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ABSTRACT

This paper applies a tightly parameterized pattern recognition algorithm,
previously applied to earthquake prediction, to the problem of predicting
recessions. Monthly data from 1962 to 1996 on six leading and coincident
economic indicators for the USA are used. In the full sample, the model
performs better than benchmark linear and non-linear models with the
same number of parameters. Subsample and recursive analysis indicates
that the algorithm is stable and produces reasonably accurate forecasts
even when estimated using a small number of recessions. Copyright# 2000
John Wiley & Sons, Ltd.

KEY WORDS leading indicators; pattern recognition; business cycle
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INTRODUCTION

A central problem of macroeconomic forecasting has been the prediction of the onset and end of
recessions using time series data on economic indicators; recent contributions include Diebold
and Rudebusch (1989), Fair (1993), Stock and Watson (1989, 1993), Sims (1993), Berk and
Bikker (1995), and Mostaghimi and Rezayat (1996). At least four features of this problem make
this particularly di�cult. First, recessions are rare; in the United States, for example, since 1959
(the earliest date for which many monthly series are available) to date, there have been only
®ve completed expansions. Second, recessions are discrete events, so forecast of recessions
naturally entail some degree of non-linearity. Third, recessions are complicated events and their
accurate prediction arguably requires the use of many series at once. Indeed, the presence of an
economy-wide decline is an important factor in the ex-post identi®cation of recessions, and
statistical models that focus on a single series miss this aspect. Fourth, economic institutions,
demographics, and economic policy are constantly evolving, and it is natural to expect that
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reduced-form relations will also evolve over time. In short, the problem requires ®tting non-
linear, high-dimensional models to a handful of observations generated by a possibly non-
stationary economic environment.

In this paper we address these problems by considering recession forecasts produced by a
pattern-recognition algorithm that was previously developed for the prediction of infrequent
events (e.g. Gelfand et al., 1976; Press and Allen, 1995, and the references therein). The general
methodology was developed by the arti®cial intelligence school of I. M. Gelfand for analysis of
rare phenomena of complex origin. The speci®c algorithm used here has previously been applied
to earthquake prediction (e.g. Keilis-Borok and Kossobokov, 1990; Vorobieva and Levshina,
1994) and to prediction of the results of American elections (Lichtman and Keilis-Borok, 1989;
Keilis-Borok and Lichtman, 1990). The motivation for this application to recession forecasting is
that, from a time series perspective, recessions and large earthquakes bear similarities: both are
discrete, relatively rare events, and both have a rich set of observable indicators that can
potentially help in their prediction. This raises the question of whether the empirical methods
developed for handling many geophysical series to predict earthquakes can be useful for the
analogous task of predicting recessions.

Applied to this macroeconomic problem, this algorithm warns of a recession when negative
signals are widespread across a group of economic indicators. In the work presented here, six
indicators (listed in the next section) are used; if four or more signal a recession, then a recession
warning is signalled. The result is a binary warning signal, with a value of one indicating that the
economy is in a time of increased probability of a recession. Formally, the pattern recognition
algorithm uses a tightly parameterized non-linear model that produces a 0/1 alarm, At . Let {ykt},
t � 1, . . . , T, denote the time series of observations on the kth of N economic indicators. With
this notation, the model can be written as

At � 1 if
XN
k�1

Ckt 5N ÿ b

0 otherwise

8<: �1�

where Ckt � 1 if ykt 5 ck and �0 otherwise where (b, c1 , . . . , cN) are free parameters. The time
series {ykt} typically are transformations of the original economic indicators, for example a series
might be transformed by taking quarterly growth rates, and it might be `inverted' (that is, the
series is multiplied by minus one) so that large values of the series are associated with an
impending recession. (Details of such transformations are discussed in the next section.) The
pattern-recognition interpretation of the model stems from noting that

N ÿ
XN
k�1

Ckt

is the (Hamming) distance from the ideal prerecessionary pattern of Ckt � 1, k � 1, . . . , N.
From the perspective of the problems listed in the introductory paragraph, this model has

several advantages. It uses multiple economic indicators (in our application, N � 6); it is
highly non-linear and by construction produces 0/1 warnings; and it is tightly parameterized,
with only N � 1 parameters (given the choice of {ykt}). Because the economic indicator series
are transformed to binary variables, the model also has the desirable feature of being robust
to outliers in the data. Arguably, this transformation to binary variables could in addition
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make the model less sensitive to drift in the relationship between the individual indicators
and the overall economy, so that this model would be robust to some types of structural
instability.

