An extent-based GQT-style unified implicature account of bare and modified numerals

3 · more/less than 3 · at most/least 3

Teodora Mihoc (Harvard University)

@ ILLC, University of Amsterdam, June 12, 2018
Outline

The classic GQT theory of BNs, CMs, and SMs

An extent based GQT-style unified implicature account of BNs, CMs, and SMs

Additional results

Conclusion
Generalized Quantifier Theory
[Barwise and Cooper, 1981]

(1) \([\text{every}] = \lambda P . \lambda Q . P \subseteq Q \)
(2) \([\text{no}] = \lambda P . \lambda Q . P \cap Q = \emptyset \)
(3) \([a] = \lambda P . \lambda Q . P \cap Q \neq \emptyset \)
(4) \([\text{three}] = \lambda P . \lambda Q . |P \cap Q| \geq 3 \)
(5) \([\text{more than three}] = \lambda P . \lambda Q . |P \cap Q| > 3 \)
(6) \([\text{less than three}] = \lambda P . \lambda Q . |P \cap Q| < 3 \)
(7) \([\text{at least three}] = \lambda P . \lambda Q . |P \cap Q| \geq 3 \)
(8) \([\text{at most three}] = \lambda P . \lambda Q . |P \cap Q| \leq 3 \)
(9) \([\text{exactly three}] = \lambda P . \lambda Q . |P \cap Q| = 3 \)
(10) \([\text{between three and five}] = \lambda P . \lambda Q . 3 \leq |P \cap Q| \leq 5 \)
Features and bugs

- Uniformity of DPs
- Uniformity of natural language determiners

- Uniformity of bare (BNs, *three*), comparative-modified (CMs, *more/less than three*), and superlative-modified numerals (SMs, *at least/most three*)

Challenged with data pointing to non-uniformity!
Challenges led to theories very different from GQT.

Where exactly does GQT fail?
We will assess it w.r.t. four major yardsticks:

| entailments | scalar implicatures | ignorance | accept in DE env |
Entailments

(11) a. Alice has 3 / more than 3 / at least 3 diamonds.
 b. ¬ The number of diamonds that Alice has is 2 or less / 3 or less / 2 or less.
 c. Alice has 3 / more than 3 / at least 3 diamonds, # if not less.

(12) a. Alice has less than 3 / at most 3 diamonds.
 b. ¬ The number of diamonds that Alice has is 3 or more / 4 or more.
 c. Alice has less than 3 / at most 3 diamonds, # if not more.
The upper bound of BNs as a scalar implicature

[Horn, 1972, Spector, 2013]

(13) a. Alice has 3 diamonds.
 b. ¬ The number of diamonds that Alice has is 4 or more.
 c. Alice has 3 diamonds, if not more.

★ 3 P Q ambiguous between ‘at least 3 P Q’ and ‘exactly 3 P Q’
★ One way to get this is to say that 3 P Q entails ‘at least 3 P Q’,
 derives ‘not at least 4 P Q’ via scalar implicature.
★ Predicted scalar alternatives of BNs, CMs, and SMs:

(14) a. ScalAlts(3 P Q)
 = {…, 2 P Q, 4 P Q, …}
 b. ScalAlts(more/less than 3 P Q)
 = {…, more/less than 2 P Q, more/less than 4 P Q, …}
 c. ScalAlts(at most/least 3 P Q)
 = {…, at most/least 2 P Q, at most/least 4 P Q, …}
Scalar implicatures

★ Unembedded:

(15) Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds.
⇝ ¬ Alice has 4 / *more than 4 / *less than 2 / *at most 2 / *at least 4 diamonds.
(Total predicted meaning: She has exactly 3 / exactly 4 / exactly 2 / exactly 3 / exactly 3 diamonds.)

★ In the scope of a universal operator:

(16) Alice is required to have 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds.
⇝ ¬ Alice is required to have 4 / more than 4 / less than 2 / at most 2 / at least 4 diamonds.
Scalar implicatures

[Mayr, 2013]

★ In the antecedent of a conditional:

(17) If Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds she wins.

