Indebted Demand
and Economic Policy in a Post-Covid World

Atif Mian, Princeton
Ludwig Straub, Harvard
Amir Sufi, Chicago Booth

Virtual Macro Seminar
April 2020
Rise in debt and decline in r^* — especially relevant post-Covid!

- How did this happen? Do the two plots interact? What are the implications?
Rise in debt and decline in r^* — especially relevant post-Covid!

- How did this happen? Do the two plots interact? What are the implications?
Rise in debt driven by households and government
The rich lend to the non-rich

- “Saving glut of the rich and the rise in household debt”
Why might this matter? — Rich & wealthy save more

- **Dynan Skinner Zeldes (2004)**: saving rates increase in current income

![Bar chart showing saving rates by income percentile](chart)

From Dynan, et al, Table 3, column 2
Why might this matter? — Rich & wealthy save more

- **Straub (2019):** consumption has elasticity < 1 w.r.t. average income
Why might this matter? — Rich & wealthy save more

- **Fagereng Holm Moll (2019):** saving rate across the wealth distribution

![Graph showing saving rates across wealth distribution](image)

Figure 6: Saving rates across the wealth distribution.
The indebted demand framework

• Introduce **non-homothetic consumption-saving behavior** into conventional two-agent endowment economy
 → the rich have a higher saving rate
The indebted demand framework

- Introduce **non-homothetic consumption-saving behavior** into conventional two-agent endowment economy
 - the rich have a higher saving rate

- Main insight: “**Indebted demand**”
 - shifts & policies that stimulate demand today through debt creation, reduce demand in the future by shifting resources from borrowers to savers
The indebted demand framework

- Introduce **non-homothetic consumption-saving behavior** into conventional two-agent endowment economy
 - the rich have a higher saving rate

- Main insight: **“Indebted demand”**
 - shifts & policies that stimulate demand today through debt creation, reduce demand in the future by shifting resources from borrowers to savers

- Implications:
 - rising inequality depresses \(r \), amplified by rising debt levels
 - monetary + fiscal policy have **limited ammunition** when they create debt
 - economies can fall into a **“debt trap”** — liquidity trap driven by too much debt
 - once in it, **debt-financed stimulus deepens recession** in the future
 - redistributive policies help
At the center of our analysis is a simple diagram

4. **Inequality and debt (empirics)**: Cynamon Fazzari (2015), Mian Straub Sufi (2019)

Outline

1. Model
2. Equilibria & indebted demand
3. Inequality & financial liberalization
4. Fiscal & monetary policy
5. Debt trap
6. Indebted demand post-Covid
7. Extensions & conclusion
Model
Model of indebted demand

- Deterministic ∞-horizon endowment economy with real assets (“trees”)
- Populated by two separate dynasties
- Same preferences, but different endowments of trees
 - mass 1 of borrowers $i = b$: endowment ω^b
 - mass 1 of savers $i = s$: endowment $\omega^s > \omega^b$
 - total endowment $\omega^b + \omega^s = 1$
- Trees are nontradable, dynasties trade debt contracts
- Agents within a dynasty die at rate $\delta > 0$, wealth inherited by offspring
Preferences

- Dynasty i consumes c_t^i, owns wealth a_t^i.

\[
\int_0^\infty e^{-\left(\rho + \delta\right)t} \left\{ \log c_t^i + \delta \rho \cdot v(a_t^i) \right\} dt
\]

- Budget constraint

\[
c_t^i + \dot{a}_t^i \leq r_t a_t^i
\]

- $v(a_t^i) =$ utility from bequest

- Future consumption, "status" benefits from wealth,

- Artwork, gifts (to relatives or charities), adjustment frictions in illiquid accounts

- Key object:

\[
\eta(a_t^i) = \frac{av'(a_t^i)}{\log a_t^i}
\]

- Homothetic model:

\[
\eta(a_t^i) = \text{const} \Rightarrow v(a_t^i) \propto \log a_t^i
\]

- Non-homothetic model:

\[
\eta(a_t^i) \text{ increases in } a_t^i
\]
Preferences

• Dynasty i consumes c^i_t, owns wealth a^i_t. Preferences:

\[
\int_0^\infty e^{-(\rho+\delta)t} \left\{ \log c^i_t + \frac{\delta}{\rho} \cdot v(a^i_t) \right\} dt
\]