Three variants of model (1) are explored in this paper. The ®rst follows the earthquake
prediction methodology and involves judgemental choice of the free parameters (c1 , . . . , cN , b)
and series transformations that are not usually found in econometric applications. This variant is
interesting because of its foundation in the geophysical applications but it has the drawback of
requiring signi®cant user judgement to implement. The other two variants incorporate more
conventional econometric methods: the parameters are estimated by non-linear least squares, and
in one variant standard linear ®lters are applied to the series. We also explore a modi®cation of
the alarm in model (1). Our analysis uses monthly data, and because model (1) is based on data
only from the current month, the alarm could have high-frequency noise. We therefore also
consider a smoothed alarm which issues a recession warning at date t if At signals an alarm in the
current month or in any of the three preceding months.

Interestingly, it turns out that the predictions made by these three variants are quantitatively
similar. For the full sample of cyclical peaks since 1961, we ®nd that this model provides a
recession warning in the months before each of the ®ve cyclical peaks from 1961 to 1990, and,
depending on the speci®c model, it provides few or no false alarms. This pattern of reliable
performance holds up in a recursive (pseudo out-of-sample) forecasting experiment, and in this
sense the model is found to be robust.

The data and preliminary transformations are described in the next section. Estimation
methods and results based on the full sample are presented in the third section. The judgemental
model is examined in more detail in the fourth section. The ®fth section focuses on the
two pattern-recognition models with econometrically estimated parameters, and subjects them to
a simulated out-of-sample comparison with some more conventional multivariate models
for recession probabilities based on the same leading indicators. The ®nal section presents
conclusions.

THE DATA AND PRELIMINARY TRANSFORMATIONS

We use monthly macroeconomic data for the United States for the period from January 1959
to April 1996. Over this period, there were six complete recessions (cyclical peaks followed
by cyclical troughs). The cyclical peaks and troughs (NBER dates) are listed in Table I. The

Table I. NBER-dated cyclical turning points

Episode Peak Trough

1 1960 :4 1961 :2
2 1969 :12 1970 :11
3 1973 :11 1975 :3
4 1980 :1 1980 :7
5 1981 :7 1982 :11
6 1990 :7 1991 :3

Source: National Bureau of Economic Research.
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focus of this exercise is predicting recessions, and we therefore consider the ®ve complete
expansionary episodes: W1 : 1961: 08±1969:12 (101 months); W2 : 1971: 05±1973:11 (31 months);
W3 : 1975: 09±1980:01 (53 months); W4 : 1981:01±1981:07 (7 months); and W5 : 1983:05±1990:07
(87 months). The beginning dates of these episodes were set at six months after the
previous cyclical trough. The six-month lag was chosen to allow for recognition lags in ex post
identi®cation of peaks and troughs, and because by convention turning points are dated so that
expansions and recessions have a minimum length of six months. In all, these episodes contain
279 months.

The forecasting models use ®ve leading economic indicators and a coincident index. The
purpose of this paper is to explore model (1), not to compare the forecasting properties of
di�erent leading indicators. The indicators used here were selected prior to performing any of the
calculations in this project. In particular no further variable selection was performed to improve
the performance of a particular model. The series were selected judgementally based on their
coverage of di�erent aspects of the economy, the consistency of data de®nitions and availability,
and their past performance as leading indicators. The ®ve leading indicators used are:

G10FF. Di�erence between the interest rate on 10-year US Treasury bond and the federal funds
interest rate, on an annual basis.
FYGM3. Interest rate on 90-day US Treasury bills at an annual rate (in per cent).
INVMTQ. Total manufacturing and trade inventories, in real (1987) dollars.
LUINC. Average weekly initial claims for state unemployment insurance.
LHEL. Index of help wanted advertising in newspapers.1

