Stochastic Choice

Tomasz Strzalecki

Hotelling Lectures in Economic Theory Econometric Society European Meeting, Lisbon, August 25, 2017

Table of Contents

Lecture 1

Introduction
Random Utility/Discrete Choice
Properties of RU
Special Cases
Random Expected Utility (REU)
Learning
Attention
Optimal Attention
Random Attention

Deliberate Randomization

Lecture 2

Introduction
Dynamic Random Utility
Dynamic Discrete Choice
Decision Times

Plan

Purpose: Overview where the field is and where it seems to be going

Lecture 1: Static Choice

- Random Utility (and Discrete Choice)
- Learning, Attention, Deliberate Randomization

Lecture 2: Dynamic Choice

- Dynamic Random Utility
- Dynamic Discrete Choice
- Drift-Diffusion Models

Disclaimer

- I won't get too deeply into any one area
- The ES monograph (in preparation) fills in more details
 - Theorem[†] means there are some terms I did not define
 - Theorem[‡] means that additional technical conditions are needed
- I cover mostly work in decision theory. I am not an expert on neighboring fields, such as discrete choice econometrics, structural IO and labor, experimental economics, psychology and economics, cognitive science. Happy to talk if you are one.
- All comments welcome at tomasz_strzalecki@harvard.edu

Notation

X set of alternatives
$x \in X$ typical alternative
$A\subseteq X$ finite choice problem (menu)
$\rho(x,A)$ probability of x being chosen from A
$\rho \cdots \cdots$

Stochastic Choice

• Idea: The analyst/econometrician observes an agent/group of agents

• Examples:

- Population-level field data: McFadden (1973)
- Individual-level field data: Rust (1987)
- Between-subjects experiments: Kahneman and Tversky (1979)
- Within-subject experiments: Tversky (1969)

Is individual choice random? Why?

Stylized Fact: Choice can change, even if repeated shortly after

 Tversky (1969), Hey (1995), Ballinger and Wilcox (1997), Hey (2001), Agranov and Ortoleva (2017)

Possible reasons:

- Randomly fluctuating tastes
- Noisy signals
- Attention is random
- People just like to randomize
- Trembling hands
- Experimentation (experience goods)

Questions

- 1. What are the properties of ρ (axioms)?
 - Example: "Adding an item to a menu reduces the choice probability of all other items"

- 2. How can we "explain" ρ (representation)?
 - Example: "The agent is maximizing utility, which is privately known"

Goals

- 1. Better understand the properties of a model. What kind of predictions does it make? What axioms does it satisfy?
 - Ideally, prove a *representation theorem* (ρ satisfies Axioms A and B if and only if it has a representation R)
- 2. Identification: Are the parameters pinned down uniquely?
- 3. Determine whether these axioms are reasonable, either normatively, or descriptively (testing the axioms)
- 4. Compare properties of different models (axioms can be helpful here, even without testing them on data). Outline the modeling tradeoffs
- 5. Estimate the model, make a counterfactual prediction, evaluate a policy (I won't talk about those here)

Testing the axioms

- ullet Axioms expressed in terms of ho, which is the limiting frequency
- How to test such axioms when observed data is finite?
- Hausman and McFadden (1984) developed a test of Luce's IIA axiom that characterizes the logit model
- Kitamura and Stoye (2016) develop tests of the static random utility model based on axioms of McFadden and Richter (1990)
- I will mention many other axioms here, without corresponding "tests"

Richness

- The work in decision theory often assumes a "rich" menu structure
 - Menu variation can be generated in experiments
 - But harder in field data
 - But don't need a full domain to reject the axioms
- The work in discrete choice econometrics often assumes richness in "observable attributes"
 - I will abstract from this here
- The two approaches lead to somewhat different identification results
 - Comparison?