• Budget constraint

\[
c^i_t + \dot{a}^i_t \leq r_t a^i_t
\]
Preferences

• Dynasty i consumes c^i_t, owns wealth a^i_t. Preferences:

$$\int_0^\infty e^{-(\rho+\delta)t} \left\{ \log c^i_t + \frac{\delta}{\rho} \cdot v(a^i_t) \right\} dt$$

• Budget constraint

$$c^i_t + \dot{a}^i_t \leq r^i_t a^i_t$$

• $v(a)$ = utility from bequest [future consumption, “status” benefits from wealth, artwork, gifts (to relatives or charities), adjustment frictions in illiquid accounts]

• Key object: $\eta(a) \equiv a v'(a)$ — marginal utility of $v(a)$ relative to log

 • homothetic model: $\eta(a) = \text{const} \Rightarrow v(a) \propto \log a$

 • non-homothetic model: $\eta(a)$ increases in a
Borrowing constraint & asset market

• Total wealth = real asset wealth net of debt

\[a_t^i = \omega^i p_t - d_t^i \]

where \(p_t = \) price of a Lucas tree: \(r_t p_t = 1 + \dot{p}_t \)
Borrowing constraint & asset market

- Total wealth = real asset wealth net of debt

 \[a_t^i = \omega^i p_t - d_t^i \]

 where \(p_t \) = price of a Lucas tree: \(r_t p_t = 1 + \dot{p}_t \)

- Agents can pledge \(\ell \) trees each to borrow \(d_t^i \)

 \[d_t^i \leq p_t \ell \]
Borrowing constraint & asset market

- Total wealth = **real asset wealth** net of debt
 \[a_t^i = \omega^i p_t - d_t^i \]
 where \(p_t = \) price of a Lucas tree: \(r_t p_t = 1 + \dot{p}_t \)

- Agents can pledge \(\ell \) trees each to borrow \(d_t^i \) (\(\lambda \equiv \) bond “decay rate”)
 \[\dot{d}_t^i + \lambda d_t^i \leq \lambda p_t \ell \]
 new debt issuance
Borrowing constraint & asset market

- Total wealth = **real asset wealth** net of debt
 \[a^i_t = \omega^i p_t - d^i_t \]
 where \(p_t \) = price of a Lucas tree: \(r_t p_t = 1 + \dot{p}_t \)

- Agents can pledge \(\ell \) trees each to borrow \(d^i_t \) (\(\lambda \equiv \) bond “decay rate”)
 \[\dot{d}^i_t + \lambda d^i_t \leq \lambda p_t \ell \]
 new debt issuance

- steady state: \(d^i \leq p\ell \) [paper: generalize to \(\ell = \ell(\{r_s\}_{s \geq t}) \)]
Borrowing constraint & asset market

- Total wealth = **real asset wealth** net of **debt**
 \[a^i_t = \omega^i p_t - d^i_t \]
 where \(p_t \) = price of a Lucas tree: \(r_t p_t = 1 + \dot{p}_t \)

- Agents can pledge \(\ell \) trees each to borrow \(d^i_t \) (\(\lambda \equiv \) bond “decay rate”)
 \[\dot{d}^i_t + \lambda d^i_t \leq \lambda p_t \ell \]
 new debt issuance

 - steady state: \(d^i \leq p \ell \) [paper: generalize to \(\ell = \ell(\{r_s\}_{s \geq t}) \)]

- Market clearing \(d^s_t + d^b_t = 0 \) pins down interest rate \(r_t \)

- Focus on **debt of borrowers**: \(d_t \equiv d^b_t \) **(state variable)**
Scale invariance

• Non-homothetic model is typically **not scale invariant** in aggregate
 • economic growth ⇒ $28’000 today is like $200’000 around 1900
 • so …someone with $28’000 today should save a ton?!
Non-homothetic model is typically **not scale invariant** in aggregate

- economic growth ⇒ $28’000 today is like $200’000 around 1900
- so … someone with $28’000 today should save a ton?!

