monetary policy is weak.

These results are only illustrative, but they indicate that quite different con-
clusions can be reached once we admit that there is parameter uncertainty in
our models. In the Rudebusch-Svensson model, recognizing parameter uncer-
tainty leads to “conservative” policies that exhibit more aggressive responses
than are optimal for the point estimates of the model. It would be interesting
to see this sort of analysis undertaken for some of the other models presented
in this volume.

References

Brainard, W. 1967. Uncertainty and the effectiveness of policy. American Economic
Review 57:411-25.

Wieland, V. 1996. Monetary policy, parameter uncertainty and optimal learning. Wash-
ington, D.C.: Board of Governors of the Federal Reserve System. Manuscript.

. 1998. Monetary policy and uncertainty about the natural unemployment rate.

Finance and Economics Discussion Paper no. 98-22. Washington, D.C.: Board of

Governors of the Federal Reserve System.

Discussion Summary

Arturo Estrella asked whether the good performance of smoothing rules in the
paper is related to the fact that the IS curve depends on the difference between
the short-term nominal interest rate and recent inflation. Changes in the nomi-
nal rate reflected in the smoothing rules could be proxying for the difference
between the nominal rate and recent inflation. Svensson replied that the reason
for the bad performance of difference rules was not clear. There is a tendency
1o get an eigenvalue equal to one or above because the coefficients sum to one
in the Phillips curve.

Andrew Haldane noted that most inflation-targeting countries seem to be
small open economies. It would therefore be interesting to see how the results
of the paper change in an open economy setting. Svensson’s work and the Bat-
ini and Haldane paper presented at the conference suggest that the change in
results would be substantial. Consider the example of simple rules. The two
simple rules that perform well in the paper are the Taylor rule and a constant-
interest-rate inflation forecast rule. In a model with only two equations, aggre-
gate demand and aggregate supply, these rules, which condition on just two
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variables, come not surprisingly close to being fully optimal. In a setting with
an important role for exchange rates, Svensson’s work on inflation targeting in
small open economies indicates that the Taylor rule might not do very well.
The second rule holds interest rates constant, which is not admissible with a
no-arbitrage condition in a forward-looking open economy setting. Regarding
the latter point, Rudebusch replied that one of the reasons for the paper to
look at constant-interest-rate inflation forecast rules is that inflation-targeting
central banks, such as the Bank of England, produce these forecasts in their
inflation reports. Therefore, these forecasts seem to be of interest for policy.
Svensson agreed that simple rules work well because the model is simple
enough for inflation and output to be sufficient statistics. With more variables,
for example, fiscal policy, simple rules would work less well,

Volker Wieland noted that in the presence of uncertainty about multiplicative
parameters, such as the effectiveness of monetary policy, in a linear model,
the optimal rule exhibits a more cautious policy response. However, additive
uncertainty, such as uncertainty about the natural rate, does not matter in a
linear-quadratic framework. In a nonlinear model, additive uncertainty begins
to matter. Nonlinearities could, for example, be in the preferences or in the
constraints, such as zero-bound constraints on nominal interest rates or nonlin-
ear Phillips curves. John Williams mentioned that in his own work on parame-
ter uncertainty using the U.S. model (Williams 1997), the value of the loss
function and the implicit optimal rule vary greatly with the parameter govern-
ing the slope of the Phillips curve. While this parameter 1s thus a key parameter
for monetary policy, it is unfortunately also the least precisely estimated pa-
rameter of the model.

Frederic Mishkin made two points justifying rules based on constant-
interest-rate inflation forecasts in the context of a closed economy. First, these
rules help central banks communicate with the public. Second, these rules help
guide discussions about monetary policy in central bank meetings. Svensson
illustrated these points by noting that in the case of a strict inflation-forecast-
targeting rule, the warranted change in interest rates can be expressed as the
difference between the unchanged-interest-rate inflation forecast and the infla-
tion target, divided by the policy multiplier, which is easy to communicate. In
practice, inflation reports show such constant-interest-rate inflation forecasts.

William Poole stressed that to understand rules for the federal funds rate, 1t
is essential to have two interest rates in the model because of the following
reasoning. One of the attractive features of money growth rules is that the econ-
omy has a built-in stabilizing mechanism: with constant money growth, shocks
to aggregate demand change interest rates, thus keeping the economy from
“running off” Something similar happened in recent years with the Federal
Reserve’s federal funds rate targeting: long interest rates have changed in re-
sponse to anticipated future federal funds rate moves, even when the Federal
Reserve did not change the federal funds rate much. So the fact that bond
markets are forward looking is a built-in stabilizing mechanism.
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Ben McCallum approved of the emphasis on terminology in the paper. The
distinction between targeting a variable and responding to a variable warrants
consideration. However, the notion of inflation targeting is odd in the context
of high A-values, that is, when the weight on output variability is much higher
than the weight on mflation. Svensson agreed with McCallum that to use the
term “inflation targeting,” the weight on inflation should be significant.

Robert King remarked that the term “interest rate smoothing” is usually used
to denote inertia in the level of interest rates, represented by a large response
coefficient on the lagged interest rate and small coefficients on contemporane-
ous output and inflation. From both the Rotemberg and Woodford and the Bat-
ini and Haldane papers it seems as if forward-looking models could rationalize
that pattern of response. How does such a rule perform in the Rudebusch-
Svensson model? Rudebusch replied that these rules are not desirable in their
model. Moreover, Rudebusch disagreed with King’s characterization of interest
rate smoothing. Whether a rule smooths the interest rate depends on how per-
sistent the arguments of the rule are. John Taylor’s original rule has small re-
sponse coefficients with no lagged term, and yet, it produces a path for the
funds rate that is as smooth as the historical series. In a model with persistence
in the output gap and inflation, it is not clear whether a large coefficient on the
lagged interest rate is needed to smooth the funds rate.

Ben Friedman noted that the point about Brainard-type uncertainty rules
driving the policymaker toward more conservatism depends not only on the
model but also on the policy rule and the policy instrument. In the context of
this discussion, the policy instrument is the interest rate, and therefore conser-
vatism presumably means less variation in interest rates. In a world with
money demand shocks, conservative policy thus leads to higher variability in
monetary quantities. However, with a policy rule based on the monetary base,
conservatism means that the money base grows more closely along a fixed
growth path, which, for the same reasons but now played in reverse, means
more interest rate volatility. Friedman asked whether this tension is handled
conceptually in the approach presented in Stock’s comment. Stock replied that
in the example used in his discussion, the policy rule was based on interest
rates. In a comparison of different instruments, it is not obvious that the op-
timal combination rule is going to be spanned by the submodels. Stock also
remarked that conservatism does not necessarily mean gradualism. In his sim-
ulations, the Taylor rule was the most conservative rule in the sense that the
response coefficients were smallest. However, the Taylor rule generated large
losses and was far away from a minimax or optimal solution. Bob Hall re-
marked that the same question arises in prison sentences because of the un-
known deterrent effect. Is it conservative to give felons short sentences?

Tom Sargent questioned the conclusion drawn in Stock’s comment regarding
the averaging of rules. If the analysis suggested by Stock is pursued with the
model at hand, a dynamic model, the postetior over models becomes part of
the state of the control problem, such as in Volker Wieland’s thesis, implying
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that decision rules in this problem become functions of this distribution. Fur-
thermore, the control problem is going to unleash an experimentation motive.
If a decision maker is confronted with more than one possible model and a
prior over those models, he wants to manipulate the data to learn more. The

minimax caution characterization is a static problem, which will not survive
the dynamics.
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