Considerable research has demonstrated the historical role of the term structure spread as a
leading indicator (see, for example, Stock and Watson, 1989; Estrella and Mishkin, 1996). The
speci®c long/short spread used here, the 10-year Treasury bond/federal funds spread, is the
spread currently used in the Composite Index of Leading Indicators (LEI) maintained by The
Conference Board (this index was formerly maintained by the US Department of Commerce).
The interest rate plays an important role in many macro models and also generally leads
economic activity (cf. Stock and Watson, 1998). Inventories were included to provide a leading
indicator from the production side of the economy. Average weekly unemployment insurance
claims are included in The Conference Board's LEI. Help wanted advertising is another leading
indicator that measures labor market tightness, which also leads the business cycle (Stock and
Watson, 1998).

The ®nal variable included in the model is a measure of overall economic activity, the Stock±
Watson (1989) coincident index of overall monthly economic activity (a weighted average current
and past values of non-agricultural employment, industrial production, manufacturing and trade
sales, and real personal income), here referred to as the XCI. The XCI is close numerically to The
Conference Board's Composite Index of Coincident Indicators. The XCI is included because past
values of the XCI are useful in predicting its future values and turning points in the XCI are close
to NBER-dated turning points.

Many of these series exhibit high-frequency noise and/or trends, either stochastic or determin-
istic. These series were therefore subject to further transformation prior to inclusion in the model.
Two alternative transformations were therefore used. The ®rst entails transformation to quarterly

1 Data sources: XCI: authors' calculations. The other series were obtained from CITIBASE. IVMTQ, LHEL, LUINC,
FYGM3 are CITIBASE mnemonics, and G10FF � FYGT10ÿ FYFF.
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growth rates (QG); this is a procedure based on standard linear ®ltering theory and as such is
familiar in economic applications. The second is a procedure which we will refer to as local linear
(LL) detrending which entails interactive user judgement and was developed for the original
geophysical applications of the model.

For the quarterly growth rate transformation, ykt is computed as (1ÿ L3)xkt , where xkt denotes
the natural logarithm of the original series. Because (1 ÿ L3� � �1 � L � L2��1 ÿ L�, this has the
interpretation as a three-quarter moving average of the ®rst di�erences of the series. This
constitutes a bandpass ®lter which ®lters out both linear deterministic trends and stochastic
trends that are integrated of order one. It also ®lters out high-frequency noise (albeit imperfectly
because of a side lobe in the transfer function of this ®lter at the highest frequencies). For results
based on QG detrending, this transformation was applied to XC1, LHEL, LUINC, and IVMTQ.
The term spread, G10FF, has little high-frequency noise and little or no trend. The 90-day
Treasury Bill rate, FYGM3, does not exhibit a deterministic trend, and unit root tests are
ambiguous about whether FYGM3 exhibits a stochastic trend. In levels, it has little power at high
frequencies. For results based on QG detrending, these two series were therefore not further
transformed.

The local linear detrending methods were developed for use in earthquake prediction and were
applied here using that methodology. Applying these transformations requires user judgement.
The series XCI, IVMTQ, and FYGM3 were transformed to be deviations from their trend value
over the current expansion. Speci®cally, the series yt was regressed on (1, t) by recursive least
squares over the period t � ts � 1, . . . , sÿ 1, where ts is the date of the most recent cyclical
trough as of month s. This yields the estimated intercept and trend coe�cients âs and b̂s . The
transformed series, ~ys , is the deviation from this local trend, ~ys � ys ÿ âs ÿ b̂ss. The series so
transformed are denoted XCIR, INVR, and FYG3R. The series LHEL and LUINC were trans-
formed to be weighted averages of their changes, speci®cally, they were transformed to be the
estimated slope coe�cients of a local linear least squares regression of the series on (1, t), for
t � s ÿ m, . . . , s. For LHEL, the value m � 5 was used, and for LUINC, the value m � 10 was
used. The transformed values of these two series are denoted LHK5 and LUK10. No
transformation was applied to G10FF. Because these transformations are recursive they maintain
the information set of the original variables, augmented by the trough dates.2 A representative
locally linearly detrended series, INVR, is plotted in Figure 1 (the values of INVR are arbitrarily
set to zero during recessions; these observations are not used).