In reality, savings preferences probably closer to \(v(a/A) \) or \(v(a/Y) \)

We work with \(v(a/Y) \), where so far \(Y = 1 \) (total endowment = 1)
Equilibria & indebted demand
Saving supply curves

• Savers’ Euler equation

\[
\frac{\dot{c}_t}{c_t} = r_t - \rho - \delta + \delta \frac{c_t}{\rho a_t} \cdot \eta(a_t^s)
\]
Saving supply curves

• Savers’ Euler equation

\[
\frac{\dot{c}_t^s}{c_t^s} = r_t - \rho - \delta + \delta \frac{c_t^s}{\rho a_t^s} \cdot \eta(a_t^s)
\]

• Setting \(\dot{c} = 0 \) in Euler and use \(c^s = ra^s \) \(\Rightarrow \)

\[
r = \rho \cdot \frac{1 + \rho/\delta}{1 + \rho/\delta \cdot \eta(a^s)}
\]
Saving supply curves

- Savers’ Euler equation

\[
\frac{\dot{c}_t}{c_t} = r_t - \rho - \delta + \delta \frac{c_s}{\rho a_t} \cdot \eta(a_s)
\]

- Setting \(\dot{c} = 0 \) in Euler and use \(c^s = ra^s \) \(\Rightarrow \)

\[
r = \rho \cdot \frac{1 + \rho/\delta}{1 + \rho/\delta \cdot \eta(a_s)}
\]

- This is a long-run saving supply curve:
 - \(r \) necessary for which saver keeps wealth constant at \(a^s \)
 - \(\eta(a^s) \) determines the shape of the saving supply curve
Long-run saving supply curves

\[\eta(a) \downarrow \text{ in } a \text{ (saving is necessity)} \]

\[\eta(a) = \text{const} \text{ (homothetic)} \]

\[\eta(a) \uparrow \text{ in } a \text{ (saving is luxury)} \]
• If $\eta(a^s)$ increasing: **larger wealth** a^s requires **lower return on wealth** r for saver to be indifferent about saving!
Steady state equilibria

- **Steady state**: intersect long-run supply curve with debt demand curve

\[r = \rho \cdot \frac{1 + \rho/\delta}{1 + \rho/\delta \cdot \eta(c_s/c + d)} \]

\[d = \frac{\ell}{r} \]
Steady state equilibria

- **Steady state**: intersect long-run supply curve with debt demand curve

\[r = \rho \cdot \frac{1 + \rho/\delta}{1 + \rho/\delta \cdot \eta(\omega^s/r + d)} \]

\[d = \frac{\ell}{r} \]
Steady state equilibria

- **Steady state**: intersect long-run **supply curve** with **debt demand curve**

\[r = \rho \cdot \frac{1 + \rho/\delta}{1 + \rho/\delta \cdot \eta(\omega^s/r + d)} \]

\[d = \frac{\ell}{r} \]
• Start from a steady state & **raise debt service costs** by some dx

• What is **response of aggregate spending**? (partial equilibrium, r fixed)
Indebted demand

• Start from a steady state & **raise debt service costs** by some dx

• What is **response of aggregate spending**? (partial equilibrium, r fixed)

$$dC = dc^s + dc^b = -\frac{\rho + \delta}{r} \frac{1}{2} \left(1 - \sqrt{1 - 4 \left(1 - \frac{r}{\rho + \delta} \right) \frac{\eta'(a) a}{\eta(a)} } \right) dx$$

\Rightarrow Thus increase in debt service costs weighs on aggregate demand

• $dC < 0$ if $\eta' > 0$
Indebted demand

• Start from a steady state & **raise debt service costs** by some dx

• What is **response of aggregate spending**? (partial equilibrium, r fixed)

\[
dC = dc^s + dc^b = -\frac{\rho + \delta}{r} \frac{1}{2} \left(1 - \sqrt{1 - 4 \left(1 - \frac{r}{\rho + \delta} \right) \frac{\eta'(a)a}{\eta(a)} } \right) dx
\]

⇒ Thus increase in debt service costs weighs on aggregate demand

• $dC < 0$ if $\eta' > 0$

• Call this phenomenon **“indebted demand”**
Equilibrium transitions
The indebted demand diagram

- **Saving supply curve** = how low does r have to be given % resources controlled by savers
- **Debt demand** = how much do borrowers want to borrow given r
• **Saving supply curve** = how low does \(r \) have to be given % resources controlled by savers