¬ If Alice has 2 / more than 2 / less than 4 / at most 4 / at least 2 diamonds she wins.

★ In the scope of negation:

(18) Alice doesn’t have 3 / more than 3 / less than 3 / *at most 3 / *at least 3 diamonds.

¬ Alice doesn’t have *2 / *more than 2 / *less than 4 / *at most 4 / *at least 2 diamonds.

(Total predicted meaning: She has exactly 2 / exactly 3 / exactly 3 / exactly 4 / exactly 2 diamonds.)
Scalar implicatures
[Cummins et al., 2012]

★ Unembedded, coarse granularity scale:

(19) (example from [Spector, 2014, 42])

Context: Grades are attributed on the basis of the number of problems solved. People who solve between 1 and 5 problems get a C. People who solve more than 5 problems but fewer than 9 problems get a B, and people who solve 9 problems or more get an A.

John solved more than 5 problems. Peter solved more than 9.
\[\sim \rightarrow \neg \text{John solved more than 9.} \]
Ignorance

★ Unembedded:

(20) Alice has 3 diamonds.
 (*→ The speaker is not sure whether Alice has 3 or 4 or . . .)

(21) Alice has more than 3 / less than 3 diamonds.
 (→ The speaker is not sure whether Alice has 4 or 5 or . . . / 2
 or 1 or . . .)

(22) Alice has at least 3 / at most 3 diamonds.
 *(→ The speaker is not sure whether Alice has 3 or 4 or . . . / 3
 or 2 or . . .)
In the scope of a universal operator:

(23) Alice is required to have 3 diamonds.

\(\forall \) The speaker is not sure whether Alice is required to have 3 or 4 or …

(24) Alice is required to have more than 3 / less than 3 / at most 3 / at least 3 diamonds.

(\(\forall \) The speaker is not sure whether Alice is required to have 4 or 5 or … / 2 or 1 or … / 3 or 2 or … / 3 or 4 or ….)
Ignorance

★ In the scope of negation:

(25) Alice doesn’t have 3 diamonds.

\(\not\setminus \) The speaker is not sure whether Alice doesn’t have 3 or 4 or …

(26) Alice doesn’t have more than 3 / less than 3 diamonds.

(\(\not\Rightarrow \) The speaker is not sure whether Alice has 3 or 2 or … / 3 or 4 or …)
Acceptability in DE environments

★ In the scope of negation:

(27) Alice doesn’t have 3 / more than 3 / less than 3 diamonds.
 → Alice has 2 or less / 3 or less / 3 or more diamonds. ✓

(28) Alice doesn’t have *at least three / *at most three diamonds.
 → Alice has 2 or less / 4 or more diamonds. ✗

★ In the antecedent of a conditional:

(29) If Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds, she wins.

★ In the restriction of a universal:

(30) Everyone who has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds wins.
What is GQT missing?

<table>
<thead>
<tr>
<th>entailments</th>
<th>scalar implicatures</th>
<th>ignorance</th>
<th>accept in DE env</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓ + ?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Sketch of the solution:

- Keep the GQT way of getting entailments.
- Keep scalar implicatures.
- Add domain alternatives [Kennedy, 2015, Spector, 2015].
- Make the domain alternatives of SMs obligatory [Spector, 2015].
- Try to derive rather than stipulate the number, type, and status of the alternatives in each case.
Outline

