A Theory of Foreign Exchange Interventions

SEBASTIÁN FANELLI
CEMFI

and

LUDWIG STRAUB
Harvard, NBER

First version received March 2019; Editorial decision January 2021; Accepted March 2021 (Eds.)

We study a real small open economy with two key ingredients (1) partial segmentation of home and foreign bond markets and (2) a pecuniary externality that makes the real exchange rate excessively volatile in response to capital flows. Partial segmentation implies that, by intervening in the bond markets, the central bank can affect the exchange rate and the spread between home- and foreign-bond yields. Such interventions allow the central bank to address the pecuniary externality, but they are also costly, as foreigners make carry trade profits. We analytically characterize the optimal intervention policy that solves this trade-off: (1) the optimal policy leans against the wind, stabilizing the exchange rate; (2) it involves smooth spreads but allows exchange rates to jump; (3) it partly relies on “forward guidance,” with non-zero interventions even after the shock has subsided; (4) it requires credibility, in that central banks do not intervene without commitment. Finally, we shed light on the global consequences of widespread interventions, using a multi-country extension of our model. We find that, left to themselves, countries over-accumulate reserves, reducing welfare and leading to inefficiently low world interest rates.

Key words: Foreign exchange interventions; Limited capital mobility; Reserves; Coordination

JEL Codes: F31, F32, F41, F42

1. INTRODUCTION

Volatile capital flows present complex trade-offs to central banks around the world. Chief among them is Mundell’s famous trilemma, which in economies with open capital accounts manifests itself in a tough trade-off between employment and exchange rate stabilization. In search of solutions, the vast majority of open economies has turned to foreign exchange (FX) interventions. Traditionally a popular tool mostly among developing countries—nine out of ten rely on it¹—it has recently emerged as the first line of defense among several advanced economies as well, e.g., among Euro neighbours. Across the board, intervening central banks often do not hesitate to put large sums on the line. Brazil, in the wake of the “taper tantrum,” sold around U.S.$ 110 billion

The editor in charge of this paper was Kurt Mitman.
worth of reserves within 2 years; Switzerland, fending off appreciation, has accumulated U.S.$
800 billion worth of reserves since 2010.

Despite the popularity of FX interventions in practice, there is little theoretical work to
guide their implementation. Scant convincing empirical evidence on their effectiveness, and
an influential irrelevance result by Backus and Kehoe (1989), shaped a pessimistic view within
academia. In recent years, however, this view has started to shift. Serious empirical work has
demonstrated their effectiveness (e.g. Kearns and Rigobon, 2005); financial frictions in capital
mobility have emerged as a central ingredient in explaining puzzles at the core of international
macroeconomics (Gabaix and Maggiori, 2015); and normative aspects of FX interventions have
begun to move into the sights of academic economists (Liu and Spiegel, 2015; Cavallino, 2019).

Yet, many fundamental questions remain open. What kind of inefficiencies should be
addressed with FX interventions? How should costs of interventions be measured? How should
interventions be implemented over time? Are optimal FX interventions time consistent? What are
the implications of the increasingly widespread usage of FX interventions for the world economy?
In this article, we propose a tractable and microfounded framework that speaks to these questions.
It rests on two key ingredients, the first of which is limited capital mobility. In our framework,
intermediation between home and foreign bond markets is restricted due to a fixed transaction cost
and position limits. These restrictions imply that intermediaries cannot arbitrage away all return
differentials between markets. A portfolio balance channel thus emerges: changes in the portfolio
of the central bank induce short-lived interest rate spreads between domestic and foreign bonds, as
in Kouri (1976), Branson and Henderson (1985) and, more recently, Gabaix and Maggiori (2015).
Thus, FX interventions are effective. The second ingredient is an inefficiency in the competitive
equilibrium that makes the path of the exchange rate suboptimal absent interventions. Inspired
by Cravino and Levchenko (2017), this occurs in our baseline model due to a novel pecuniary
externality: rich households do not take into account the effect of their spending decisions on the
purchasing power of the poor via the real exchange rate. More precisely, we build a real small open
economy (SOE) model with two types of households: one of them is rich and Ricardian, while
the other is poor and hand-to-mouth. Households have Stone–Geary preferences with subsistence
needs in tradable goods, rationalizing the fact that tradable expenditure shares decrease with
income (Cravino and Levchenko, 2017). When the world interest rate increases, the rich cut back
their consumption, depreciating the exchange rate, and hurting the poor. 2 FX interventions can
be used to affect home interest rates, thereby altering rich households’ spending behaviour and
exchange rates. Thus, FX interventions are desirable.

We analyse this model through the lens of the SOE’s central bank as the social planner and
ask: how should it optimally manage its holdings of foreign bonds? Our first contribution is to
show that the problem can be entirely framed in terms of the interest rate spread that the central
bank’s portfolio choice generates. The logic is straightforward: to depreciate the exchange rate,
the central bank sells home bonds and purchases foreign ones, generating a positive interest
rate spread. Crucial to our analysis, interest rate spreads are inherently costly, over and above
the standard costs from distorting (home) households’ consumption profiles. The reason is that
interest rate spreads invite foreign intermediaries to make profits from carry trades, representing
costs to the country. These additional costs are naturally convex in the level of the spread—as
more foreign intermediaries become active carry traders when spreads are higher—and increasing

2. This model is meant to capture a significant concern of policymakers in emerging markets: the pass-through of exchange rate movements into food prices—an important component of the consumption basket of low income households. However, our results are much more general than this particular setup. We present a general framework in Section 4.1 and three alternative applications in Supplementary Appendix D.
in the openness of the capital account—as foreign intermediaries then find it easier to take larger positions.

Our second contribution is a full characterization of the optimal FX intervention policy. We summarize our findings in six main insights or “principles.” First, FX interventions should lean against the wind of global capital flows, dampening exchange rate movements. In our baseline model, this is desirable because it stabilizes the welfare of the poor. Second, FX interventions should be smooth in terms of interest rate spreads. This helps spread out the costs from FX interventions over time, reminiscent of the famous tax-smoothing model of Barro (1979). Notably, our cost term is not equal to a simple quasi-fiscal cost, which is the standard cost measure used in the literature (Adler and Mano, 2021). In fact, in our calibration, it is one order of magnitude smaller as it takes into account the financial benefits directly accruing to home households. We demonstrate that our idea of FX intervention smoothing does not imply that the exchange rate path should be smooth. That is, the exchange rate must be allowed to “jump” in response to the shock. A price-based policy (e.g. a “crawling peg”) that tries to slow the adjustment over time necessitates large interest-rate spreads and thus carries large welfare costs. Our third insight is a direct consequence of FX-intervention smoothing, namely that the optimal policy involves promises of future FX interventions even when the actual shock has already passed—a form of “FX forward guidance.”

Our fourth insight is that these promises naturally lead to a new time inconsistency problem, as central banks would renege on their promised FX interventions after the shock has subsided. When FX interventions cannot be credibly promised at all, we show that no FX intervention will be chosen in the associated time-consistent Markov equilibrium, highlighting the role of central bank credibility as an essential input into successful conduct of FX intervention policies. Our fifth insight echoes the common perception that it is “easier” to resist appreciation than to fight depreciation. We rationalize this on the basis that households have asymmetric access to foreign markets. Simply put, if households can save in dollars more than they can borrow, the central bank needs to commit more resources to defend the currency against depreciation than against appreciation. Finally, for our sixth insight, we consider a “non-fundamental” shock, such as the noise shocks in Gabaix and Maggiori (2015). In contrast with fundamental capital flow shocks, we argue that these shocks are not costly and instead lead to financial gains for the intervening country.

We offer a rich set of extensions in Section 4 and Supplementary Appendix D. Among others, we propose a general framework that can nest alternative motives of interventions and show the robustness of our results; we introduce long-term assets in the economy and prove that our time inconsistency cannot be mended by maturity management as in Lucas and Stokey (1983); and, finally, we study whether our interest rate spreads correspond to uncovered- or covered-interest-rate-parity violations.

Our last contribution is to characterize the positive and normative consequences of widespread FX interventions for the international monetary system. We embed our baseline model in a world composed of a continuum of SOEs, which are subject to limited capital mobility as before. We simulate a global savings glut by symmetrically increasing all households’ desires to save, capturing recent trends like population aging or a growth slowdown. We show that in response to other countries’ savings behaviour, each country finds it individually optimal to engage in

3. In other applications, studied in Supplementary Appendix D, leaning against the wind is desirable for different reasons. For example, in an environment with aggregate demand externalities, leaning against the wind incentivizes agents to spend more during recessions, which increases welfare. In a model with endogenous terms of trade and home bias, curbing exchange rate movements helps increase the price of exports when net exports are large. We identify the common thread across applications in our general framework of Section 4.1.
FX interventions and accumulate reserves. Yet, this only “pushes” more savings into the other countries, which amplifies their desired interventions in the Nash equilibrium, resulting in “reserve wars.” We find that reserve wars are characterized by large public cross-border capital flows (as in Aguiar and Amador, 2011 and Gourinchas and Jeanne, 2013) and by significantly depressed world interest rates. Strikingly, a planner that could coordinate all countries’ interventions would optimally ban their usage in response to symmetric shocks (such as a global savings glut), and only allow them in response to country-specific asymmetric shocks, where they have insurance benefits.