Introduction

Random Utility/Discrete Choice

Special Cases
Random Expected Utility (REU)

Learning

Attention

Optimal Attention
Random Attention

Deliberate Randomization

Random Utility

Idea: Choice is random because:

- There is a population of heterogenous individuals
- Or there is one individual with varying preferences

Models:

- Random Utility
- Discrete Choice

Notation:

 $\left(\Omega,\mathcal{F},\mathbb{P}\right)\cdot\cdot\cdot\cdot\cdot$ probability space that carries all random variables

Random Utility (RU)

- Let $\tilde{U}:\Omega \to \mathbb{R}^X$ be a random utility function on X
- C(x,A) is the event in which the agent chooses x from A

$$C(x,A):=\{\omega\in\Omega: ilde{U}_{\omega}(x)\geq ilde{U}_{\omega}(y) ext{ for all } y\in A\}$$

• T is the event in which there is a tie

$$\mathcal{T}:=\{\omega\in\Omega: ilde{U}_{\omega}(x)= ilde{U}_{\omega}(y) \text{ for some } x
eq y\}$$

Definition: ρ has a random utility representation if there exists $(\Omega, \mathcal{F}, \mathbb{P})$ and $\tilde{U}: \Omega \to \mathbb{R}^X$ such that $\mathbb{P}(T) = 0$ and

$$\rho(x,A) = \mathbb{P}(C(x,A))$$

Key assumption:

- $\bullet \ \mathbb{P}$ is independent of the menu; it's the structural invariant of the model
- Menu-dependent \mathbb{P} can trivially explain any ρ

Discrete Choice (DC)

- Let $v \in \mathbb{R}^X$ be a deterministic utility function
- Let $\tilde{\epsilon}: \Omega \to \mathbb{R}^X$ be a random unobserved utility shock or error
 - the distribution of $\tilde{\epsilon}$ has a density and full support

Definition ρ has a discrete choice representation if it has a RU representation with $\tilde{U}(x) = v(x) + \tilde{\epsilon}(x)$

This is sometimes called the additive random utility model

Discrete Choice (DC)

- \bullet The fact that $\tilde{\epsilon}$ has a density rules out ties
- \bullet The full support assumption on $\tilde{\epsilon}$ ensures that all items are chosen with positive probability

Axiom (Positivity). $\rho(x, A) > 0$ for all $x \in A$

- This leads to a non-degenerate likelihood function—good for estimation
- Positivity cannot be rejected by any finite data set

Ways to deal with ties

- Prohibit them outright by assuming
 - $-\mathbb{P}(T)=0$
 - density on $\tilde{\epsilon}$
- But sometimes more convenient to allow ties
 - Use a tiebreaker (Gul and Pesendorfer, 2006)
 - Change the primitive (Barberá and Pattanaik, 1986; Lu, 2016; Gul and Pesendorfer, 2013)
- I will skip over the details in this talk

Equivalence

Theorem: If X is finite and ρ satisfies Positivity, then the following are equivalent:

- (i) ρ has a random utility representation
- (ii) ρ has a discrete choice representation

Questions:

- What do these models assume about ρ ?
- Are their parameters identified?
- Are there any differences between the two approaches?

Introduction

Random Utility/Discrete Choice Properties of RU

Special Cases
Random Expected Utility (REU)

Learning

Attention
Optimal Attention

Random Attention

Deliberate Randomization

Axiomatic Characterizations

Axiom (Regularity). If $x \in A \subseteq B$, then $\rho(x, A) \ge \rho(x, B)$

Intuition When we add an item to a menu, existing items have to "make room" for it.

Examples of violation:

- 1. lyengar and Lepper (2000): tasting booth in a supermarket
 - 6 varieties of jam 70% people purchased no jam
 - 24 varieties of jam 97% people purchased no jam
- 2. Huber, Payne, and Puto (1982): adding a "decoy" option raises demand for the targeted option

Decoy Effect

Axiomatic Characterizations

Theorem (Block and Marschak, 1960). If ρ has a random utility representation, then it satisfies Regularity. Moreover, Regularity is sufficient if $|X| \leq 3$.