The classic GQT theory of BNs, CMs, and SMs

An extent based GQT-style unified implicature account of BNs, CMs, and SMs

Additional results

Conclusion
Proposal: Truth conditions and presupposition

<table>
<thead>
<tr>
<th>the numeral</th>
<th>[Link, 1983, Buccola and Spector, 2016]</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{three}] = 3)</td>
<td>(\text{isCard} = \lambda x .</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>much/little</th>
<th>[Seuren, 1984, Kennedy, 1997]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{much} = \lambda d . d \leq n)</td>
<td>(\text{little} = \lambda d . d \geq n)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>((\exists (n P))(Q) = 1 \text{ iff } \exists x[</td>
<td>x</td>
</tr>
<tr>
<td>(\text{sup(much/little)}(P)(Q) = 1 \text{ iff }</td>
<td>P \cap Q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>the presupposition of [sup]</th>
<th>[Hackl, 2009, Gajewski, 2010]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>\text{much/little}</td>
</tr>
</tbody>
</table>
Entailments

(31) 3 P Q:
\[\exists x [|x| = 3 \land P(x) \land Q(x)] \Rightarrow |P \cap Q| \geq 3 \] (l.b.)

(32) more than 3 P Q:
\[|P \cap Q| \in [\text{much}] (3) \iff |P \cap Q| \in \{4, 5, \ldots\} \] (l.b.)

(33) less than 3 P Q:
\[|P \cap Q| \in [\text{little}] (3) \iff |P \cap Q| \in \{\ldots, 0, 1, 2\} \] (u.b.)

(34) at most 3 P Q:
\[|P \cap Q| \in [\text{much}] (3) \iff |P \cap Q| \in \{\ldots, 0, 1, 2, 3\} \] (u.b.)

(35) at least 3 P Q:
\[|P \cap Q| \in [\text{little}] (3) \iff |P \cap Q| \in \{3, 4, \ldots\} \] (l.b.)
Proposal: Alternatives

Scalar alternatives can be obtained by replacing \(n \) in the numeral argument with its scalar alternatives (other numerals)

BNs: \(\{\exists x[|x| = m \land P(x) \land Q(x)] : m \in S\} \)

CMs: \(\{|P \cap Q| \in \langle\text{much}/\text{little}\rangle(m) : m \in S\} \)

SMs: \(\{|P \cap Q| \in \langle\text{much}/\text{little}\rangle(m) : m \in S\} \)

Domain alternatives can be obtained by replacing the whole numeral argument with its subsets

BNs: NA

CMs: \(\{|P \cap Q| \in A : A \subseteq \langle\text{much}/\text{little}\rangle(n)\} \)

SMs: \(\{|P \cap Q| \in A : A \subseteq \langle\text{much}/\text{little}\rangle(n)\} \)

active by presup!
Scalar alternatives

\[
\text{ScalAlts}(3 \, P \, Q) \\
= \text{ScalAlts}(\exists x[|x| = 3 \wedge P(x) \wedge Q(x)]) \\
= \{\ldots, \exists x[|x| = 2 \wedge P(x) \wedge Q(x)], \exists x[|x| = 4 \wedge P(x) \wedge Q(x)], \ldots\} \\
= \{\ldots, 2 \, P \, Q, 4 \, P \, Q, \ldots\}
\]

\[
\text{ScalAlts}(\text{more/less than 3} \, P \, Q) \\
= \text{ScalAlts}(|P \cap Q| \in \llbracket\text{much/little}\rrbracket (3)) \\
= \{\ldots, |P \cap Q| \in \llbracket\text{much/little}\rrbracket (2), |P \cap Q| \in \llbracket\text{much/little}\rrbracket (4), \ldots\} \\
= \{\ldots, \text{more/less than 2} \, P \, Q, \text{more/less than 4} \, P \, Q, \ldots\}
\]

\[
\text{ScalAlts}(\text{at most/least 3} \, P \, Q) \\
= \text{ScalAlts}(|P \cap Q| \in \llbracket\text{much/little}\rrbracket (3)) \\
= \{\ldots, |P \cap Q| \in \llbracket\text{much/little}\rrbracket (2), |P \cap Q| \in \llbracket\text{much/little}\rrbracket (4), \ldots\} \\
= \{\ldots, \text{at most/least 2} \, P \, Q, \text{at most/least 4} \, P \, Q, \ldots\}
\]
Subdomain alternatives