The signs of the series are set so that, after series transformation, a one is indicated by values of
XCI, IVMTQ, LHEL, and G10FF below the threshold and by values of LUINC and FYGM3
above the threshold. For example, a recession is signalled by: a value of the coincident indicator
series XCI su�ciently below its trend over the current expansion; a low value of the spread
between the long- and short-term interest rates, G10FF; and a value of the 90-day Treasury bill
rate series FYGM3 that is far above its trend value over the current expansion.

2 The NBER business cycle dating committee announces cyclical peaks and troughs with a variable lag, which can be a
year or longer. Thus the most recent trough date is not known during the initial part of an expansion. This concern is
mitigated here somewhat by starting the Wi episodes six months into the recession. An alternative would to be de®ne
these functionals on a su�ciently long sliding time window.
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FULL-SAMPLE RESULTS

Parameter selection
The model depends on N � 1 free parameters (c1 , . . . , cN , b). In this paper we consider two
di�erent approaches to the speci®cation of these parameters. The ®rst uses the methods
developed in the original application of this model to earthquake prediction, and employs
algorithms developed at the International Institute of Earthquake Prediction Theory and
Mathematical Geophysics in Moscow. This entails judgemental selection of the parameters over
a restricted set using interactive software. Because of its history in earthquake prediction, it is
intriguing to apply it to the problem of recession prediction. This methodology is, however,
di�cult for other researchers to apply to new applications.

The second approach requires less user judgement because parameters are estimated by non-
linear least squares. Speci®cally, the objective function is St(ItÿAt)

2, where It � 1 if an NBER-
dated cyclical peak will occur within nine months, and � 0 otherwise. The nine-month horizon
was chosen arbitrarily as representative of short-term recession forecasting horizons.3 Because

Figure 1. Locally linearly detrended investment (INVR, solid line), discretization threshold (horizontal
dashed line), and NBER-dated cyclical turning points (vertical dashed lines), 1960±95

3 Results have also been computed for the estimated models at 6- and 12-month horizons. The results are generally
similar, although of course the accuracy of all the models is better at the 6-month horizon, and worse at the 12-month
horizon, relative to the 9-month horizon reported here. To save space, only results for the 9-month horizon are reported.
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the alarms are de®ned in terms of indicator functions, the objective function is not di�erentiable
in any of the parameters, so estimation must proceed using random search methods. Here, a
simulated annealing algorithm was used with 10,000 random draws.

Empirical results
This section summarizes results for three variants of the model: judgemental parameters with LL
detrending; estimated parameters with LL detrending; and estimated parameters with QG
detrending. The full sample consists of the combined expansion episodes, denoted by
W � W1 [W2 [W3 [W4 [W5.

The parameters for the three variants are given in Table II, along with some summary statistics
for the models. The original parameters {ck} are quantiles in the units of the data; for ease of
interpretation they are presented here as the fractions of the empirical distribution to which these
quantiles correspond. In the judgemental model, the cuto� b was set to 2 based on inspection of
the individual 0/1 indicators {ykt}. A horizon of nine months was selected for evaluating these
models. Accordingly, the false negative rate is the fraction of months in which an alarm is not
signalled but a recession is in fact nine months or less away; the false positive rate is the fraction
of months in which an alarm is issued but a recession is in fact more than nine months away; and
the overall accuracy rate is the fraction of months in the prediction episode in which the 0/1
prediction was, in retrospect, correct.