Comments:

- Unfortunately, when |X| > 3, Regularity alone is not enough
- More axioms are needed, but they are hard to interpret
- More elegant axioms if X consists of lotteries (Gul and Pesendorfer, 2006) → later in this lecture

Identification of Utilities/Preferences

- Since utility is ordinal, we cannot identify its distribution—at best we can hope to pin down the distribution of ordinal preferences
- But it turns out we can't even do that

Example (Fishburn, 1998). Suppose that $X = \{x, y, z, w\}$. The following two distributions over preferences lead to the same ρ .

Note that these two distributions have disjoint supports!

Identification of "Marginal" Preferences

Theorem (Falmagne, 1978). If \mathbb{P}_1 and \mathbb{P}_2 are random preference representations of the same ρ , then for any $x \in X$

$$\mathbb{P}_1(x \text{ is } k\text{-th best in } X) = \mathbb{P}_2(x \text{ is } k\text{-th best in } X)$$

for all k

Identification in DC

Theorem: If $(v_1, \tilde{\epsilon}_1)$ is a DC representation of ρ , then for any $v_2 \in \mathbb{R}^X$ there exists $\tilde{\epsilon}_2$ such that $(v_2, \tilde{\epsilon}_2)$ is another representation of ρ

Comments:

- So can't identify v (even ordinally) unless make assumptions on unobservables
- If assume a given distribution of $\tilde{\epsilon}$, then can pin down more
- Also, stronger identification results are obtained in the presence of "observable attributes" (see, e.g. Matzkin, 1992)

Random Utility/Discrete Choice

Special Cases

i.i.d. DC

- It is often assumed that $\tilde{\epsilon}_X$ are i.i.d. across $x \in X$
 - logit
 - probit

- In i.i.d. DC the binary choice probabilities are given by $\rho(x,\{x,y\}) = F(v(x)-v(y))$ where F is the cdf of $\tilde{\epsilon}_x \tilde{\epsilon}_y$
 - such models are called Fechnerian

The Luce Model

• In the logit model the choice probabilities are given by the closed-form

$$\rho(x,A) = \frac{e^{v(x)}}{\sum_{y \in A} e^{v(y)}}$$

• This is known as the Luce representation

Axiom (Luce's IIA). For all $x, y \in A \cap B$ whenever the probabilities are positive

$$\frac{\rho(x,A)}{\rho(y,A)} = \frac{\rho(x,B)}{\rho(y,B)}$$

Theorem (Luce, 1959; McFadden, 1973): The following are equivalent

- (i) ρ satisfies Positivity and Luce's IIA
- (ii) ρ has a Luce representation
- (iii) ρ has a logit representation

Evidence

- Luce's IIA axiom is routinely violated
 - Blue bus/red bus problem (Debreu, 1960)
 - Actually, blue bus/red bus is a problem for all i.i.d. DC models
- Fix: relax the i.i.d. assumption
 - nested logit
 - GEV (generalized extreme value)
 - multivariate probit
 - mixed logit
- Another axiom that i.i.d. DC satisfies: Strong Stochastic Transitivity
 - often violated in experiments (Rieskamp, Busemeyer, and Mellers, 2006)

Generalizations of Luce

- Elimination by aspects (Tversky, 1972)
- Random Attention (Manzini and Mariotti, 2014)
- Attribute rule (Gul, Natenzon, and Pesendorfer, 2014)
- Additive Perturbed Utility (Fudenberg, lijima, and Strzalecki, 2015)
- Perception adjusted Luce (Echenique, Saito, and Tserenjigmid, 2013)

Random Utility/Discrete Choice

Random Expected Utility (REU)

Random Expected Utility (REU)

- Gul and Pesendorfer (2006) study choice between lotteries
- Specify the RU model to $X = \Delta(Z)$, where Z is a finite set of prizes