1.1. Literature

Our article builds on a recent literature studying FX interventions using fully microfounded frameworks with limited capital mobility. Our financial friction is, in reduced form, the same as in Gabaix and Maggiori (2015). They introduce it in a general equilibrium environment and illustrate that FX interventions can be effective in moving exchange rates. Chang and Velasco (2017) study FX interventions in an environment with borrowing constraints and show they are effective when these constraints are binding. Liu and Spiegel (2015) numerically solve for the jointly optimal response of taxes on financial assets, FX interventions, and monetary policy to fundamental shocks in a New-Keynesian model, finding that FX interventions lean against the wind. Cavallino (2019) also uses a New-Keynesian model and studies optimal FX interventions against non-fundamental capital inflow shocks, characterizing the solution to first order around the steady state. Amador et al. (2020) characterize the FX interventions that are necessary to sustain a given exchange rate path in an environment with a zero lower bound on nominal interest rates. They also measure the cost of FX interventions in Switzerland as the product of the covered-interest-rate-parity (CIP) deviation and the stock of reserves. Relative to these papers, we contribute on the positive side by deriving an expression for the costs of FX interventions, emphasizing the residence of home bond holders and the maturity structure. On the normative side, we contribute by proposing new motives for interventions and by identifying several new principles.

Our article is also connected to the burgeoning literature on optimal capital controls, which also characterizes optimal paths of tax-induced interest rate spreads. Indeed, two of our alternative models share common themes with Farhi and Werning (2012, 2014) but allow for limited capital mobility. We show that their prescription that the optimal policy should lean against the wind after world interest rate shocks, stabilizing movements in the real exchange rate, carries over to our environment. However, none of the other principles is present in their optimal capital controls problem.

Our article is also related to a large literature studying the long-drawn process of reserve accumulation by emerging market central banks in the past decades. Closest to us in this literature are Benigno and Fornaro (2012), Jeanne (2012), and Bacchetta et al. (2013, 2014), which investigate the role of reserve accumulation in economies in which the private sector lacks access to foreign markets. However, in these models there is no region in which the planner balances the benefits of FX interventions with costs (beyond distorting consumption)—which is at the centre of our analysis.

4. Ostry et al. (2012), Benes et al. (2015), Devereux and Yetman (2014), and Blanchard et al. (2014) study the effects of interventions without a fully microfounded model.

Finally, our study of a world equilibrium with reserve accumulation in Section 5 is related to Obstfeld (2013), who emphasizes the dangers of currency wars through reserve accumulation and its consequences for global interest rates. Models of low global interest rates are also put forth by Coeurdacier et al. (2015) and Caballero and Farhi (2018). We contribute to this literature by showing how decentralized FX interventions can be a powerful amplification mechanism of an initial rise in global savings.

1.2. Layout

The article is organized as follows. In Section 2, we present our baseline model and derive the planning problem. In Section 3, we characterize the optimal policy, organizing the exposition around six main insights or “principles.” In Section 4, we develop a general framework that nests the baseline model and use it to show the robustness of our results. We also extend our baseline model to include long-term assets and currency forwards. In Section 5, we present a multi-country version of our model. Section 6 concludes. Our Supplementary Appendix contains all proofs, as well as additional extensions and details on the calibration and data used in the article.

2. BASELINE MODEL

In this section, we focus on a model inspired by the work of Cravino and Levchenko (2017). We study an abstract general framework that nests this model as a special case in Section 4.1. We consider alternative applications of the general framework in Supplementary Appendix D.

2.1. Model setup

We study a real SOE model in continuous time. There are three kinds of agents: the SOE’s households, its central bank, and financial intermediaries. The agents interact in two asset markets, one for the SOE’s home bonds, and one for foreign bonds. We describe all three kinds of agents in turn.

Households and goods markets. There are two types of households $i \in \{R, P\}$ in the home country—a mass $1 - \mu$ Ricardian, or rich, ($i = R$) and a mass μ poor ($i = P$) households. Households trade and consume tradable and non-tradable goods, of which the SOE’s total endowments are y_T and y_N. Each household maximizes a Stone–Geary utility function

$$
\int_0^\infty e^{-\rho t} u\left(c_{T}^{i} - \xi^{i} c_{N}^{i}\right) dt,
$$

where c_{T}^{i} is tradable consumption and c_{N}^{i} is non-tradable consumption of a household of type i; α represents the degree of openness; $u(c) = c^{1-\alpha}$ is a CES flow utility function; and ξ represents a subsistence level in tradable goods consumption (e.g. food). The latter introduces a non-homotheticity in consumption, which captures the fact that poor households spend a higher fraction of their income on tradables, and within tradables, on goods with systematically lower non-tradable components (Cravino and Levchenko, 2017). As a result, the cost of poor households’ consumption baskets is particularly sensitive to exchange rate fluctuations, which, as we discuss at great length below, has immediate consequences for central bank policies.

Ricardian and poor households differ in two aspects (1) their income stream and (2) their access to financial markets. Ricardian households own a share $1 - \chi > 1 - \mu$ of the SOE’s endowments,
have unfettered access to home financial markets, and some restricted access to international financial markets. Poor households own a share $\chi < \mu$ of endowments in the economy and lack access to any financial markets.

Throughout our analysis, we normalize the foreign good’s price to 1 and refer to that numeraire as “dollars.” The consolidated dollar budget constraint of all Ricardian households is then

$$ (1 - \mu) \left(p_t c_{Nt}^R + c_{Tt}^R \right) + \tilde{b}_{Ht}^* + \tilde{b}_{Ht}^* = (1 - \chi) (p_t y_N + y_T) + r_t b_{Ht}^* + r_t^* b_{Ht}^* + t_t + \pi_t. \tag{2} $$

where p_t is the relative price of the non-tradable good, b_{Ht} and b_{Ht}^* are the households’ positions in home and foreign bonds, t_t are transfers to or from the central bank, π_t are intermediation profits (to be specified below), and r_t and r_t^* are the returns of the home and foreign bond, respectively (both in dollars).7 p_t can be regarded as the inverse of the exchange rate, which, up to a constant factor, is equal to $p_t^{−(1-\alpha)}$. The position in foreign bond markets is assumed to be restricted,

$$ b_{Ht}^* \in [\overline{b}_{Ht}^*, \overline{b}_{Ht}^*], $$

where $\overline{b}_{Ht}^* \leq \overline{b}_{Ht}^*$, and $|\overline{b}_{Ht}^*| \leq \overline{b}_{Ht}$.8 This assumption captures the idea that it is difficult for many households in emerging markets to frictionlessly access international financial instruments without having to rely on financial intermediaries, especially so when borrowing abroad. This specification allows as special cases the commonly assumed case where households cannot access financial markets at all without intermediaries, $\overline{b}_{Ht}^* = \overline{b}_{Ht} = 0$, as well as the case, where \overline{b}_{Ht}^* is significantly larger than $|\overline{b}_{Ht}^*|$ and thus access is asymmetric.

For a poor household, the dollar budget constraint is given by

$$ \frac{\mu c^i_t}{y^i_t} = \chi p_t y_N + \chi y_T - \mu \xi, \tag{3} $$

where $\xi^i_t = c^i_t - \xi + p_t c_{Nt}^i$ denotes the (net-of-subsistence) dollar expenditure by a household of type i. When $\mu \xi > \chi y_T$, the poor’s endowment of the tradable good is insufficient to cover their subsistence needs. Thus, a depreciation forces them to cut their non-subsistence spending significantly in order to finance their subsistence needs. Formally, ξ^i_t moves more than proportionally with p_t. Henceforth, we assume this is the case, in line with the idea that devaluations particularly hurt the poor.

The optimal demands for tradable and non-tradable goods are given by

$$ \begin{align*}
\xi_{Nt}^i &= \alpha \xi^i_t + \xi \\
\xi_{Rt}^i &= \frac{1}{\sigma} (r_t - \mu) + \frac{\sigma - 1}{\sigma} \frac{\mu - p_t}{p_t}.
\end{align*} \tag{4} $$

Below, we often write z_t instead of ξ^i_t, as it will play a prominent role in the analysis. Unlike poor households, Ricardian households have unfettered access to home bond markets. Thus, their total expenditure z_t satisfies the following Euler equation,

$$ \frac{\dot{z}_t}{z_t} = \frac{1}{\sigma} (r_t - \mu) + \frac{\sigma - 1}{\sigma} \frac{\mu - p_t}{p_t}. \tag{6} $$

Their demand for foreign bonds is at the upper bound, $b_{Ht}^* = \overline{b}_{Ht}^*$, when $r_t^* > r_t$, and vice versa at the lower bound, $b_{Ht}^* = \overline{b}_{Ht}^*$, when $r_t^* < r_t$. When $r_t = r_t^*$, b_{Ht}^* is indeterminate.

7. Since the model is deterministic, the currency denomination of the returns is irrelevant when the country has zero net liabilities in the home currency at $t=0$. We allow for non-zero home currency liabilities in Section 4.2.