• **Debt demand** = how much do borrowers want to borrow given \(r \)
Inequality & financial liberalization
Rising inequality $\omega^s \uparrow$: lowers r and raises debt

Homothetic model

- Effects of rising inequality $\omega^s \uparrow$ in non-homothetic model:
 - One. $\omega^s \uparrow \Rightarrow$ more saving by the rich $\Rightarrow r \downarrow \Rightarrow$ debt \uparrow
 - Two. Debt \uparrow first raises demand, pushing against decline in r
 - Three. High debt eventually lowers demand, aggravating decline in r
Rising inequality $\omega^s \uparrow$: lowers r and raises debt

Homothetic model

Old and new steady state

Non-homothetic model

Old steady state

New steady state

Effects of rising inequality $\omega^s \uparrow$ in non-homothetic model:

1. One effect: inequality $\uparrow \Rightarrow$ more saving by the rich $\Rightarrow r \downarrow \Rightarrow$ debt \uparrow

2. Debt \uparrow first raises demand, pushing against decline in r

3. High debt eventually lowers demand, aggravating decline in r
Rising inequality $\omega^s \uparrow$: lowers r and raises debt

- **Effects** of rising inequality $\omega^s \uparrow$ in non-homothetic model:
 1. inequality $\uparrow \Rightarrow$ more saving by the rich $\Rightarrow r \downarrow \Rightarrow$ debt \uparrow
 2. debt \uparrow first raises demand, pushing against decline in r
 3. high debt eventually lowers demand, aggravating decline in r
Inequality and debt across 14 advanced economies
Financial liberalization: raising pledgability ℓ

Homothetic model

Mechanism in non-homothetic model:
1. osf. raises debt & demand, pushing r up (short-run saving supply slopes up)
2. osf. ultimately high debt weighs on demand, lowering r, stimulating further debt → resolves puzzle in literature [e.g. Justiniano Primiceri Tambalotti]
Financial liberalization: raising pledgability ℓ

Homothetic model

- Mechanism in non-homothetic model:
 - One: Osf. raises debt & demand, pushing r up (short-run saving supply slopes up)
 - Two: Ultimately high debt weighs on demand, lowering r, stimulating further debt!

→ resolves puzzle in literature [e.g. Justiniano Primiceri Tambalotti]
Financial liberalization: raising pledgability ℓ

Mechanism in non-homothetic model:

1. **raises debt & demand**, pushing r up (short-run saving supply slopes up)
2. ultimately **high debt weighs on demand**, lowering r, **stimulating further debt**!

→ resolves puzzle in literature [e.g. Justiniano Primiceri Tambalotti]
Fiscal & monetary policy
Fiscal policy implications

- Gov’t spends G_t, has debt B_t, raises income taxes τ^s_t, τ^b_t, subject to

$$G_t + r_t B_t \leq \dot{B}_t + \tau^s_t \omega^s + \tau^b_t \omega^b$$

- Total demand for debt now $d_t + B_t$
Fiscal policy implications

- Gov’t spends G_t, has debt B_t, raises income taxes τ^s_t, τ^b_t, subject to

$$G_t + r_t B_t \leq \dot{B}_t + \tau^s_t \omega^s_t + \tau^b_t \omega^b_t$$

- Total demand for debt now $d_t + B_t$

- **Result:** In the long run
 1. larger gov’t debt $B \uparrow$: depresses interest rate $r \downarrow$, crowds in household debt $d \uparrow$
 2. tax-financed spending $G \uparrow$: raises $r \uparrow$, crowds out $d \downarrow$
 3. fiscal redistribution $\tau^s \uparrow, \tau^b \downarrow$: raises $r \uparrow$, crowds out $d \downarrow$

- With homothetic preferences none of these policies change r or d!
Deficit-financed fiscal policy

- Caveat: this assumed gov't pays same interest rate
- In many advanced economies, gov't actually pays a lower rate
- e.g. when investors derive other benefits from their debt (safety, convenience)
- In that case, what matters is how those benefits affect savers' investments
 → paper: natural case where things are unchanged

\[\text{Plot}\]

\[r\quad d\]
• Caveat: this assumed gov’t pays same interest rate r

• In many advanced economies, gov’t actually pays a lower rate
 • e.g. when investors derive other benefits from their debt (safety, convenience)
• Caveat: this assumed gov’t pays same interest rate r