For the models with LL detrending, the estimated and judgemental parameters are quite close
for the XCI, inventories and the term spread, but di�er for the other three variables. In the
estimated model, the quantile for LUINC is e�ectively driven to zero, so that the LUINC always
signals a recession which has the e�ect of dropping this variable from the model. For the QG
model, LUINC is also e�ectively dropped, although in the opposite way: the cuto� is such that
LUINC never delivers a recession signal, but the number of series for which a signal is required to
sound an alarm drops from ®ve to four in the estimatedQGmodel. In both the estimated models,
the term spread is not transformed, and essentially the same parameter values are estimated for

Table II. Summary results, pattern-recognition models

Parameter Judgemental/LL Estimated/LL Estimated/QG

Estimated parameters
pXCI 0.25 (1 :3) 0.266 0.873
pIVMTQ 0.75 (3 :1) 0.764 0.839
pG10FF 0.10 (1 :9) 0.125 0.123
pLHEL 0.333 (1 :2) 0.845 0.019
pLUINC 0.833 (5 :1) 0.007 0.999
pFYGM3 0.75 (3 :1) 0.514 0.404
b 2 1 2

Summary statistics for prediction of a recession within 9 months:
False neg. rate 0.311 0.111 0.222
False pos. rate 0.027 0.023 0.008
Accuracy 0.931 0.964 0.961

The entries in parentheses are the probabilities for the judgemental model expressed as odds ratios. The estimated
parameters are non-linear least squares estimates computed by simulated annealing with 10,000 random draws.
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its cuto�. As expected, when measured by overall accuracy the two estimated models have
somewhat better performance than the judgemental model.

The four-month smoothed alarms are shown in Figure 2(a) by black bars. The periods covered
by the alarms inside the set W are listed in Table III. Note that each alarm extends into the ®rst
two or three months of a recession. Evidently all ®ve recessions were preceded by continuous
alarms. The longest alarm lasted 13 months, one alarm lasted 10 months, and three alarms lasted
5 months. There were no continuous alarms not ending in a recession. The total duration of the
alarms was 38 months, 13.6% of the time covered by the analysis (W set). There was no recession
from 1991:3 to 1996:4, and the application of this algorithm to this period gives no alarms.

Although the pattern-recognition model is tightly parameterized relative to alternative non-
linear models, nonetheless it has several free parameters that have been selected, either informally
or formally, using a small number of recessions. We therefore turn to an analysis of the sensitivity
of these models to the parameters. This is done in two parts. The next section performs a
sensitivity analysis on the judgemental pattern-recognition model. In the ®fth section, the

Figure 2. Alarms (shown by black bars): (a) main version; (b) prediction history; (c) reverse prediction
history

Table III. Alarms within the set W

# Period Duration (months)

1 1969 :08±1969 :12 5
2 1973 :07±1973 :11 5
3 1979 :04±1980 :01 10
4 1981 :03±1981 :07 5
5 1989 :07±1990 :07 13
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estimated pattern-recognition model is subjected to a recursive, or simulated out-of-sample,
comparison with some standard multivariate benchmark models.

SENSITIVITY ANALYSIS OF JUDGEMENTAL MODEL

The judgemental model involves considerable data ®tting. (Dr W. Press, discussing an early
example of such an approach, reminded one author of the words of E. Fermi: `With four
exponents I can ®t an elephant.') This section therefore examines the sensitivity of this model to
changes in some of the parameters, assesses the subsample stability of the model using the full-
sample judgemental cuto� probabilities, and examines the e�ect of omitting one or more of the
indicators from the judgemental model.

We ®rst consider the pseudo out-of-sample performance of the algorithm by a recursive
experiment. Given the odds ratios in Table II, the thresholds were ®rst determined using data from
episode W1 , and the prediction algorithm was then applied to the episode W2 . The thresholds
were then recomputed using data from W1 [W2 (and the odds ratios in Table II) and the
algorithm was then used to forecast episodeW3 . This was repeated to produce recursive forecasts
of episodes W4 (using W1 [W2 [W3� and W5 (using W1 [W2 [W3 [W4�. The four-month
smoothed alarms obtained in the experiment are shown in Figure 2(b) and Table IV; the latter
contains the thresholds and the alarms within the prediction set. The agreement with the main
version is practically complete. The only di�erence is that the last alarm became a month longer.