8. Although there are restrictions on holdings of foreign bonds, we refer to these households as Ricardian because the timing of lump-sum transfers is irrelevant to them.
Financial intermediaries. The key ingredient in our model that makes FX interventions effective is a finite elasticity of the demand for home bonds. As a result, a change in the portfolio of the central bank affects the return of home assets r_t relative to its foreign counterpart r^*_t, henceforth referred to as the interest rate spread. Backus and Kehoe (1989) pointed out that these portfolio balance effects are muted in general equilibrium in a world with free movement of capital, as the private sector would perfectly undo any actions by the central bank.

We break this result by modelling limited asset market participation, in the spirit of Bacchetta and Van Wincoop (2010) and Gabaix and Maggiori (2015). In particular, we assume that there exists a continuum of intermediaries owned by foreigners, labelled by $j \in [0, \infty)$, which can trade in both foreign and home bond markets.

Foreign intermediaries’ investment decisions are subject to two important restrictions. First, each intermediary is subject to a net open position limit $X > 0$. Second, we follow Alvarez et al. (2009) in assuming that intermediaries face heterogeneous participation costs. In particular, each intermediary j active in the home bond market at time t is obliged to pay a participation cost of exactly j per dollar invested.

Putting these ingredients together, intermediary j optimally invests an amount x_{jt}, solving

$$
\max_{x_{jt} \in [-X, X]} x_{jt} (r_t - r^*_t) - j|x_{jt}|.
$$

Intermediary j’s cash flow conditional on investing is $X |r_t - r^*_t|$ while participation costs are jX. Thus, investing is optimal for all intermediaries $j \in [0, J]$, with the marginal active intermediary \bar{j} given by $\bar{j} = |r_t - r^*_t|$. The aggregate investment volume is then

$$
b_{It} = jX \cdot \text{sign}(r_t - r^*_t).
$$

Defining $\Gamma \equiv X^{-1}$ and substituting out \bar{j}, we obtain

$$
b_{It} = \frac{1}{\Gamma} (r_t - r^*_t). \tag{7}
$$

Equation (7) embodies that foreign intermediaries’ demand for home bonds has a finite (semi-)elasticity to the return spread. This equation is crucial to our analysis because it implies that changes in home bond demand, e.g., induced by FX interventions, can indeed affect home interest rates.

The critical parameter in (7) is the inverse demand elasticity Γ. If Γ is large, e.g., due to tight position limits X, intermediation is impeded. In equilibrium, this implies both small levels of b_{It} and a small sensitivity of b_{It} to the interest rate spread. In the extreme case where $\Gamma \to \infty$, foreign intermediation is absent, $b_{It} = 0$, and home households have no access to foreign investments beyond their own. By contrast, if Γ is small, e.g., due to relaxed position limits X, the equilibrium will feature both large b_{It} and a large sensitivity of b_{It} to the interest rate spread. In the extreme case where $\Gamma \to 0$, bond demand adjusts so that $r_t = r^*_t$ and the elasticity is infinite. Henceforth, we assume $\Gamma \in (0, \infty)$.

We also allow for intermediaries owned by households in the home country. Similar to their foreign counterparts, home intermediaries’ optimal home bond position is given by

$$
b_{HIt} = \frac{1}{\Gamma_H} (r_t - r^*_t). \tag{8}
$$

9. It is worth noting that many emerging market central banks do impose position limits on intermediaries’ investments as a form of capital controls, hence artificially decreasing X, see e.g., Canales-Kriljenko (2003).
where $\Gamma_H \in (0, \infty)$ is the inverse demand elasticity. Profits generated by home intermediaries, $\pi_t \equiv b_{IHt} [r_t - r^*_t]$, are paid to Ricardian households.

Central bank. The home central bank acts as the home country’s social planner in our model. It chooses a foreign exchange intervention policy $\{b_{Gt}, b^*_t, t_t\}$ consisting of home bond investments b_{Gt}, foreign bond investments b^*_t, and transfers t_t to Ricardian households, subject to the central bank budget constraint

$$b_{Gt} + b^*_t = r_t b_{Gt} + r^*_t b^*_t - t_t.$$

(9)

The central bank’s interventions must also ensure that the country satisfies a no-Ponzi condition,

$$\lim_{t \to \infty} e^{-\int_0^t r^*_s ds} nfa_t = 0,$$

(10)

where $nfa_t \equiv b_{Ht} + b^*_{Ht} + b_{Gt} + b^*_t$ is the net foreign asset position of the country. Observe that in this economy, it is without loss to set $b^*_t + b_{Gt} = 0$ due to the availability of transfers between the central bank and Ricardian households.

Competitive equilibrium. The model is closed with the goods market clearing condition in non-tradables,

$$(1 - \mu)e_{Nt}^R + \mu e_{Nt}^P = y_N$$

(11)

and the home bond market clearing condition,

$$b_{Ht} + b_{It} + b_{IHt} + b_{Gt} = 0.$$

(12)

We formally define the competitive equilibrium in this environment as follows.

Definition 1 Given initial debt positions $(b_{H0}, b_{I0}, b_{IH0}, b_{G0}, b^*_{G0})$, a path for the international interest rate $\{r^*_t\}$, and a central bank FX intervention policy $\{b_{Gt}, b^*_t, t_t\}$, an allocation $\{c^R_{Nt}, c^P_{Nt}, b_{Ht}, b_{It}, b_{IHt}, b_{Gt}, nfa_t, \pi_t\}$ together with prices $\{p_t, r_t\}$ is a competitive equilibrium iff they jointly solve (2)–(12).

We assume that the aggregate tradable endowment y_T is sufficiently large to guarantee the existence of a competitive equilibrium.

2.2. Equilibrium characterization and implementability

Next, we characterize the competitive equilibrium, with the goal to derive “implementability conditions” describing the set of competitive equilibria that can be attained by different FX

10. We assume that participation costs constitute transfers to Ricardian agents in the home economy. Thus, no extra cost terms enter the budget constraint (2).

11. We implicitly assume that the relevant interest rate for marginal changes in reserves is r^*_t. One might argue that negative levels of b^*_G are associated with a different, higher interest rate. In reality, however, reserves are (almost) always positive. Thus, marginal changes in reserves are associated with the foreign interest rate on savings, r^*_t.

This equation shows that, when the expenditure z_t of Ricardian agents increases by 1%,
the price of non-tradables rises by more than 1%. Together with (3), this implies that poor
households’ expenditures are more volatile than Ricardian households’ expenditures in
the competitive equilibrium. Is this efficient? Replacing consumption demands (4) and (5) into flow
utility (1), it follows that households have identical preferences in terms of z_t'. Thus, expenditures
are equally volatile in the first best, i.e., an environment where poor households can also access
financial markets. This already suggests that, in a constrained efficient allocation, the planner
may be willing to reduce the volatility of the expenditure path of the Ricardian agents to smooth
the expenditure path of the poor.\footnote{Note that we have not resorted to arguments based on ex ante distributional considerations, which cannot be improved upon by intertemporal tools such as FX interventions (see Costinot et al., 2014 for a similar remark in the context of capital controls). Indeed, in a stationary environment, the planner would not use FX interventions whatever her distributional objectives may be—a corollary of Proposition 2.}

Using the Ricardian households’ consolidated dollar budget constraint (2), we obtain
\[\frac{\alpha}{1-\alpha} p(z_t) y_N + \xi + b_{Ht} + b_{Ht}^s = y_T + r_t b_{Ht} + r_t^s b_{Ht}^s + \pi_t, \] (14)
where \(\frac{\alpha}{1-\alpha} p(z_t) y_N + \xi \) is the total consumption of tradable goods. In (14), variables t and π_t can be eliminated by adding the central bank’s budget constraint (9) as well as the expression
of home intermediaries’ profits. This allows us to rewrite the households’ budget constraint as a
country-wide budget constraint,
\[nfa_t = y_T - \frac{\alpha}{1-\alpha} p(z_t) y_N - \xi + (r_t - r_t^s) (b_{Ht} + b_{Bt} + b_{Ht}^s) + r_t^s nfa_t. \] (15)
In this equation, policy variable b_{Bt} can be expressed as $-b_{Ht} - b_{Ht} - b_{Ht}^s$ using home bond market clearing (12), where intermediaries’ bond demand b_{Ht} is given by (7). After this substitution, the country-wide budget constraint (15) simplifies to
\[nfa_t = y_T - \frac{\alpha}{1-\alpha} p(z_t) y_N - \xi + r_t^s nfa_t - \frac{1}{\alpha} (r_t - r_t^s)^2. \] (16)
Up to the last term, equation (16) is a standard open economy budget constraint. It states that
home’s net foreign asset position improves if the net exports are large or if the country is a creditor.
By contrast, the last term is novel. It captures the costs the country incurs if the interest rate spread
$r_t - r_t^s$ is different from zero.

Why does the country face costs from non-zero interest rate spreads? Suppose the spread
$r_t - r_t^s$ is positive. This invites foreign intermediaries to enter the home bond market and take a
position $b_{Ht} = \frac{1}{\alpha} (r_t - r_t^s)$. As a result, they earn
\[b_{Ht} (r_t - r_t^s) = \frac{1}{\alpha} (r_t - r_t^s)^2. \] (17)
These carry trade profits are an economic cost to the SOE, which is taking the other side of the
carry trade. These costs increase when foreign intermediaries’ demand becomes more elastic
(low Γ), since intermediaries take larger positions for any given interest rate spread. Crucially, these costs are independent of home agents’ access to financial markets (independent of γ_1^{H}, b^{*}_{H} and b^{*}_{P}). The reason is that any profits earned by home intermediaries are paid to Ricardian households at home, leaving the total wealth of the country unaltered.