Definition: ρ has a REU representation if has a RU representation where with probability one \tilde{U} has vNM form:

$$\tilde{U}(x) := \sum_{z \in Z} \tilde{u}(z) x(z)$$

for some $\tilde{u} \in \mathbb{R}^Z$

REU—Axioms

Notation: Ext(A) is the set of extreme points of A

Axiom (Extremeness). $\rho(Ext(A), A) = 1$

Idea: The indifference curves are linear, so maximized at an extreme point of the choice set

REU—Axioms

Axiom (Linearity). For any $\alpha \in (0,1)$ and $x \in A$ and $y \in X$

$$\rho(x,A) = \rho(\alpha x + (1-\alpha)y, \{\alpha x' + (1-\alpha)y : x' \in A\})$$

Idea: Just like the vNM Independence axiom

REU—Gul and Pesendorfer (2006) Results

Theorem^{\dagger} (Characterization). ρ has a REU representation if and only if it satisfies

- Regularity
- Extremeness
- Linearity
- Continuity[†]

Theorem † (Uniqueness). In a REU representation the distribution over ordinal preferences is essentially identified.

REU—Comments

- Simple axioms
- Better identification results
- Stronger assumptions: Allais (1953) paradox is a rejection of Linearity
 - We'll see soon what happens if vNM is relaxed
- Gul and Pesendorfer (2006) also developed a version with tie-breakers, need to weaken continuity
- Model used as a building block for a lot to come
- This is only one possible specification of risk preferences . . .

Measuring Risk Preferences

- Let U_{θ} be a family of vNM forms with CARA or CRRA indexes
- Higher θ is more risk-aversion
 - allow for risk-aversion and risk-loving

Model 1 (a la REU): There is a probability distribution $\mathbb P$ over error shocks $\tilde \epsilon$ to the preference parameter θ

$$\rho_{\theta}^{REU}(x,A) = \mathbb{P}\{U_{\theta+\tilde{\epsilon}}(x) \ge U_{\theta+\tilde{\epsilon}}(y) \text{ for all } y \in A\}$$

Model 2 (a la DC): There is a probability distribution $\mathbb P$ over error shocks $\tilde \epsilon$ to the expected value

$$\rho_{\theta}^{DC}(x,A) = \mathbb{P}\{U_{\theta}(x) + \tilde{\epsilon}(x) \ge U_{\theta}(y) + \tilde{\epsilon}(y) \text{ for all } y \in A\}$$

Comment: In Model 2, preferences over lotteries are not vNM!

Measuring Risk Preferences

Notation:

- FOSD—First Order Stochastic Dominance
- SOSD—Second Order Stochastic Dominance

Observation 1: Model 1 has intuitive properties:

- If x FOSD y, then $\rho_{\theta}^{REU}(x, \{x, y\}) = 1$
- If x SOSD y, then $\rho_{\theta}^{REU}(x,\{x,y\})$ is increasing in θ

Observation 2: Model 2 not so much:

- If x FOSD y, then $\rho_{\theta}^{DC}(x, \{x, y\}) < 1$
- If x SOSD y, then $\rho_{\theta}^{DC}(x,\{x,y\})$ is not monotone in θ

Measuring Risk Preferences

Theorem: (Wilcox, 2008, 2011; Apesteguia and Ballester, 2017) There exists $\bar{\theta}$ such that $\rho_{\theta}^{DC}(x, \{x, y\})$ is strictly decreasing for $\theta > \bar{\theta}$.

Comments:

- This biases parameter estimates
- Subjects may well violate FOSD and SOSD. Better to model these violations explicitly rather than as artifacts of the error specification?
- A similar lack of monotonicity for discounted utility time-preferences
- Apesteguia, Ballester, and Lu (2017) study a general notion of single-crossing for random utility models

Recap

- \bullet RU and DC are equivalent as far as ρ is concerned
- But have different parameters:
 - distribution over preferences
 - deterministic v and random $ilde{\epsilon}$
- Suggestive of different parametric specifications

Introduction

Random Utility/Discrete Choice
Properties of RU
Special Cases
Random Expected Utility (REU)

Learning

Attention
Optimal Attention
Random Attention

Deliberate Randomization

Learning

- In RU choice is stochastic because preferences are fluctuating
- Another possible reason: choices are driven by agent's noisy signals
- This is a special case of RU
 - with "preferences" equal to "expected utility conditional on the signal"

Question: Can any RU ρ be represented this way?