The recursive experiments should not be interpreted literally as what would have happened had
this approach been applied in real time, in particular the odds ratios p:q are ®xed here at their full-
sample judgemental values. A recursive (simulated real-time) evaluation of the models with
estimated parameters is presented in the next section.

We also performed a reverse recursive experiment, in which the data set was expanded
in reverse chronological order: given the odds ratios, the thresholds were estimated on W5 ,
W4 [W5,W3 [W4 [W5, andW2 [W3W4 [W5 and the resulting model was then used to make
predictions over W4 , W3 , W2 , and W1 respectively. The alarms obtained in this experiment are
shown in Figure 2(c). Table V lists the thresholds and alarms. Most of the results from this
reverse recursive exercise are the same as from the full sample. However, the recession in 1981±2
was missed and the alarms before the recessions in 1969±70 and in 1980 are shorter than in the
full-sample version. Technically this is due to the di�erences in the thresholds: comparing to the
main version they are smaller for the functions XCIR, INVR, and LHK5, and larger for the
functions LUK10 and FYG3R.

In another set of experiments, we altered the odds ratio p:q, as indicated in Table VI; the table
also shows the corresponding change in the alarms within the setW. Again, the results are similar
to those in the main version. Note that the second part of the alarm before the 1973±5 recession
(line 8) starts in the same month as the recession and has no intersection with the set W. Of
course, this alarm still has some predictive value because recessions are formally identi®ed only
after a lag of at least several months.

We also performed experiments in which we dropped, one at a time, each of the six economic
indicators, and computed forecasts using the thresholds estimated over the full sample. The
alarms are declared using b � 1 instead of b � 2 in the main version. The major change is
failure to predict the 1981±2 recession after the elimination of XCIR, INVR, G10FF, or LHK5.
The smallest changes are caused by elimination of LUK10. When INVR, G10FF, LHK5, or
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Table IV. Results of the historical experiment

# Set for de®nition of
thresholds

Thresholds for functions Results

XCIR INVR G10FF LHK5 LUK10 FYG3R Examined
set

Alarms within the
set W

Duration
of alarms
(months)

1 W1 ÿ0.77 11531 ÿ0.61 1.38 12.15 0.26 W2 1973 :07±1973 :11 5
2 W1[W2 ÿ0.74 8548 ÿ1.32 2.47 11.17 0.51 W3 1979 :04±1980 :01 10
3 W1[W2[W3 ÿ0.78 8036 ÿ1.59 3.04 20.41 0.48 W4 1981 :03±1981 :07 5
4 W1[W2[W3[W4 ÿ0.86 7991 ÿ1.99 2.78 20.16 0.92 W5 1989 :06±1990 :07 14

Table V. Results of the reverse historical experiment

# Set for de®nition of
thresholds

Thresholds for functions Results

XCIR INVR G10FF LHK5 LUK10 FYG3R Examined
set

Alarms within the
set W

Duration
of alarms
(months)

1 W5 ÿ3.65 5305 ÿ0.61 ÿ0.69 29.87 1.27 W4 No 0
2 W5[W4 ÿ3.61 4511 ÿ0.95 ÿ1.03 27.89 1.18 W3 1979 :10±1980 :01 4
3 W5[W4[W3 ÿ3.30 7024 ÿ1.38 0.97 44.47 1.29 W2 1973 :07±1973 :11 5
4 W5[W4[W3[W2 ÿ3.04 6320 ÿ1.59 2.33 29.87 1.29 W1 1969:12 1
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FYGR3 is eliminated, the alarm before the recession in 1973±5 starts in the same month as the
recession.

We also considered prediction using a single indicator, in which case an alarm is declared if
that indicator passes its full-sample threshold. The performance of these single-indicator models
was worse than the multivariate models, in some cases because recessions were missed, in others,
because predicted recessions did not occur.

Performance of the di�erent variations of the prediction algorithm is juxtaposed in the error
diagram (Molchan, 1994), shown in Figure 3.