Next, we study the set of all equilibria that are implementable by FX interventions. For this result and the remainder of the article, we introduce as notation for the interest rate spread $\tau_t \equiv r_t - r^*_t$. Rewriting the budget constraint (16) in present value terms we obtain the following implementability result.

Proposition 1 (Implementability conditions.) Let $\tau_t \equiv r_t - r^*_t$ be the spread between home and foreign interest rates. Then, given an initial net foreign asset position nfa_0 and a path for the international interest rate $\{r^*_t\}$, the paths $\{c^{R,T}_t, c^{P,T}_t, c^{R,N}_t, c^{P,N}_t\}$ and $\{p_t, r_t\}$ are part of a competitive equilibrium iff the corresponding $\{z_t, \tau_t\}$ solve the following two conditions: the Euler equation,

$$\Sigma(z_t) \frac{\dot{z}_t}{z_t} = r^*_t + \tau_t - \rho, \quad (18a)$$

where $\Sigma(z) \equiv \sigma + (1 - \alpha)(1 - \sigma)\frac{p(z_t)}{p(z_t)}$ and the country-wide present value budget constraint,13

$$\int_0^\infty \int e^{-\rho t} \frac{\dot{z}_t}{z_t} \left[\frac{\alpha}{1-\alpha} p(z_t) Y_N + c - y_T + \frac{1}{\Gamma} \tau^2 \right] dt = nfa_0. \quad (18b)$$

Proposition 1 gives us a simple characterization of the set of competitive equilibria as it is commonly used in models of optimal Ramsey taxation (see, e.g., Lucas and Stokey, 1983; Chari and Kehoe, 1999). A key difference with this literature is that the planner in our model does not choose a path of taxes, but rather an FX intervention policy as defined above. Proposition 1 is important because it implies that setting interventions—which are paths of asset positions—is equivalent to setting interest rate spreads τ_t—which behave like taxes.

Having described the set of implementable allocations, we next turn to the full planning problem.

2.3. Planning problem

We consider the problem of a utilitarian planner putting equal weight on each type of household, and we envision the central bank as fulfilling this role. The planner’s problem is, therefore, to maximize the sum of home households’ welfare by choosing among the competitive equilibria it can implement using FX interventions.

Using equations (3)–(5) and (11), we can state the planning problem as,14

$$\max_{\{z_t, \tau_t\}} \int_0^\infty e^{-\rho t} V(z_t) dt, \quad (19)$$

where

$$V(z) = p(z)^{-(1 - \sigma)(1 - \sigma)} \left\{ (1 - \mu) u(z) + \mu \left(p(z) \chi \mu^{-1} Y_N + \chi \mu^{-1} Y_T - c \right) \right\} \quad (20)$$

subject to the two implementability conditions (18a) and (18b).

13. We assume $\sigma + (1 - \sigma)\frac{\Gamma}{1 - \Gamma} > 0$ to ensure $\Sigma(z) > 0$ (see Supplementary Appendix B.2). This condition is satisfied in our calibration.

14. See Supplementary Appendix B.2 for a derivation and a proof that $V(z)$ is strictly increasing and concave.
In the planning problem (19), the freedom of setting different FX intervention policies is completely embodied in the choice of the interest rate spread τ_t. When the central bank desires to raise consumption in period t relative to the next, it lowers τ_t. Such a policy would then be implemented by selling reserves and purchasing home bonds, which, due to a finitely elastic foreign demand function, affects the home interest rate r_t and thus τ_t.

One possibility for the central bank in this baseline model is to set $\tau_t = 0$ in all periods. This is feasible because the central bank has unrestricted access to both bond markets. If home households have sufficient access to foreign markets, i.e., b^*_H and \tilde{b}^*_H are sufficiently large, no intervention is required to implement $\tau_t = 0$. By contrast, if home households have minimal access, then there is a clear role for the central bank to step in and do the intermediation itself, taking positions to ensure $r_t = r^*_t$. While this may be realistic in certain situations of sudden illiquidity in FX markets, we henceforth focus our attention on the more interesting case where the financial friction does not affect the competitive equilibrium, i.e., when home households have enough access such that $\tau_t = 0$ is feasible absent any interventions.

2.4. Discussion

We next discuss the main assumptions behind our model, as well as alternative tools the planner might have access to.

Main ingredients. Our model has two key ingredients. The first ingredient is an inefficiency in the competitive equilibrium allocation, providing the planner with a motive for intervening. In our baseline model, the source of inefficiency is a pecuniary externality: Ricardian households do not take into account that their spending decision affects the income of the poor. Indeed, as we argued before, the expenditure path of Ricardian agents is too volatile in the competitive equilibrium (we show this formally in Section 3). We further demonstrate in Section 4.1 that similar motives for intervening are implied by alternative sources of inefficiency, such as terms-of-trade manipulation and aggregate demand management. One way to see this already now is that the planning problem solely depends on the planner’s objective as a function of home agents spending, $V(z)$, and the inverse elasticity of private spending to the interest rate, $\Sigma(z)$. In Section 4.1, we identify the crucial properties of these two objects that explain the robustness of our results across applications.

The second ingredient is limited capital mobility, providing the planner with the ability to affect allocations through interventions. This works because the private sector is at a disadvantage to undo its actions: both households and arbitrageurs face position limits. Our microfoundation of limited capital mobility rests on two main components. The first is rationality, that is, agents only participate if they make profits; the second is the property that participation increases in the size of the spread. These two assumptions have important implications: going “against the market” entails costs for the government; and costs increase more than proportionally with the intervention size, as more agents are encouraged to exploit the arbitrage opportunity.

In sum, the first ingredient gives the planner a motive to intervene, while the second implies interventions are effective but increasingly costly. These features are at the core of our characterization of optimal policy in Section 3.

15. We assumed above that participation increases linearly with the spread to simplify the exposition. We generalize to arbitrary non-linear increasing demand schedules $b_i = g(i - i^*)$ in Supplemental Appendix D.1.
Alternative tools. In our main model, the planner cares about the distribution of wealth across types. One may think that this suggests that the most appropriate tool to address this problem are transfers. Indeed, a full set of agent-specific and time-varying transfers can trivially attain the first best by replicating the path of desired asset positions of the poor. In realistic settings, however, such a rich set of tools is likely unavailable.16 Observe that time-invariant transfers are not sufficient. These would only allow planner to redistribute wealth on average, but cannot solve the issue of “excess” volatility of private spending present in our environment.17

Furthermore, given that our planner is trying to affect the path of private spending over time, one may wonder if taxes on financial flows (capital controls) are not a better and more direct policy tool. In fact, a reader that is familiar with the recent literature on capital controls (see \textit{e.g.} Bianchi, 2011; Farihi and Werning, 2012, 2014; Jeanne, 2012; Heathcote and Perri, 2016) may notice that after taking the limit $\Gamma \to \infty$ the planning problem (19) becomes formally equivalent to the archetypical optimal capital controls problem: the planner directly controls the wedge between r_t and r_t^* at a zero resource cost. One must be careful, however, with the economic interpretation of this limit. If the private sector is in financial autarky, which is precisely the case when $\Gamma \to \infty$ and $b_H^*=h_H^*=0$, taxes are non-allocative, so the only implementable allocation is the one in which trade is always balanced. By contrast, this is the parametrization that makes FX interventions most effective.

When the private sector is not in financial autarky, \textit{i.e.}, when $b_H^*, h_H^* \neq 0$ or when $\Gamma < \infty$, taxes on financial assets seem very effective: they can implement the desired wedge at a zero resource cost. However, this argument presumes that taxes are perfectly enforceable. In practice, an important concern of policymakers when deciding whether to implement taxes on financial flows is the ability of the private sector to circumvent them, \textit{i.e.}, whether capital controls may “leak,” as in Bengui and Bianchi (2018). Explicitly modelling the ability of foreigners to avoid the taxes imposed on cross-border transactions would lead to a resource cost term in the budget constraint that is similar to the one studied in our optimal FX-intervention problem.18

In this sense, the planning problem studied in this article is a third-best problem. The first best is having time-varying agent-specific taxes; the second best is controlling the wedge costlessly (either $\Gamma \to \infty$ in our setup or $\Gamma < \infty$ and perfectly enforceable taxes); the third best adds an additional resource cost related to the “undoing” activity of the private sector.

Finally, we focused the discussion on a particular capital control: taxes on inflows. In reality, capital controls include a broader array of tools, such as position limits and reserve requirements, which can effectively put “sand in the wheels” of private intermediation. In the language of our model, such capital controls may serve to increase Γ. Thus, they are complementary to FX interventions. This is in line with recent evidence showing that capital controls are usually not cyclical (Fernández et al., 2016), and that FX interventions become more effective when capital controls are in place (Kuersteiner et al., 2018). Note, however, that to the extent that Γ reflects...
A THEORY OF FOREIGN EXCHANGE INTERVENTIONS

3. SIX PRINCIPLES OF OPTIMAL FX INTERVENTIONS

We are now in a position to study the planning problem (19) and distil six insights, or “principles,” about optimal FX interventions in response to capital flows. We explain our principles with model simulations using an illustrative calibration based on Brazil, shown in Table 1. All details on the calibration can be found in Supplementary Appendix A.