Answer: Depends if the model is rich enough to permit a separation of tastes and beliefs

$Learning-probabilistic\ model$

- ullet Fix a probability space $(\Omega,\mathcal{F},\mathbb{P})$ and a random utility $ilde{U}:\Omega o\mathbb{R}^X$
- ullet Let ${\cal G}$ represent the information the agent is learning
- ullet Conditional on the signal the agent maximizes $\mathbb{E}[\tilde{U}(x)|\mathcal{G}]$

Comments:

- Choices are random because they depend on the signal realization
 - No information $(\mathcal{G} \text{ trivial}) \Rightarrow$ choices are deterministic
 - Full information ($\mathcal{G} = \mathcal{F}$) \Rightarrow this is just a RU model
 - In general, the finer the \mathcal{G} , the more random the choices, keeping $(\Omega, \mathcal{F}, \mathbb{P})$ constant
- ρ has a (probabilistic) learning representation iff it has a RU representation
- Strictly special case of RU in a dynamic setting (Frick, lijima, and Strzalecki, 2017) → Lecture 2

Learning—statistical model

 $S \cdots \cdots \cdots \cdots \cdots \cdots$ set of unknown states

$$p \in \Delta(S) \cdot \cdots$$
 prior belief

 $v: \mathcal{S} \to \mathbb{R}^{\mathcal{X}}$ state-dependent utility function

$$\mathbb{E}_p v(x)$$
 (ex ante) expected utility of x

- Signal structure: in each state s there is a distribution over signals
- For each signal realization, posterior beliefs are given by the Bayes rule
- ullet The prior p and the signal structure \Rightarrow distribution μ over posteriors
 - Often convenient to work with μ directly
 - For each posterior $ilde{q}$ the agent maximizes $\max_{x \in A} \mathbb{E}_{ ilde{q}} v(x)$

Learning—statistical model

For each s, the model generates a choice distribution $\rho^s(x, A)$

– In some lab experiments the analyst can control/observe s

An average of ρ^s according to the prior p generates $\rho(x,A)$

Comments:

- ullet The class of ho generated this way equals the RU class
- For each s conditional choices ρ^s also belong to the RU class
 - Consistency conditions of ρ^s across s?
- The (statistical) learning model becomes a strictly special case of RU when specified to Anscombe–Aumann acts (Lu, 2016)

Learning—the Lu (2016) model

- Random Utility model of choice between Anscombe–Aumann acts
- This means $X = \Delta(Z)^S$
 - In each state the agent gets a lottery over prizes in a finite set Z
- Random Utility $\tilde{U}(x) = \sum_{s \in S} v(x(s))\tilde{q}(s)$, where
 - v is a (deterministic) vNM form over $\Delta(Z)$
 - $-\tilde{q}$ is the (random) posterior over S
- ullet The distribution over $ilde{q}$ is given by μ

Learning—the Lu (2016) model

Theorem^{\dagger} (Characterization). ρ has a (statistical) learning representation iff it satisfies the Gul and Pesendorfer (2006) axioms *plus* S-independence^{\dagger}, Non-degeneracy^{\dagger}, and C-determinisim^{\dagger}.

- Ties dealt with by changing the primitive (3rd kind)

Theorem^{\ddagger} (Uniqueness). The prior p is unique, the information structure μ is unique and the utility function v is cardinally-unique.

- In fact, the parameters can be identified on binary menus
- Test functions: calibration through constant acts

Theorem[‡] (Comparative Statics). Fix v and p and consider two information structures μ and μ' . ρ is "more random" than ρ' if and only if μ is Blackwell-more informative than μ' .