• In many advanced economies, gov’t actually pays a lower rate
 • e.g. when investors derive other benefits from their debt (safety, convenience)

• In that case, what matters is how those benefits affect savers’ investments
 → paper: natural case where things are unchanged
Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

High B
Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

Strong recovery of \(r \) with low gov’t debt

High B

With higher \(B \), any given increase in \(r \) weighs down more on aggregate demand
“Japanification” — how high public debt makes r less likely to rise

Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

Strong recovery of r with low gov’t debt

High B

Little recovery of r with high gov’t debt
Imagine inequality falls exogenously. How much does the interest rate rise?

Low \(B \)

Strong recovery of \(r \) with low gov’t debt

High \(B \)

Little recovery of \(r \) with high gov’t debt

With **higher** \(B \), any given increase in \(r \) **weighs down more on aggregate demand**
Monetary policy has limited ammunition when it raises debt

- Can extend our setup to include nominal rigidities (see paper)
- Monetary policy sets path of interest rates $\{r_t\}$, output is endogenous

Main result:

![Graph showing possible natural interest rate paths and monetary intervention](image-url)
Debt trap
Introducing the lower bound

- Consider lower bound \(r \) on interest rate \(r \)
 - \(r > 0 \) if \(r \) is return on wealth (e.g. \(r \approx 3.5\% \) during recent US ZLB)
Introducing the lower bound

- Consider lower bound r on interest rate r
 - $r > 0$ if r is return on wealth (e.g. $r \approx 3.5\%$ during recent US ZLB)

- What happens if the steady state natural rate falls below r?
The debt trap (≡ a debt-driven liquidity trap)

• **Result**: if natural rate $< r$, get **stable** liquidity trap steady state: “debt trap”
 → **Output persistently below potential**

 $$
 \hat{Y} = Y \frac{r}{(1 - \tau^s)\omega^s + \ell} \cdot \left[\eta^{-1} \left(\frac{\rho}{r} (1 + \rho/\delta) - \rho/\delta \right) - B \right] < Y
 $$

• **Liquidity trap more likely if**

 • income inequality ω^s is high, low taxes on savers τ^s

 • pledgability ℓ high, gov. debt B high
How does an economy fall into the debt trap? (i) Rising inequality

- Anticipation of the liquidity trap pulls the economy in even faster
How does an economy fall into the debt trap? (ii) Credit boom-bust cycle
Fighting debt with debt? Deficit financing in the liquidity trap

Gov. spending

Interest rate

Output gap

Here, deficit financing is only a temporary remedy against a chronic disease. Lessons for Covid crisis?
Fighting debt with debt? Deficit financing in the liquidity trap

- Here, deficit financing is only **temporary remedy** against a **chronic disease**
- lessons for Covid crisis?
Indebted demand post-Covid
Covid shock set to further raise debt
Modeling Covid in our framework

• Assume agents work in two sectors, “social” and “distant”

• Assume borrowers are over-represented in “social”

• Shock:
 • potential output falls $Y \downarrow$ and inequality rises $\omega^s \uparrow, \omega^b \downarrow$
 • assume this induces negative demand shock in “distant” sectors
Covid in the indebted demand diagram

Effective lower bound
Covid in the indebted demand diagram

- Effective lower bound
- Induced demand shock
Covid in the indebted demand diagram

- Reduced borrowing capacity
- Effective lower bound
- Induced demand shock
Covid in the indebted demand diagram

Covid shock: $r \downarrow, \text{debt} \uparrow$

Reduced borrowing capacity

Induced demand shock

Effective lower bound
Three “archetypes” of policies in response to Covid shock

(A) Stimulating (non-productive) private debt to buffer the shock
 • e.g. Fed’s lending facilities via SPV’s
 → model as increase in credit limit

(B) Government funds transfers using public debt, paid for by all taxpayers
 • e.g. stimulus checks, UI, grants to businesses
 → model as increase in government debt

(C) Government funds transfers by taxing (now or later) very progressively
 • e.g. Landais-Saez-Zucman, Greenwood-Thesmar
 → model as saver-financed increase in government debt
Three “archetypes” of policies in response to Covid shock