3.1. Leaning against the wind

The setting of the first five principles is that of a temporary shock to world interest rates,

\[
r_{t}^{*} = \begin{cases}
 r_{t}^{*} + \frac{\Delta r^{*}}{T} (T - t) & t < T \\
 r_{t}^{*} & t \geq T
\end{cases},
\]

where \(\Delta r^{*}\) and \(T\) are the size and duration of the shock, respectively. Our first principle concerns the direction of the intervention.

Proposition 2 (Leaning against the wind.) In response to capital inflows, \(\Delta r^{*} < 0\), optimal FX interventions require reserve accumulation, \(b_{Gt} > 0\), thus inducing a positive interest-rate spread \(\tau_{t} > 0\) and dampening the appreciation of the exchange rate.

Conversely, in response to capital outflows, \(\Delta r^{*} > 0\), optimal FX interventions require reserve decumulation, \(b_{Gt} < 0\), inducing a negative interest-rate spread \(\tau_{t} < 0\) and containing the depreciation of the exchange rate.

Proposition 2 shows that optimal FX interventions lean against the wind, accumulating reserves when capital flows into the country and vice versa. To understand this result, consider the case of a capital inflow shock, illustrated in Figure 1. The black line shows the response with laissez-faire, i.e., with \(\tau_{t} \equiv 0\). In response to the low foreign interest rates, Ricardian households

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share poor households</td>
<td>(\mu)</td>
<td>0.2</td>
<td>Population share</td>
</tr>
<tr>
<td>Endowment share of poor</td>
<td>(\chi)</td>
<td>0.078</td>
<td>Expenditure share of poor</td>
</tr>
<tr>
<td>Preference weight on tradables</td>
<td>(\alpha)</td>
<td>0.051</td>
<td>Tradable expenditure shares</td>
</tr>
<tr>
<td>Subsistence level</td>
<td>(\xi)</td>
<td>0.19</td>
<td>Tradable expenditure shares</td>
</tr>
<tr>
<td>Tradable endowment</td>
<td>(\gamma_{T})</td>
<td>0.23</td>
<td>Zero NFA</td>
</tr>
<tr>
<td>Non-tradable endowment</td>
<td>(\gamma_{NT})</td>
<td>1</td>
<td>Normalization</td>
</tr>
<tr>
<td>Inverse EIS</td>
<td>(\sigma)</td>
<td>2</td>
<td>Standard value</td>
</tr>
<tr>
<td>Discount rate</td>
<td>(\rho)</td>
<td>0.075</td>
<td>5 year treasury yield, EMBI+Brazil</td>
</tr>
<tr>
<td>Capital immobility (home)</td>
<td>(\Gamma_{H})</td>
<td>3</td>
<td>Relative balance sheet of Brazilian banks</td>
</tr>
<tr>
<td>Capital immobility (foreign)</td>
<td>(\Gamma)</td>
<td>9</td>
<td>Kohlscheen and Andrade (2014) intervention</td>
</tr>
</tbody>
</table>

Institutional barriers such as capital controls, the private sector may learn to circumvent them. We address this concern in Supplementary Appendix D.7, where we let the degree of capital market frictions \(\Gamma_{t}\) fall over time. Such a falling \(\Gamma_{t}\) precisely captures the idea that markets become more and more frictionless as an intervention persists.\(^{19}\)

\(^{19}\) Recall that \(t\) denotes the time since the arrival of a shock, not calendar time.
Figure 1

Optimal foreign exchange interventions in response to capital inflows.

Notes: This figure shows the optimal foreign exchange intervention in response to a temporary 2% cut in world interest rates, for three different degrees of financial frictions Γ in global capital flows.
borrow abroad. This increases the demand for non-tradables and leads to an appreciation of the exchange rate. The green lines show the response with optimal FX interventions for different degrees of financial frictions \(\Gamma \) in global capital flows, \(\Gamma = 9 \) being our calibrated value.

Why is the laissez-faire response suboptimal? Recall that poor households’ total expenditures \(z^p_t \) are relatively more sensitive to the exchange rate than Ricardian households’, \(z_t \) (see our discussion below (13)). Since preferences are identical in terms of \(z_i^t \), \(z^p_t \) is too steep, or volatile, intertemporally under laissez-faire. By buying reserves and selling home bonds, the central bank increases the yield on the home bond, lowering the desired borrowing of Ricardian households. This depreciates the exchange rate, stabilizes the income of the poor, and partially eliminates the excess volatility in their consumption.

The planner thereby finds it optimal to increase reserves sharply at the onset and then continually reinvests to keep them persistently high. The sharp jump is necessary since the central bank needs to undo the frictionless borrowing from home households (i.e. up to \(b^*_H \)) to have an effect on the spread. While the intervention successfully improves home’s net foreign asset position, private capital inflows (i.e. from intermediaries and households) are exacerbated by the intervention. This “second round” effect is particularly large when capital is fairly mobile, that is, when \(\Gamma \) is small (light green line). In this case, the central bank prefers smaller interest rate spreads, which, nevertheless, require larger reserve purchases.

3.2. Smooth interest rate spreads, not smooth exchange rates

A striking feature of the response in Figure 1 is that interest rate spreads are “smooth,” in that \(\tau_t \) is continuous over time, with \(\tau_0 = \lim_{t \to \infty} \tau_t = 0 \). This is true despite jumps in the foreign interest rate \(r^*_t \) and the exchange rate. The next proposition shows that this is a robust property of optimal FX interventions.20

Proposition 3 (Smooth interest rate spreads.) Under optimal FX interventions, the path of interest rate spreads \(\tau_t \) is continuous in \(t \), with \(\tau_0 = \lim_{t \to \infty} \tau_t = 0 \).

This result consists of two conceptually separate parts. The first is the continuity of \(\tau_t \). This follows directly from the cost term in the countrywide budget constraint (18b): since, the cost of interventions is convex in the interest rate spread \(\tau_t \), it is optimal to smooth it out over time. This bears some similarity to the logic behind the renowned tax-smoothing model of Barro (1979).

The second part is the limiting behaviour of \(\tau_t \) for \(t = 0 \) and \(t \to \infty \). Initially, \(\tau_0 \) is optimally equal to zero since it has a negligible effect on home households’ consumption decisions while it bears a non-trivial flow cost. The limit \(\lim_{t \to \infty} \tau_t \) is also optimally equal to zero as interventions far after the shock has passed do not affect household behaviour during the time of the shock.

One might have expected that the central bank optimally intervenes by smoothing out the exchange rate adjustment over time, given the prevalence of such policies in practice (see e.g. Calvo and Reinhart, 2002). This is not the case. To illustrate why, amend the planning problem (19) with the additional requirement that the exchange rate be continuous at \(t = 0 \), that is, \(p_0 \) be equal to the pre-shock steady state price of non-tradables, and consider the same inflow shock as before.

20. This result is more general than the interest rate process considered in (21). Indeed, it holds for any integrable process for \(r^*_t \), provided that \(r_t = \rho \) \(\forall s > T \) for large enough \(T \). In particular, \(r^*_t \) may jump many times and \(r \) would still be continuous, start at zero and converge back to zero. This is immediately apparent from the proof of this result in Supplementary Appendix C.
Figure 2 compares the responses with (red) and without (green) the additional smooth exchange rate requirement. As will become clear in Section 3.3, the further an intervention is in the future, the smaller the effect is on the current exchange rate. Thus, to achieve a given exchange rate target on impact, the planner has no choice but resort to substantial interventions to defend the current value of the exchange rate, generating sizable interest rates spreads. By contrast, the optimal intervention policy allows the exchange rate to jump on impact but mitigates the size of the jump by promising a stream of interventions. This is because the pecuniary externality that the planner is trying to address is inherently intertemporal in nature: the level of the exchange rate does not matter per se but rather relative to its value in the future.

Figure 2 suggests that slowing the adjustment of the exchange rate over time can be very costly, due to the large size of the associated carry trade losses. Figure 3 computes the present value of these costs, $C \equiv \int_0^\infty e^{-\int_0^t r_s \, ds} \, \frac{1}{\Gamma} \, r_{t-}^2 \, dt$, for various degrees of capital market frictions Γ. The costs associated with optimal FX interventions (green, solid) are dramatically below the costs associated with a smooth-exchange-rate policy (red, solid). Indeed, the costs associated with an optimal intervention never exceed 0.001% of GDP, whereas the costs from ensuring a smooth exchange rate can be large, on the order of 1% of GDP for an almost frictionless country ($\Gamma = 0.01$).

Two more observations are noteworthy in Figure 3. First, the costs from optimal interventions are hump-shaped in Γ and therefore largest for intermediate degrees of capital market frictions. This is because when Γ is large, there is little carry trading, while when Γ is small, interest rate spreads are also small. Second, the figure also shows the corresponding quasi-fiscal cost, defined as $C^{qfc} = \int_0^\infty e^{-\int_0^t r_s \, ds} \, b^* \, \tau_t \, dt$ (dashed lines). This is the measure traditionally used to assess costs from FX interventions (e.g. Adler and Mano, 2021). As is evident, our measure of costs...
Figure 3

The costs from optimal FX interventions and smooth exchange rates.