More about learning

- Models of learning so far:
 - the probabilistic model (information is \mathcal{G})
 - the statistical model (information is μ)
 - the Lu (2016) model
- In all of them information is independent of the menu
- But it could reasonably depend on the menu:
 - if new items provide more information
 - or if there is limited attention \rightarrow next section

Example

	$ ilde{U}_{\omega}(steak\ tartare)$	$ ilde{U}_{\omega}(\mathit{chicken})$	$ ilde{U}_{\omega}(\mathit{fish})$
$\omega = {\it good \ chef}$	10	7	3
$\omega = \mathit{bad} \ \mathit{chef}$	0	5	0

- fish provides an informative signal about the quality of the chef
 - $\mathcal{G}^{\{s,c,f\}}$ gives full information:
 - if the whole restaurant smells like fish ightarrow chef is bad
 - if the whole restaurant doesn't smell like fish ightarrow chef is good

$$-\rho(s, \{s, c, f\}) = \rho(c, \{s, c, f\}) = \frac{1}{2} \text{ and } \rho(f, \{s, c, f\}) = 0$$

- in absence of f get no signal
 - $\mathcal{G}^{\{s,c\}}$ gives no information
 - $\rho(s, \{s, c\}) = 0$, $\rho(c, \{s, c\}) = 1$ (if prior uniform)
- violation of the Regularity axiom!
 - menu-dependent information is like menu-dependent (expected) utility

Bayesian Probit

- Natenzon (2016) develops a Bayesian Probit model of this, where the agent observes noisy signal of the utility of each item in the menu
 - signals are jointly normal and correlated
 - model explains decoy effect, compromise effect, and similarity effects
 - correlation \Rightarrow new items shed light on relative utilities of existing items
- Note: adding an item gives Blackwell-more information about the state, the state is uncorrelated with the menu

Example (Luce and Raiffa, 1957)

	$ ilde{U}_{\omega}(steak\ tartare)$	$ ilde{U}_{\omega}(\mathit{chicken})$	$ ilde{U}_{\omega}(extit{frog legs})$
$\omega = good \ chef$	10	7	3
$\omega = \mathit{bad} \ \mathit{chef}$	0	5	0

- frog legs provides an informative signal about the quality of the chef
 - only good chefs will attempt to make frog legs
 - so $\{s, c, f\}$ signals $\omega = good \ chef$
 - so $\{s,c\}$ signals $\omega=\mathit{bad}$ chef
- this implies

$$-\rho(s,\{s,c,f\}) = 1, \ \rho(c,\{s,c,f\}) = \rho(f,\{s,c,f\}) = 0$$

-\rho(s,\{s,c\}) = 0, \rho(c,\{s,c\}) = 1 (if prior uniform)

- so here the menu is directly correlated with the state
 - unlike in the fish example where there is no correlation
 - Kamenica (2008)-model where consumers make inferences from menus (model explains choice overload and compromise effect)

Learning—recap

- Information independent of menu
 - Special case of RU (or equivalent to RU depending on the formulation)
 - More informative signals ⇒ more randomness in choice
- Information depends on the menu
 - More general than RU (can violate Regularity)
 - Two flavors of the model:
 - more items ⇒ more information (Natenzon, 2016)
 - correlation between menu and state (Kamenica, 2008)
 - General analysis? Axioms?

Introduction

Random Utility/Discrete Choice
Properties of RU
Special Cases
Random Expected Utility (REU)

Learning

Attention
Optimal Attention
Random Attention

Deliberate Randomization

- Imagine now that the signal structure is chosen by the agent
 - instead of being fixed
- The agent may want to choose to focus on some aspect
 - depending on the menu
- One way to model this margin of choice is to let the agent choose attention optimally:
 - Costly Information Acquisition (Raiffa and Schlaifer, 1961)
 - Rational Inattention (Sims, 2003)
 - Costly Contemplation (Ergin, 2003; Ergin and Sarver, 2010)

Value of Information

For each information structure μ its value to the agent is

$$V(\mu) = \sum_{\tilde{q} \in \Delta(S)} [\max_{x \in A} \mathbb{E}_{\tilde{q}} v(x)] \mu(q)$$