\text{SubDomAlts(3 P Q)}: \text{NA}

\text{SubDomAlts(more/less than 3 P Q)}
= \text{SubDomAlts(}|P \cap Q| \in \llbracket \text{much/little} \rrbracket (3))
= \text{SubDomAlts(}|P \cap Q| \in \{4, 5, \ldots \}/\{0, 1, 2\})
= \{|P \cap Q| \in \{4\}, |P \cap Q| \in \{4, 7, \ldots \} \}/\{|P \cap Q| \in \{0\},
|P \cap Q| \in \{0, 1\}, \ldots \}

\text{SubDomAlts(at most/least 3 P Q)}
= \text{SubDomAlts(}|P \cap Q| \in \llbracket \text{much/little} \rrbracket (3))
= \text{SubDomAlts(}|P \cap Q| \in \{0, 1, 2, 3\}/\{3, 4, \ldots \})
= \{|P \cap Q| \in \{0\}, |P \cap Q| \in \{1, 3\}, \ldots \} \)/\{|P \cap Q| \in \{3\},
|P \cap Q| \in \{4, 8\}, \ldots \}

\text{active by presup!}
Proposal: Implicature calculation system

[Chierchia, 2013]

\[O \] to exhaustify the scalar alternatives of BNs, CMs, and SMs

\[(36) \ [O_{ALT}(\phi)]^{g, w} = [\phi]^{g, w} \land \forall p \in [\phi]^{ALT} [p \rightarrow \lambda w'. [\phi]^{g, w'} \subseteq p] \]

\[O^{PS} \] to exhaustify the subdomain alternatives of CMs and SMs

\[(37) O_{ALT}^{PS}(\phi) \text{ is defined iff } O_{ALT}^{S}(\phi) \subset \phi. \]
Whenever defined, \(O_{ALT}^{PS}(\phi) = O_{ALT}^{S}(\phi) \),
where
a. \(O_{ALT}^{S}(\phi_w) = \phi_w \land \forall p \in ALT [\pi(p)_w \rightarrow \pi(\lambda w. \phi_w) \subseteq \pi(p)] \),
where
(i) \(\pi(q) = \alpha q \land \pi q \).

\[\Box \text{ last resort, silent, matrix-level, universal doxastic modal} \]
Implicatures from scalar alternatives
considering only alternatives that do not lead to the problematic ‘exactly’ meanings

★ Unembedded:

(38) O_{ScalAlts} (Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds.)
\[\sim \neg \text{Alice has 4 / more than 5 / less than 1 / at most 1 / at least 5 diamonds.} \]

★ In the scope of a universal operator:

(39) O_{ScalAlts} (Alice is required to have 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds.)
\[\sim \neg \text{Alice is required to have 4 / more than 4 / less than 2 / at most 2 / at least 4 diamonds.} \]
Implicatures from scalar alternatives
considering only alternatives that do not lead to the problematic ‘exactly’ meanings

★ In the antecedent of a conditional:

(40) $O_{ScalAlts}$ (If Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds she wins.)
\[\sim \neg \text{If Alice has 2 / more than 2 / less than 4 / at most 4 / at least 2 diamonds she wins.} \]

★ In the scope of negation:

(41) $O_{ScalAlts}$ (Alice doesn’t have 3 / more than 3 / less than 3 / *at most 3 / *at least 3 diamonds.)
\[\sim \neg \text{Alice doesn’t have 1 / more than 1 / less than 5 / at most 5 / at least 1 diamonds.} \]
Implicatures from subdomain alternatives

* Unembedded:

(42) Alice has more/less than 3 / at most/least 3 diamonds.

a. $|P \cap Q| \in D$

b. $O_{\text{SubDomAlts}}^{PS} (|P \cap Q| \in D) = |P \cap Q| \in D \land \neg (|P \cap Q| \in A) \land \neg (|P \cap Q| \in B) \ldots$, for all $A, B, \ldots \subset D$, $= \bot$

c. $O_{\text{SubDomAlts}}^{PS} \Box (|P \cap Q| \in D) = \Box |P \cap Q| \in D \land \neg \Box (|P \cap Q| \in A) \land \neg \Box (|P \cap Q| \in B) \ldots$, for all $A, B, \ldots \subset D$

* Ignorance optional for CMs, obligatory for SMs.
Implicatures from subdomain alternatives

clash with ‘exactly’-inducing implicature from scalar alternatives!