Notes: This figure shows the present-value budgetary cost of FX interventions in response to a capital inflow shock (see text). Green lines correspond to the fully optimal policy; red lines add the constraint that the exchange does not jump on impact, i.e., $p_0 = \bar{p}$. Solid lines represent the model-consistent cost, while dashed lines plot the "quasi-fiscal cost" typically computed in practice, which is significantly larger.

is one order of magnitude lower, suggesting that interventions are significantly less costly than previously thought. The reason for this discrepancy lies in the fact that quasi-fiscal costs do not incorporate that some home households may also be on the "winning" side of the carry trade. This is especially salient in the case of large Γ (no foreign intermediation), where households are the only beneficiaries of the carry trade: quasi-fiscal costs are still positive and large even though the economic costs for the country as a whole are zero.

3.3. Forward guidance

The principle of smooth interest rate spreads suggests that the optimal policy partly relies on interventions at a point in time when the shock has faded entirely and the world interest rate is back to r^*. In other words, the central bank engages in a kind of "FX forward guidance." The next proposition shows such forward guidance is indeed a robust property of the optimal policy.

Proposition 4 (FX forward guidance.) Optimal FX interventions remain active even after the shock has faded, that is, $\tau_t > 0$ and $b_{GT}^* > 0$ for $t > T$ if $\Delta r^* < 0$ and $\tau_t < 0$ and $b_{GT}^* < 0$ for $t > T$ if $\Delta r^* > 0$.

Formally, this result is closely related to Proposition 2. The intuition can be gleaned from the Euler equation (18a). Promising interventions after the shock has passed is still a powerful way for the central bank to move consumption in all prior periods. Thus, this can be an especially cost-effective way to affect the path of the real exchange rate.

This result connects two seemingly disparate views on the effectiveness of interventions—the "signalling" and the "portfolio-balance" channels. In the empirical literature, the former is typically linked to a movement of the exchange rate at the time of the announcement, while the latter is associated with an effect when the intervention is effectively carried out. Proposition 4 suggests this approach to disentangle both views can be misleading. Our model, firmly in the
No “puzzle” for FX forward guidance.

Notes: This figure illustrates that FX forward guidance does not suffer from a “puzzle” (as in Del Negro et al. 2012; McKay et al. 2016). Future interventions are effective but less powerful than the current interventions.

Figure 4 plots the exchange rate effect of interventions at different horizons. While there clearly is an immediate effect of the announcement, it falls rapidly with the horizon of the intervention. One may worry that announcements can raise the attention of foreign intermediaries, lowering γ_1. Interestingly, while it is correct that lower γ makes an intervention of any given size less powerful, it also increases the elasticity of the cost to the spread. Therefore, the planner has a stronger incentive to smooth interventions over time. Indeed, Figure 1 shows that lower γ implies a more (not less) back-loaded path of interest rate spreads τ_t. In other words, announcing an intervention should go hand-in-hand with greater reliance on forward guidance (see also Supplementary Appendix D.1).

3.4. Credibility is crucial

The reliance on promises about future interventions raises an obvious question: how much can and should a central bank intervene if it lacks credibility?

21. In Section 4.2, we study whether intervening in futures markets could act as a commitment tool.
Figure 5

Smaller commitment horizons mean smaller optimal interventions.

Notes: This figure illustrates that optimal FX interventions require the ability to commit. As the commitment horizon shrinks, it becomes harder to sustain large interest rate spreads τ_t resulting in smaller effects on the real exchange rate (relative to the equilibrium path). In the limit where the commitment horizon approaches zero, no intervention is optimal. (Remark: None of the paths for τ_t is ever negative, even if it may seem like that in the plot.)

The answer to this question naturally hinges on the horizon for which a central bank can commit to its policies. For instance, one could imagine that there is a commitment horizon $\Delta > 0$ beyond which the central bank cannot commit to policies. This effectively divides time into distinct intervals $[i\Delta, (i+1)\Delta)$, $i \in \mathbb{N}$, during each of which a separate policy maker i runs the central bank. We focus here on strategies that are only allowed to depend on the asset position b inherited by i and time t. A Markov equilibrium in such a setting can then be summarized by policy functions $\tau_t = T_t(b_i \Delta)$ and $z_t = Z_t(b_i \Delta)$, which jointly solve two conditions. First, $\tau_t = T_t(b_i \Delta)$ solves the planning problem

$$V_{i\Delta}(b_i \Delta) = \max_{\tau_t, z_t} \int \nabla_{i \Delta} \exp(-\rho(s-i\Delta)) V(z_s) ds + e^{-\rho \Delta} V_{i+1 \Delta}(b_{i+1 \Delta})$$

subject to the Euler equation (18a), the countrywide resource constraint (18b) and the terminal condition $z_{i+1 \Delta} = Z_{i+1 \Delta}(b_{i+1 \Delta})$. Second, $z_t = Z_t(b)$ is the optimal consumption policy of Ricardian households at time t, with current asset position b, and facing interest rate spreads τ_t.

Figure 5 shows the Markov equilibrium, by simulating the response of our model, assuming various commitment horizons. As the commitment horizon shrinks, smaller and smaller interventions are optimal for the central bank. In the limit $\Delta \to 0$, the planner’s optimal policy $\tau_t = T_t(b)$ solves the Hamilton–Jacobi–Bellman equation

$$\rho V_t(b) = \max_{\tau_t} V(z_t) + V_t' \left(r_t b - \frac{1}{\Gamma} \tau_t^2 - h(z_t) \right),$$

where $z_t = Z_t(b)$. This immediately yields the following proposition.

Proposition 5 (No intervention without credibility.) A central bank without credibility, $\Delta \to 0$, solving (23), chooses not to intervene at all: $\tau_t = 0$ and $b_t^* = 0$ at all times t.

This is a stark result: irrespective of the magnitude of the shock hitting the economy, the solution of the time-consistent planning problem (22) is always not to intervene at all. To gain some intuition, suppose the planner has a very small commitment horizon $\Delta > 0$ and contemplates a constant change in policy $d\tau$. This affects z_t as it changes the slope of consumption in the Euler equation. This effect is of order $O(\Delta \cdot d\tau)$. Thus, the effect of the policy change on flow utility
It takes larger interventions to support an exchange rate

So far, our discussion of positive and negative shocks has been symmetric: central banks accumulate reserves when capital flows into the economy and sell them when capital flows out. However, as we show next, there is an important asymmetry: for the same shock size \(|\Delta r^s|\), the central bank needs to sell more reserves to stabilize the economy after capital outflows than it accumulates during capital inflows.

Proposition 6 Let \(b^*_G(\Delta r^s)\) be optimal in response to shock \(\Delta r^s\). For \(t > 0\), \(b^*_G(\Delta r^s)\) has a kink at \(\Delta r^s = 0\), with

\[
\left| \lim_{\Delta r^s \to 0} \frac{db^*_G}{d\Delta r^s} \right| \leq \left| \lim_{\Delta r^s \to 0} \frac{db^*_G}{d\Delta r^s} \right|,
\]

with strict inequality if \(b^*_H > |b^*_G|\). In words, to first order in \(\Delta r^s\), it takes greater interventions to support an exchange rate (avoid depreciation) than it takes to undervalue it (avoid appreciation).

This result is a direct consequence of our assumption that \(b^*_H \geq |b^*_G|\): when home households have an easier time saving than borrowing in foreign assets, an intervention generating a negative interest rate spread \(\tau_s\), e.g., in response to outflows, faces larger carry trades, and thus requires larger interventions. The result is especially important in emerging markets in which many households can save abroad but cannot borrow. In such countries, it can be challenging to support the exchange rate against downward pressure.23

3.6. Non-fundamental shocks are not costly

Policymakers often state that they intervene to curb FX volatility that is “unjustified” by fundamentals (Mohanty and Berger, 2013). For our sixth and last principle, we take this statement at face value and explore the optimal response to a “non-fundamental” shock. We model this

22. This logic can be formalized as follows. With change \(dt\) for a small interval \(\Delta\), we have \(\frac{\partial V}{\partial \Delta} \Delta dt = \mathcal{O}(\Delta^2 dt)\). This follows directly from (18a) and the fact that \(h_{1,\Delta}\) and \(z_{1,\Delta}\) only change to the order of \(\mathcal{O}(\Delta^2 dt)\), which is a consequence of the flow budget constraint (16). Thus, the decision maker’s total utility in (22) changes with order \(\mathcal{O}(\Delta^2 dt)\), too. Moreover, flow costs in (16) change by at least \(2\Delta^2 dt = \mathcal{O}(\Delta^2 dt)\), which integrated from \(t\) to \(t + \Delta\) gives \(\mathcal{O}(\Delta^3 dt^2)\).