(A) Stimulating (non-productive) private debt to buffer the shock
 • e.g. Fed’s lending facilities via SPV’s
 → model as increase in credit limit

(B) Government funds transfers using public debt, paid for by all taxpayers
 • e.g. stimulus checks, UI, grants to businesses
 → model as increase in government debt

(C) Government funds transfers by taxing (now or later) very progressively
 • e.g. Landais-Saez-Zucman, Greenwood-Thesmar
 → model as saver-financed increase in government debt

Different across (A), (B), (C): whether there is a transfer from savers to borrowers
Policies in the indebted demand diagram

Covid shock: $r \downarrow$, debt \uparrow

Effective lower bound
Policies in the indebted demand diagram

Policy (A) — Stagnation post-Covid

Effective lower bound

Covid shock + (A): \(r \downarrow \downarrow, \text{debt } \uparrow \uparrow \)
Policies in the indebted demand diagram

Effective lower bound

Covid shock + (B): $r \downarrow$, debt \uparrow

Policy (B) — Softer stagnation post-Covid

Bottom line: Transfers $> \frac{\text{Debt}}{\text{long term}} \rightarrow \text{address any structural problems leading to greater inequality}$
Policies in the indebted demand diagram

Covid shock + (C): $r \uparrow$, debt \uparrow

Policy (C) — No stagnation!
Policies in the indebted demand diagram

Bottom line: Transfers > Debt

(long term → address any structural problems leading to greater inequality)
Extensions & conclusion
Extensions

- Redistribution (e.g. wealth tax) = Pareto improvement in debt trap
- Investment can help, especially if it complements borrowers’ labor
- Similar results when there is gov’t bond pay lower rate
- Intergenerational mobility helps
- Sufficient statistic exercise

In paper:
- Open economy model
- Uzawa preferences, relative wealth preferences
Indebted Demand:

Demand decreases in $r \times \text{debt}$

 Particularly relevant post-Covid!
Indebted Demand:

Demand decreases in $r \times \text{debt}$

Particularly relevant post-Covid!
Extra slides
Inequality and debt

- Top 1% income share
- Interest rate
- Household debt / GDP
- Debt service / GDP

Homothetic model
Non-homothetic model
Deficit spending causes indebted (government) demand

Gov. debt / GDP

- 0% to 20% over 0-20 years

Interest rate

- 0% to 6% to 0% over 0-20 years

Household debt / GDP

- 0% to 90% to 80% to 75% over 0-20 years
But ... what about $r < g$? (here: g normalized to zero)

- Our r is **return on wealth** so always $r > g$. But what if gov’t pays $r^B < g$?
But ... what about $r < g$? (here: g normalized to zero)

- Our r is **return on wealth** so always $r > g$. But what if gov’t pays $r^B < g$?

- Our model points to **two objects that matter** (see paper for details)
But ... what about $r < g$? (here: g normalized to zero)

- Our r is **return on wealth** so always $r > g$. But what if gov’t pays $r^B < g$?

- Our model points to **two objects that matter** (see paper for details)

1. Derivative of debt service cost of $(r^B - g)B$ w.r.t. B

 \[
 \frac{\partial (r^B - g)B}{\partial B} = r^B - g + \frac{\partial r^B}{\partial B} \quad \begin{cases} < 0 \quad \text{if} \\ > 0 \quad \text{if} \end{cases} 0
 \]
But ... what about $r < g$? (here: g normalized to zero)

- Our r is **return on wealth** so always $r > g$. But what if gov’t pays $r^B < g$?

- Our model points to **two objects that matter** (see paper for details)

1. **Derivative of debt service cost** of $(r^B - g)B$ w.r.t. B

$$\frac{\partial (r^B - g)B}{\partial B} = r^B - g + \frac{\partial r^B}{\partial B} \quad ? \quad 0$$

2. Where does the spread $r - r^B$ come from? Investors really like $B!$

 - B is **not negative for savers** just because $(r^B - g)B < 0$

 - $B \uparrow$ still makes savers wealthier, $\alpha^S \uparrow$, lowering required return on wealth r
Redistribution and welfare

- What policy mitigates a debt trap? → redistribution

- Example: wealth tax of $τ^a > 0$ on saver’s wealth, redistributed to borrowers

- Saver’s budget constraint becomes

$$c_t^s + \dot{a}_t^s = (r_t - τ^a) a_t^s$$

→ Wealth tax reduces return on wealth at ZLB to $r - τ^a$, raising \hat{Y}

- What about welfare?
 - borrower clearly benefits: lower r + wealth tax transfers + higher incomes
 - saver also benefits: greater incomes (& asset prices) more than compensate for tax!