(43) Alice has more than 2 / at least 3 diamonds.

\[O^\text{PS}_{\text{SubDomAlts}} \Box O^\text{ScalAlts} \left(|P \cap Q| \in \{3, 4, \ldots \} \right) \]

\[= \Box O^\text{ScalAlts} \left(|P \cap Q| \in \{3, 4, \ldots \} \right) \land \neg \Box (|P \cap Q| \in \{3\}) \land \neg \Box (|P \cap Q| \in \{4, 7\}) \land \neg \ldots \]

\[= \Box (|P \cap Q| \in \{3\}) \land \neg \Box (|P \cap Q| \in \{3\}) \land \neg \Box (|P \cap Q| \in \{4, 7\}) \land \neg \ldots \]

\[= \bot \]

* Prune offending SubDomAlts? That would violate \(O^\text{PS}_{\text{SubDomAlts}} \), so no. ✗
* Prune offending ScalAlt? ✔
Implicatures from subdomain alternatives

* In the scope of a universal operator:

(44) Alice is required to have more/less than 3 / at most/least 3 diamonds.

a. $\Box(|P \cap Q| \in D)$

b. $\Box O^{PS}_{SubDomAlts} (|P \cap Q| \in D)$

c. $O^{PS}_{SubDomAlts} (\Box(|P \cap Q| \in D))$

d. $O^{PS}_{SubDomAlts} (|P \cap \Box Q| \in D)$

e. $O^{PS}_{SubDomAlts} (\Box(|P \cap \Box Q| \in D))$

* Ignorance optional for both CMs and SMs.
Implicatures from subdomain alternatives

★ In the scope of negation:

(45) Alice doesn’t have more/less than 3 / *at most/least 3 diamonds.

a. \(\neg (|P \cap Q| \in D) \)

b. \(\neg O_{SubDomAlts}^{PS} (|P \cap Q| \in D) \)

c. \(O_{SubDomAlts}^{PS} \neg (|P \cap Q| \in D) \)

\[= \neg (|P \cap Q| \in D) \]

d. \(O_{SubDomAlts}^{PS} \Box \neg (|P \cap Q| \in D) \)

\[= \Box \neg (|P \cap Q| \in D) \]

★ No ignorance implicatures sanctioned formally.
Acceptability in DE environments

★ In the scope of negation:

(46) Alice doesn’t have more/less than three / *at most/least three diamonds.

a. \(\neg (|P \cap Q| \in D) \) no \(O^{PS}_{SubDomAlts} \) !

b. \(\neg O^{PS}_{SubDomAlts} (|P \cap Q| \in D) \) contradiction!

c. \(O^{PS}_{SubDomAlts} \neg (|P \cap Q| \in D) \) no proper strengthening!

d. \(O^{PS}_{SubDomAlts} \Box \neg (|P \cap Q| \in D) \) no proper strengthening!

★ CMs can be parsed as in (a). No parsing option for SMs.
Acceptability in DE environments

In the antecedent of a conditional / restriction of a universal:

(47) Everyone who has more/less than 3 / at most/least 3 diamonds wins.

\[\forall x[\# \text{ di } x \text{ has } \in D \rightarrow \ldots] \land \exists x[\# \text{ of di } x \text{ has } \in D] \]

\[\Downarrow \]

\[\forall x[\# \text{ di } x \text{ has } \in D' \rightarrow \ldots] \land \exists x[\# \text{ of di } x \text{ has } \in D'] \]

SubDomAlts not entailed, so they must be false.