23. Observe that in our model, however, this does not mean that interventions generating negative spreads are more costly in welfare terms, due to their greater size. Indeed, through the lens of the model, any carry trading activity by home agents is welfare-neutral, so that the implications for welfare and spreads are symmetric around \(\Delta r^s = 0\), rather than asymmetric as in Proposition 6.
shock as a shifter ξ_t in foreign intermediaries’ demand for home bonds (i.e. a taste shock, see also Gabaix and Maggiori, 2015),

$$b_H = \frac{1}{\Gamma} \left(r_t + \xi_t - r^* \right).$$

Greater ξ_t implies a greater attractiveness of home bonds only for foreigners, i.e., it is “unjustified” from the point of view of the home country. The presence of this shifter now implies that the “cost” term from non-zero interest rate spreads is

$$\tau_t b_H = \frac{1}{\Gamma} \left(\tau_t + \frac{\xi_t}{2} \right)^2 - \frac{1}{\Gamma} \frac{\xi_t^2}{4}.$$

Here, the central bank is able to derive a benefit from interventions, rather than a cost. To see this, note first that the central bank can always fully avoid this shock by implementing the policy $\tau_t = 0$, which sets the cost (24) to zero and also avoids any effects on home households’ behaviour as the Euler equation (18a) is unchanged. But, it turns out that the central bank can do better and strictly benefit. This is because a ξ_t shock makes the central bank the monopoly supplier of bonds foreigners love. The flow benefit in equation (24) is maximized by leaning against the wind, i.e., setting $\tau_t = -\xi_t/2$. Deviations from this policy are subject to non-zero costs. Thus, the planner now seeks to smooth out $\tau_t + \xi_t/2$, rather than τ_t.

Thus, the key difference between fundamental and non-fundamental shocks is that costs are always dominated by benefits, as Proposition 7 shows.

Proposition 7 Non-fundamental shocks ξ_t are associated with benefits rather than costs (in present value), that is,

$$C^{\xi} = \int_{0}^{\infty} e^{-\int_{0}^{t} r^* du} \tau_t b_H \leq 0$$

Due to the optimality of the $\tau_t = 0$ allocation in the absence of a ξ_t shock, an optimal deviation from $\tau_t = 0$ must induce a first order gain in welfare.

4. EXTENSIONS AND ROBUSTNESS

We next present extensions and discuss the robustness of our results. First, we study the reduced form version of our planning problem in Section 2.3 and identify the crucial properties of $V(z)$ and $\Sigma(z)$ that drive our results. Supplementary Appendix D uses these results to demonstrate that the principles identified in Section 3 are robust to other well known settings in international macroeconomics, e.g., terms-of-trade manipulation and aggregate demand externalities. Second, we present an extension with long-term assets and discuss whether they may be used to address the credibility issues identified in Section 3.4. Finally, we relax the assumption that the return of both bonds is denominated in dollars, and use this extension to discuss whether the interest-rate spread in the model should be interpreted as a covered- or uncovered-interest-rate-parity deviation (henceforth, CIP and UIP, respectively).

24. This could capture, for example, heterogeneous beliefs, a convenience yield for liquidity properties of the asset, or a change in foreigners’ appetite for the risk-profile of the home bond (unmodelled).
4.1. General model

In reduced form, our planning problem in Section 2.3 has a very natural representation. It involves the maximization of social welfare as a function of some notion of spending $V(z)$ subject to two constraints. First, there is an agent in the economy that is choosing the path for said spending as a function of the interest rate it perceives. This is a standard Euler equation, where $\Sigma(z)$ is the equilibrium value of the inverse elasticity of spending to the interest rate. Second, there is a standard budget constraint that includes a penalization terms for deviations between the home and the foreign interest rate.

In Supplementary Appendix C, we study this problem for an arbitrary increasing and concave function $V(z)$ and positive function $\Sigma(z)$. Two lessons emerge from this analysis. First, we find that a sufficient condition for leaning against the wind is

$$-V''(z)z/V'(z) \geq \Sigma(z) \forall z.$$ \hspace{1cm} (25)

This condition has a very natural interpretation: it states that the planner prefers smoother expenditure paths than the agent. This condition is satisfied in all the other applications we present in Supplementary Appendix D. For example, in our model with sticky prices (Supplementary Appendix D.4), the exchange rate cannot appreciate after capital flows into the country and the economy booms, which can be mitigated by postponing consumption.

The second lesson that emerges from the general model in Supplementary Appendix C is that the remaining principles from Section 3 carry over, regardless of whether equation (25) holds. Thus, while the reason for intervening may differ across applications, our principles do not.

4.2. Long-term assets

Many cross-country capital flows are not in short-term assets, as assumed in our baseline model in Section 2. Here, we relax this assumption. All details can be found in Supplementary Appendix D.2.

A generalized cost term. We allow agents to trade, at each time t, contracts that promise a stream of payments in the home market $\{x_t, s\}$ and in the foreign market $\{x^*_t, s\}$. Let $\pi_t^* \equiv e^{-\int_t^s r^*_u du}$ denote the state price density for an international dollar payment at time s, measured at time t. That is, if a country buys a stream of payments $\{x^*_t, s\}$ in the foreign bond market at time t, and has no other external assets or liabilities, its time-t net foreign asset position is $nfa_t = \int\pi_t^*, s x^*_t, s ds$. Similarly, $\pi_t \equiv e^{-\int_t^s r_u du}$ denotes the state price density for a promised payment in the home bond market at time s, measured at time t.

In the Supplementary appendix, we derive a generalized cost term in this environment, which is given by

$$C = \int_0^\infty e^{-\int_t^\infty \tau t} \left(b_{It} + \int_\infty^{\pi_{t,s}} \Delta b_{It,s} ds \right) dt.$$

To interpret this expression, observe that $\int_0^\infty \pi_{t,s} \Delta b_{It,s} ds$ is the value of any additional long-term assets that have been purchased by intermediaries since the start of the FX interventions. Thus, while the current stock of short-term assets b_{It} is relevant for costs, it is only the recent inflow $\Delta b_{It,s} = b_{It,s} - b_{I0,s}$ of long-term assets since FX interventions began that matter.

Optimal policy. Having derived the correct general cost term, we explore the influence of long-term assets on the optimal policy next. We show in the Supplementary Appendix that the
problem is approximately the same as the one with non-fundamental shocks (Section 3.6). Indeed, the economics are very similar. In both cases, there is a demand for the home asset paying at some time t that is not justified by fundamentals (from the point of view of the home economy). Here, the reason is that the decision to buy these assets was made in the past, whereas in Section 3.6 the decision to buy was caused by a taste shock.

Time consistency. The date-0 revaluation effects that appear in a model with long-term assets raise an important question, namely whether those could be used to solve the time inconsistency problem that we identified in Section 3. We show in the Supplementary Appendix that this is not the case, as both households and intermediaries are indifferent across all maturities and therefore the planner cannot control the maturity structure of the entire country’s liabilities.

CIP versus UIP. So far, we have modelled the restrictions on capital mobility as constraints on cross-country holdings of otherwise identical assets, i.e., a “home” and a “foreign” bond with non-contingent dollar returns. When we assume that the home bond has returns denominated in home currency, however, we can distinguish whether our spread τ_t corresponds to a CIP or to a UIP deviation. As we describe in detail in Supplementary Appendix D.3 what matters is where the financial friction appears. In particular, if agents face restrictions shifting funds between home and foreign bond markets, i.e., assets issued on shore versus off shore, then our spread corresponds to a CIP deviation. By contrast, if agents face restrictions shifting funds across currencies, i.e., assets issued in dollars versus home currency, then our spread corresponds to a UIP deviation. In both cases, our theoretical results above apply.

5. COMPETITIVE INTERVENTIONS AND RESERVE WARS

So far, we have analysed the optimal policy of an SOE against a passive rest of the world. Yet, in light of the growing popularity of FX interventions around the globe, and their potential effects on welfare, world interest rates and global capital flows, a natural next step is to study the strategic interaction between intervening economies. This is what we do in this section.

5.1. A world extension of our model

The model consists of a unit mass of (symmetric) SOEs and a unit mass of global financial intermediaries. Each of the SOEs is like the one described in Section 2. The home interest rate in an SOE continues to be denoted by r, while r^* refers to a single world interest rate that is the rate of return of a global reserve asset (assumed to be in zero net supply). We extend our model to allow for shocks to the tradable endowment $\{y_T\}$, which will give rise to the (endogenous) innovation in the world interest rate. For simplicity, we focus on a two-period version of the model, with periods $t=0, 1$.

Financial intermediaries. Each of the global financial intermediaries is assigned to a specific country, with respect to which it operates exactly as modelled in Section 2. It has unfettered access to the global reserve asset and limited access (subject to participation costs) to the home bonds of its assigned country. Applying the discrete-time version of the microfoundation from before, the home bond demand function comes out to be $b_I = \Gamma^{-1} \frac{r-r^*}{1+r^*}$. Intermediaries do not have any wealth and any profits they make are assumed to be consumed by them.
Small open economies. Each SOE is inhabited by poor and Ricardian households, exactly as before, so that the planner’s per-period objective can be written as $V_t(z_t)$, with z_t still being the Ricardian household’s total dollar spending (net of subsistence). In each period, z_t pins down the price of non-tradables $p(z_t)$, see (13), so that each SOE solves25

$$\max_{\{z_t \}, \tau} V_0(z_0) + \beta V_1(z_1) \tag{26}$$

$$\frac{\alpha}{1-\alpha} p(z_0)y_N + \frac{1}{1+r^*} \frac{\alpha}{1-\alpha} p(z_1)y_N + \frac{1}{1+r^*} \tau^2 \leq yT_0 - \zeta + \frac{1}{1+r^*} (yT_1 - \zeta) \tag{27}$$

$$\frac{z_1}{z_0} = \beta (1+r^*)(1+\tau). \tag{28}$$

Here, $\frac{\alpha}{1-\alpha} p(z_t)y_N$ is the net-of-subsistence tradable spending in period t. We define the discrete-time interest rate spread as $\tau \equiv \frac{1+r^*}{1+r^*+1} - 1$. As is easily seen, the cost term from foreign intermediation is still given by $bI\tau = \frac{\Gamma_1}{1-\tau}$ in this model. Problem (26) is therefore the exact two-period analogue of (19).