COMPARISON WITH BENCHMARK MODELS

This section compares the pattern-recognition forecasts to those of two conventional, simple
models in a recursive, or simulated out-of-sample, experiment. All three versions of the pattern
recognition model in Table II are considered here. The benchmark comparison models are a
linear probability model and a probit model, which predict the probability of a recession
beginning some time in the next nine months, using current values of the six economic indicators.
Like the pattern-recognition model, the linear probability model and the probit model each have
seven free parameters. For both the linear probability and probit models, an alarm was indicated
if a recession probability exceeded 50%. These models were estimated using both LL and QG
detrended data.4

Table VI. Results of changing p :q

# Function New p :q Threshold
Alarms, di�erent from those in the

main version (Table III)

Total duration
of alarms in %
of total time

1 XCIR 1 :2 ÿ0.98 1989 :06±1990 :07 14.0
2 1 :4 ÿ2.20 1981 :04±1981 :07 13.3
3 INVR 2 :1 6167 1969 :08±1969 :10, 1969 :12 13.3
4 4 :1 8870 1979 :03±1908 :01 14.0
5 G10FF 1 :7 ÿ0.99 No 13 :6
6 2 :23 ÿ1.90 1969 :09±1969 :12, 12.2

1973 :10±1973 :11
7 LHK5 1 :1 5.38 1985 :03±1985 :08 (added) 15.8
8 1 :3 ÿ0.33 1973 :07±1973 :09, alarm after 1973 :11 12.9
9 LUK10 4 :1 19.78 No 13 :6
10 6 :1 29.87 1979 :05±1980 :01 13 :3
11 FYG3R 2 :1 0.54 1969 :07±1969 :12 14 :0
12 4 :1 1.17 1969 :08±1969 :10, 1969 :12 13 :3

4 Attempts were also made to estimate Hamilton (1989) switching models using these indicators. However, when more
than two indicators were included as predictors, these models failed to converge because the parameters were essentially
unidenti®ed. This is not surprising because these models contain a large number of parameters to be estimated and there
are only six recessions in this data set. This underscores the problem raised in the Introduction faced by empirical models
generally, and non-linear models in particular, of predicting recessions using many leading indicator and only a handful
of recessions.
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The performance of these models in predicting recessions at the nine-month horizon
is summarized in Table VII, panel A for the full sample. For comparison purposes, summary
measures of the performance of the judgemental model are repeated there as well. All models
have overall accuracy rates that exceed 92%. The estimated pattern-recognition models out-
perform the linear probability and probit models based on this criterion. Interestingly, the choice
of the non-standard LL or the more conventional QG detrending method does not have a large
qualitative impact on the results or on the rankings across models.

An interesting question is whether the non-linear transformations {Ckt} contain information
not present in the linear regression. To address this question {Ckt} were included as six additional
regressors in the linear probability model. For the QG detrended regression, the F-statistic for
these six non-linear variables is 20.18; for the LL detrended regression, the F-statistic is 25.33.
The conventional F distribution is suspect here because the {Ckt} variables contain estimated
parameters (the cuto�s) and because of overlapping horizons in the dependent variable, and we
do not provide any distribution theory for these statistics. Nonetheless, the values of these F-
statistics far exceed standard critical values, which suggests that these non-linear transformations
have important marginal predictive content beyond the linear terms.

Panels B±E report the results of four recursive experiments. The experiments di�er by the
estimation and evaluation data sets. For example, in panel C, the parameters were estimated on
the sampleW1 [W2, but the reported accuracy rates refer to the episodesW3 [W4 [W5. In each
experiment, the parameters of the linear model were estimated by ordinary least squares; the
parameters of the probit model were estimated by maximum likelihood; and the seven parameters

Figure 3. Error diagram: (1) main version; (2) prediction history; (3) reverse prediction history; (4)±(9)
exclusion of variables: (4) XCIR, (5) INVR, (6) G10FF, (7) LHK5, (8) LUK10, (9) FYG3R, (10)±(15),
prediction using a single variable: (10) XCIR, (11) INVR, (12) G10FF, (13) LHK5, (14) LUK10, (15)
GYG3R
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of the pattern-recognition model were estimated by non-linear least squares using simulated
annealing (10,000 random draws).