However, negating them leads to contradiction.

We can rescue the parse with \[\Box\].

Ignorance implicatures about the presupposition: The speaker is sure that here is someone such that the \# of diamonds they have is in D, but not sure about any subsets of D.
Taking stock

<table>
<thead>
<tr>
<th>entailments</th>
<th>scalar implicatures</th>
<th>ignorance</th>
<th>accept in DE env</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Outline

The classic GQT theory of BNs, CMs, and SMs

An extent based GQT-style unified implicature account of BNs, CMs, and SMs

Additional results

Conclusion
Lexical entries for the numeral, *much*/little*, [comp], and [sup] that

★ give us the right truth conditions and a natural way to derive the number, type, and status of the alternatives in each case;

★ link up naturally to meanings elsewhere;

★ ensure that the resulting bare or modified numeral DPs will pose no further compositional challenges, as they are generalized quantifiers.
Predicative uses

(48) The three / more/less than three / at most/least three NP
(49) We are three / more/less than three / at most/least three.
(50) Plant a tree every three houses.
(51) If two relatives of mine die, I’ll be rich.

* Use [Partee, 1987]’s BE to typeshift the generalized quantifier meanings into predicative meanings:

(52) $[\text{BE}] = \lambda Q_{\langle at,t \rangle} \cdot \lambda x_\alpha \cdot Q(\lambda y_\alpha \cdot y = x)$

(53) $[\text{BE}] ([\text{at most three students}])$

$= [\lambda Q_{\langle et,t \rangle} \cdot \lambda x_e \cdot Q(\lambda y_e \cdot y = x)](\lambda Q_{\langle e,t \rangle} \cdot |P \cap Q| \in [\text{much}] (3))$

$= \lambda x_e \cdot [\lambda Q_{\langle e,t \rangle} \cdot |P \cap Q| \in [\text{much}] (3)](\lambda y_e \cdot y = x)$

$= \lambda x_e \cdot |P \cap \lambda y_e \cdot y = x| \in [\text{much}] (3)$
Constituent structure

\[\exists x [|x| = 3 \land P(x) \land Q(x)] \]

[Diagram]

- DP
- VP
- Q
- D
- #P
- \(\emptyset \exists \)
- \(\lambda x. |x| = 3 \land P(x) \)
- NumP
- [isCard] (3)
- #'
- P
- #
- NP
- SG/PL
- P
Constituent structure

\[
\lambda Q. \ [\text{comp/sup}] ([\text{much/little}]) (n)(P)(Q) \quad Q
\]

\[
\text{ModP}
\]

- \text{Mod}
- \text{NumP}
 - \text{n}
- \text{[comp]/[sup]}
- \text{much/little}

\[
\#P \quad \#' \quad P
\]

\[
\# \quad \text{SG/PL} \quad \text{NP}
\]

\[
\# \quad P
\]
Outline

The classic GQT theory of BNs, CMs, and SMs

An extent based GQT-style unified implicature account of BNs, CMs, and SMs

Additional results

Conclusion
Conclusion

★ A unified account of bare and modified numerals that builds conservatively on the original GQT account.

★ Derives their patterns w.r.t. entailments, scalar implicatures, ignorance, and acceptability in DE environments from their morphological pieces.

★ The account is more comprehensive, has better empirical coverage, and is less stipulative than previous accounts.
Generalized quantifiers and natural language.

van Benthem, J. (1986).
Essays in logical semantics.
Springer.

Modified numerals and maximality.

Logic in grammar: Polarity, free choice, and intervention.
Oxford University Press, Oxford, UK.

Superlative quantifiers and meta-speech acts.

Raising and resolving issues with scalar modifiers.
References II

References III

Link, G. (1983). The logical analysis of plurals and mass terms, a lattice-theoretical approach’, in r. b̅ uerle et al.(eds), meaning, use and interpretation of language, berlin, new york.

References V