- Thus: Redistribution mitigates debt trap, at no welfare cost!
Introducing investment

• Assume goods are now produced from capital and both agents’ labor

\[Y = F(K, L^b, L^s) \]

• \(F \) is net-of-depreciation production, \(K \) pinned down by \(F_K = r \)

• \(\sigma \equiv \) (Allen) elasticity of substitution between \(K \) and \(L^b \)
Introducing investment

- Assume goods are now produced from capital and both agents’ labor

\[Y = F(K, L^b, L^s) \]

- \(F \) is net-of-depreciation production, \(K \) pinned down by \(F_K = r \)
- \(\sigma \equiv \) (Allen) elasticity of substitution between \(K \) and \(L^b \)

- Key: savers’ income share \(\omega^s = \omega^s(r) \) now a function of \(r \! \)

\[\omega^s(r) \equiv \frac{F_K K}{F} + \frac{F_L L^s}{F} = 1 - \frac{F_L L^b}{F} \]
• Assume goods are now produced from capital and both agents’ labor
 \[Y = F(K, L^b, L^s) \]

 • \(F \) is net-of-depreciation production, \(K \) pinned down by \(F_K = r \)

 • \(\sigma \equiv \) (Allen) elasticity of substitution between \(K \) and \(L^b \)

• Key: savers’ income share \(\omega^s = \omega^s(r) \) **now a function of** \(r \)!
 \[
 \omega^s(r) \equiv \frac{F_K K}{F} + \frac{F_{L^s} L^s}{F} = 1 - \frac{F_{L^b} L^b}{F}
 \]

 • \(\omega^s(r) \) independent of \(r \) if \(\sigma = 1 \) [e.g. Cobb-Douglas]

 • \(\omega^s(r) \uparrow \text{ as } r \downarrow \text{ iff } \sigma > 1 \) [e.g. capital-skill complementarity, robots]
• **Main result:** Our results are unchanged if $\sigma = 1$. Amplified if $\sigma > 1$.

![Graph showing the relationship between r and d with different values of \(\sigma\).](image-url)
Main result: Our results are unchanged if $\sigma = 1$. Amplified if $\sigma > 1$.

Related Q: Can corporate debt also cause indebted demand?
- yes, if $\sigma > 1$! but always weaker indebted demand than household debt
- why? corporate debt productive, raising Y, easier to repay
Government yield spread

• Allow for benefits from gov’t bonds [cf Krishnamurthy Vissing-Jorgensen (2012)]

\[
\log (c_t^s + \xi B_t) + \frac{\delta}{\rho} \cdot v (a_t^s + \xi B_t/r)
\]

• Implies fixed spread \(\xi > 0 \)

\[
r^B = r - \xi
\]
Government yield spread

- Allow for benefits from gov't bonds [cf Krishnamurthy Vissing-Jorgensen (2012)]
 \[
 \log (c_t^s + \xi B_t) + \frac{\delta}{\rho} \cdot v (a_t^s + \xi B_t/r)
 \]
- Implies fixed spread \(\xi > 0 \)
 \[
 r^B = r - \xi
 \]
- Define effective wealth as including benefits \(\xi B_t \) from bonds. In steady state:
 \[
 a_{eff} \equiv \frac{\omega^s}{r} + d + \frac{r^B B}{r} + \frac{\xi B}{r}
 \]
 \[
 = B
 \]
- Savings supply curve unchanged in effective wealth
 \[
 r = \rho \frac{1 + \rho/\delta}{1 + \rho/\delta \cdot \eta(a_{eff})}
 \]
• With probability $q > 0$, savers turn into borrowers and vice versa

• Saver-turned-borrowers consume down their wealth instantly

• Borrower-turned-savers get transfer from other savers to raise wealth
• With probability $q > 0$, savers turn into borrowers and vice versa