Equilibrium. We characterize symmetric equilibria conditional on the central bank policies, which we identify with the implied interest rate spread τ for convenience.

Definition 2 A symmetric world equilibrium with central bank FX intervention policy τ is an allocation $\{z_0, z_1\}$, where z_0, z_1 solve (26) conditional on τ; and tradable goods markets clear in both periods,

$$\frac{\alpha}{1-\alpha} p(z_0)y_N + \frac{1}{1+r^*} \frac{\alpha}{1-\alpha} p(z_1)y_N = yT_0 - \zeta, \quad \frac{\alpha}{1-\alpha} p(z_1)y_N = yT_1 - \zeta. \tag{29}$$

We are especially interested in how the world equilibrium responds to a global savings glut, which we model by assuming that $yT_1 < yT_0$. This assumption could for instance capture slowing future growth rates or population aging. Critical for the response of the world economy to this shock is the determination of the central banks’ FX intervention policy τ. We consider two possibilities.

First, τ is determined in an uncoordinated fashion (“reserve wars”) as Nash equilibrium outcome. Second, τ is determined as a coordinated solution to a worldwide planning problem.

5.2. Reserve wars

When central banks do not coordinate, each takes the world interest rate r^* as given and responds by choosing the FX intervention policy τ optimally. Of course, the world interest rate is endogenous to the intervention policy τ of the rest of the world, so that $r^* = r^*(\tau)$. Together with the optimal policy of any individual country, this characterizes the best response policy $\tau^{BR}(\tau) = r^*(r^*(\tau))$.

Crucially, we show in Supplementary Appendix E that the best response policy is upward sloping, implying that there is a strategic complementarity between countries’ policies. One implication of this is that any shifts in the best response schedule, e.g., when the desired savings of the countries increase, are amplified considerably. Still, however, there is a unique intersection at the (Nash) equilibrium policy.

25. To simplify, we focus on the case of $\sigma = 1$ (log utility) for this section.
Figure 6
Reserve wars versus a world without FX interventions.

Notes: These figures compare a world without FX interventions (red) and the Nash equilibrium in which countries choose individually optimal FX interventions (green), as the degree of international financial frictions Γ is varied.

How does this play out in practice, when the world economy experiences a global savings glut? Figure 6 simulates world interest rates r^*, interest rate spreads τ, reserves, and welfare for various levels of financial market openness, contrasting the Nash equilibrium with an economy in which all agents commit to a $\tau = 0$ policy. Clearly, both responses are equal in case of completely open financial markets, $\Gamma = 0$. Incomplete levels of openness, however, give SOEs the power to intervene in FX markets. This unleashes a “rat race” of reserve accumulation, driving world interest rates down below their no-intervention value and interest rate spreads up above zero. At the same time, no country gains from the rat race, which only benefits the intermediation sector: aggregate country welfare falls in the Nash equilibrium relative to a no-intervention world. In other words, welfare is distributed away from the intervening countries and towards the financial sector. Interestingly, the welfare losses are largest for intermediate values of financial market openness Γ. This is because interventions are costly but hardly possible when markets are relatively open and possible but hardly costly when markets are relatively closed.

We summarize these insights in the following proposition.

Proposition 8 (Reserve wars.) Assume central banks intervene non-cooperatively. Then,

1. Countries buy reserves, $b_G^* > 0$, inducing a positive interest rate spread, $\tau > 0$, precisely when world interest rates are low, $r^* < \beta^{-1} - 1$. In this sense, FX interventions are strategic complements across countries.
2. If the elasticity of $V'(z_t)$ exceeds 2, FX interventions have negative externalities (“beggar thy neighbour”) on non-intervening countries.
3. There exists a unique Nash equilibrium with strictly positive interest rate spreads, \(\tau > 0 \). In this equilibrium, countries accumulate reserves, \(b^*_G > 0 \).

Compared to a no-intervention world (\(\tau = 0 \) or \(\Gamma = 0 \)), the Nash equilibrium is characterized by:

1. Greater public outflows (reserve accumulation), and at the same time greater private inflows.
2. Lower world interest rates \(r^* \).
3. Lower welfare of all countries.

5.3. Coordination

The self-defeating nature of interventions suggests that there may be gains from policy coordination among central banks. This is what we consider next. The world equilibrium is the outcome of a planning problem in which all central banks get together to maximize their joint objective (26), subject to the country-specific constraints (27), (28), but in addition take into account their effect on the world interest rate \(r^* \), which is determined by the goods market clearing conditions (29). We can characterize the coordination outcome as follows.

Proposition 9 (Central bank cooperation.) Assume central banks cooperate. Then they find it optimal not to intervene at all, implying zero reserves and zero interest rate spreads \(\tau \).

In other words, the coordination outcome coincides with the no-intervention outcome in Figure 6. In that sense, any reserve accumulation in this model is in excess of the cooperative outcome. The reason for this is that the coalition of central banks internalize that competitive devaluations are self-defeating, benefiting only the intermediation sector. Therefore, they set \(\tau = 0 \). This fact emphasizes that effective regulation of the international financial system may require tools to foster cooperation between central banks and prevent individually optimal but socially harmful interventions.

Symmetric versus asymmetric shocks. The need for regulation in this setting stems from the fact that, here, all countries are shocked symmetrically. If instead shocks are asymmetric (i.i.d.) across countries, there would not be a need for regulation. In fact, regulation would be harmful in that case for it would inhibit countries’ abilities to use FX interventions to address distributional concerns but would not affect the world economy.

This highlights that the nature of the shock is crucial for efficient global regulation of FX interventions: during episodes of symmetric shocks restrictions on interventions are warranted, while during episodes of asymmetric shocks, those same restrictions can be detrimental to welfare.

6. CONCLUSION

FX interventions are a well-established policy instrument for both emerging and advanced economies. In this article, we have developed a theory of such interventions. Our theory builds.
on the idea that choosing interventions is equivalent to managing interest rate spreads between home and foreign bonds. We emphasized that interventions are costly as they induce non-zero interest rate spreads, opening up profit opportunities for foreign carry traders. We showed these costs are convex in spreads, as larger spreads invite further speculation. This convexity lies at the heart of our optimal policy design, which we summarized in six main insights.

Our first insight is that FX interventions should lean against the wind. We showed that this is the case for four different intervention motives: in the main body of the article, we considered a distributional motive (our baseline model); in the Supplementary Appendix, we considered models with macroeconomic-stabilization motive, sectoral heterogeneity, and a terms-of-trade-management motive. We identified the commonality across these models—excessively volatile expenditure and exchange rate paths absent interventions—and argued that FX interventions are helpful to correct precisely this class of externalities.

Among our other insights, we found that the convexity of the cost, together with the intertemporal nature of the externality, implies that interventions should induce small and smooth spreads. Furthermore, promising future interventions—FX forward guidance—is powerful, yet not subject to a “forward guidance puzzle.” This induces an inherent time inconsistency problem, giving a crucial role to credibility and a rules-based approach. We also showed that the optimal policy is better approximated by a quantity rule rather than a smooth exchange rate rule.

Finally, we proposed a multi-country version of the model to address the question of spillovers of FX interventions across countries and the need for policy coordination. We concluded that coordination is, indeed, necessary to avoid wasteful competitive interventions and reserve over-accumulation. These “reserve wars” were shown to have important amplification effects on the fall of the world interest rate, hurting all countries alike. As a result, committing to a world without interventions led to a strict Pareto improvement over the Nash equilibrium in the presence of symmetric shocks.

Acknowledgments. We would like to thank the editor and three anonymous referees for useful suggestions and comments, as well as Mark Aguiar, Manuel Amador, Javier Bianchi, Luigi Bocola, Ricardo Caballero, Andrés Fernández, Robert Kolli, Matteo Maggioni, Diego Perez, Jeremy Stein, Adrien Verdelhan, Guido Lorenzoni, for his discussion at the NBER, and especially Iván Werning for his support during our PhD. We also would like to thank participants at the 2018 Chicago International Macro/Finance conference, the 2018 NBER Summer Institute IFM and EFMB sessions, the 2018 Barcelona GSB Summer Forum, the SED in Mexico City, the 2017 Seminar on Financial Volatility and Foreign Exchange Intervention of the Central Bank of Perú, the 2015 RIDGE conference in Montevideo, the MIT Macro Lunch and the MIT Sloan Asset Pricing Reading Group for many useful comments. Sebastián Fanelli gratefully acknowledges funding from Spain’s Ministry of Science and Innovation (grant FJC2018-038650-I). Ludwig Straub appreciates support from the Macro-Financial Modeling Group.

Supplementary Data

Supplementary data are available at Review of Economic Studies online. And the replication packages are available at https://dx.doi.org/10.5281/zenodo.4452649.

REFERENCES

2884 REVIEW OF ECONOMIC STUDIES