Several results are apparent. The other non-linear model, the probit model, is unstable, and
produces forecasts that have quite low accuracy in several of the experiments. The ranking
between the linear probability model and the estimated pattern-recognition model is less clear;
generally speaking, the estimated pattern-recognition model does better than the linear model
when the estimation data set is longer. The estimated pattern-recognition model appears to be
more robust than the probit model in the sense of being less prone to signi®cant deteriorations in
accuracy.

Table VII. Comparison of pattern recognition, linear probability, and probit models

Algorithm Parameters
Trans-

formation
Smoothed
alarms?

False
negative rate

False
positive rate

Overall
accuracy rate

(A) Full sample
Pattern rec. Estimated QG N 0.222 0.008 0.961
Linear prob. Estimated QG N 0.400 0.019 0.924
Probit Estimated QG N 0.267 0.039 0.928

Pattern rec. Estimated LL N 0.111 0.023 0.964
Linear prob. Estimated LL N 0.333 0.015 0.938
Probit Estimated LL N 0.222 0.027 0.944

Pattern rec. Judgemental LL N 0.311 0.027 0.931
Pattern rec. Judgemental LL Y 0.200 0.027 0.947

(B) Estimation: W1 , prediction: W2 [W3 [W4 [W5

Pattern rec. Estimated QG N 0.611 0.074 0.828
Linear prob. Estimated QG N 0.333 0.056 0.894
Probit Estimated QG N 0.528 0.012 0.894

Pattern rec. Estimated LL N 0.389 0.086 0.859
Linear prob. Estimated LL N 0.056 0.086 0.919
Probit Estimated LL N 0.111 0.198 0.818

(C) Estimation: W1 [W2, prediction: W3 [W4 [W5

Pattern rec. Estimated QG N 0.185 0.185 0.815
Linear prob. Estimated QG N 0.000 0.178 0.852
Probit Estimated QG N 0.000 0.489 0.593

Pattern rec. Estimated LL N 0.296 0.089 0.877
Linear prob. Estimated LL N 0.278 0.160 0.827
Probit Estimated LL N 0.037 0.267 0.772

(D) Estimation: W1 [W2 [W3, prediction: W4 [W5

Pattern rec. Estimated QG N 0.333 0.174 0.798
Linear prob. Estimated QG N 0.444 0.105 0.837
Probit Estimated QG N 0.500 0.070 0.856

Pattern rec. Estimated LL N 0.778 0.163 0.731
Linear prob. Estimated LL N 0.389 0.140 0.817
Probit Estimated LL N 0.278 0.360 0.654
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CONCLUSIONS

Taken together, the evidence presented here suggests that these simple binary transformations of
these economic indicators have signi®cant predictive content for recessions. The pattern-
recognition model has the interesting feature of being highly non-linear yet only having the same
number of free parameters as a linear regressionmodel. The sensitivity analysis of the judgemental
pattern-recognition model and the simulated out-of-sample analysis of the estimated pattern-
recognitionmodel suggests that this model is stable to outliers and changes in regimes. It is striking
that these models, in which the information in the data is reduced to binary indicators, has
predictive content comparable to or, in many cases, better than that of more conventional models.

Several caveats should be emphasized. First, despite the subsample and pseudo-out-of-sample
analysis, the only true test of this algorithm is to track the performance of the forecasts from the
pattern-recognition models during the current expansion and beyond.5 Second, only twomethods
for parameter selection ( judgemental and full non-linear least squares) have been investigated
here, and it might be that estimation methods could be re®ned to further reduce the e�ective
number of parameters of the pattern-recognition model. Third, although the six economic
indicators used here were selected because of their quality (documented elsewhere) as coincident
or leading economic indicators, there is no guarantee that these indicators will continue to be good
predictors in the future. Fourth, the assessment here has relied on pseudo-out-of-sample
forecasting exercises to assess the validity of this algorithm, and it would be useful (but di�cult) to
augment this with formal statistical measures of sampling uncertainty. Despite these cautionary
notes, however, we consider these results encouraging and supportive of additional investigation
of this approach.
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