• Saver-turned-borrowers consume down their wealth instantly

• Borrower-turned-savers get transfer from other savers to raise wealth

• **Saving supply curve becomes flatter** with q

\[r = \rho \frac{1 + \delta/\rho}{1 + \delta/\rho \cdot \eta(a)} + q\gamma\delta \frac{\delta/\rho \cdot \eta(a)}{1 + \delta/\rho \cdot \eta(a)} \]

 - contribution of mobility

• $q \uparrow$ thus **mitigates indebted demand**, especially if high **income inequality** γ

\[\gamma \equiv 1 - \frac{\omega^b - \ell}{\omega^s + \ell} \]
• Consumption function of rich \(c(r, a) \). Along curve:

\[
c(r(a), a) = r(a)a
\]
• Consumption function of rich $c(r, a)$. Along curve:

$$c(r(a), a) = r(a)a \Rightarrow \frac{c_r}{c} \frac{dr}{a d \log a} + \frac{c_a}{MPC\text{cap. gains}} = \frac{dr}{d \log a} + r$$

semi-elast. ϵ_r wrt r
Is this first order? What is the slope of savings supply in the data?

- Consumption function of rich $c(r, a)$. Along curve:

$$c(r(a), a) = r(a)a \Rightarrow \frac{dr}{d \log a} = \frac{MPC^{\text{cap. gains}} - r}{1 - \epsilon_r \frac{c}{a}}$$
• Consumption function of rich $c(r, a)$. Along curve:

$$c(r(a), a) = r(a)a \Rightarrow \frac{dr}{d \log a} = \frac{\text{MPC}^{\text{cap. gains}} - r}{1 - \epsilon_r \frac{c}{a}}$$

• Standard PIH model: $\text{MPC}^{\text{cap. gains}} = r$ \quad log preferences: $\epsilon_r = 0$
Is this first order? What is the slope of savings supply in the data?

- Consumption function of rich $c(r, a)$. Along curve:

$$c(r(a), a) = r(a)a \Rightarrow \frac{dr}{d \log a} = \frac{MPC_{\text{cap. gains}} - r}{1 - \epsilon_r \frac{c}{a}}$$

- Standard PIH model: $MPC_{\text{cap. gains}} = r$
 log preferences: $\epsilon_r = 0$

- Assume $\epsilon_r = 0$, $r \approx 0.06$, $MPC_{\text{cap. gains}} \approx 0.025$

 [Farhi-Gourio, Di Maggio-Kermani-Majluf, Baker-Nagel-Wurgler, Chodorow-Reich Nenov Simsek]
Is this first order? What is the slope of savings supply in the data?

• Consumption function of rich \(c(r, a) \). Along curve:

\[
c(r(a), a) = r(a)a \quad \Rightarrow \quad \frac{dr}{d \log a} = \frac{\text{MPC}^{\text{cap. gains}} - r}{1 - \epsilon_r \frac{c}{a}}
\]

• Standard PIH model: \(\text{MPC}^{\text{cap. gains}} = r \)
 log preferences: \(\epsilon_r = 0 \)

• Assume \(\epsilon_r = 0 \), \(r \approx 0.06 \), \(\text{MPC}^{\text{cap. gains}} \approx 0.025 \)

 [Farhi-Gourio, Di Maggio-Kermani-Majluf, Baker-Nagel-Wurgler, Chodorow-Reich Nenov Simsek]

\[
\frac{dr}{d \log a} = -0.035
\]

• In words: if wealth ↑ by 10%, required \(r \) ↓ by 35bps
Bottom 90% did not accumulate assets

Bottom 90% reduced saving

Relative to 63–82

Contributions into housing (N_h)
Contributions into non-housing (N_{nh})
Change in debt (ΔD)
Saving (Θ)
Thought experiment: How large is dC implied by current levels of household & government debt, had interest rates not come down?
How indebted is US demand?

- Thought experiment: How large is dC implied by current levels of household & government debt, had interest rates **not** come down?
- Counterfactual debt service burden, holding r constant:
• Thought experiment: How large is dC implied by current levels of household & government debt, had interest rates **not** come down?

• Counterfactual debt service burden, holding r constant:

$$dC \approx \underbrace{-15\%}_{\text{borrower debt service}} + \underbrace{\frac{\text{MPC cap. gains}}{r} \cdot 15\%}_{\text{partial offset by savers}} = -8\%$$