Comment: Blackwell's theorem says the value of information is always positive: more information is better

ullet For every menu A, the agent chooses μ to maximize:

$$\max_{\mu} \ V(\mu) - C(\mu)$$

- where $C(\mu)$ is the cost of choosing the signal structure μ
 - could be a physical cost
 - or mental/cognitive
- this is another case where information depends on the menu A
 - this time endogenously

Special cases of the cost function:

- Mutual information: $C(\mu) = \sum_{q \in \Delta(S)} \phi^{KL}(q) \mu(q)$ where $\phi^{KL}(q)$ is the relative entropy of q with respect to the prior
- Separable cost functions $C(\mu) = \sum_{q \in \Delta(S)} \phi(q) \mu(q)$ for some general ϕ
- Neighborhood-based cost functions (Hébert and Woodford, 2017)
- General cost functions: C is just Blackwell-monotone and convex

Questions:

- Is it harder to distinguish "nearby" states than "far away" states?
 - Caplin and Dean (2013), Morris and Yang (2016), Hébert and Woodford (2017)

- Matejka and McKay (2014) analyze the mutual information cost function used in Sims (2003)
 - they show the optimal solution leads to weighted-Luce choice probabilities $\rho^{\rm s}$
 - can be characterized by two Luce IIA-like axioms on ρ^s
 - demonstrate a violation of Regularity

Example (Matejka and McKay, 2014): $\rho(x, \{x, y, z\}) > \rho(x, \{x, y\})$ because adding z adds incentive to learn about the state

	<i>s</i> ₁	<i>s</i> ₂
X	0	1
У	0.5	0.5
Z	k	-k

- Caplin and Dean (2015) characterize general cost C
 - assume choice is between Savage acts
 - assume the analyst knows the agent's utility function and the prior
 - can be characterized by two acyclicity-like axioms on ρ^s
 - partial uniqueness: bounds on the cost function
- Lin (2017) also characterizes general cost C
 - building on Lu (2016) and De Oliveira, Denti, Mihm, and Ozbek (2016)
 - the utility and prior are recovered from the data
 - can be characterized by a relaxation of REU axioms plus the De Oliveira, Denti, Mihm, and Ozbek (2016) axioms
 - essential uniqueness of parameters: minimal cost function unique

Introduction

Random Utility/Discrete Choice
Properties of RU
Special Cases
Random Expected Utility (REU

Learning

Attention

Optimal Attention

Random Attention

Deliberate Randomization

Random Attention

- In the Optimal Attention model, paying attention meant optimally choosing an informative signal about its utility (at a cost)
- In the Random Attention model, attention is exogenous (and random)
 - $-\tilde{\Gamma}(A)\subseteq A$ is a random Consideration Set
 - $v \in \mathbb{R}^X$ is a deterministic utility function
 - for each possible realization $\tilde{\Gamma}(A)$ the agent maximizes ν on $\tilde{\Gamma}(A)$
 - so for each menu we get a probability distribution over choices

Random Attention

- Manzini and Mariotti (2014)
 - each $x \in A$ belongs to $\tilde{\Gamma}(A)$ with prob $\gamma(x)$, independently over x
 - if $\tilde{\Gamma}(A) = \emptyset$, the agent chooses a default option
 - axiomatic characterization, uniqueness result
 - turns out this is a special case of RU
- Brady and Rehbeck (2016)
 - allow for correlation
 - axiomatic characterization, uniqueness result
 - now can violate Regularity
- Cattaneo and Masatlioglu (2017)
 - an even more general model of attention filters, following Masatlioglu, Nakajima, and Ozbay (2011)
 - axiomatic characterization, uniqueness result

Introduction

Random Utility/Discrete Choice
Properties of RU
Special Cases
Random Expected Utility (REU)

Learning

Attention
Optimal Attention
Random Attention

Deliberate Randomization

Deliberate Randomization

Idea: The agent directly chooses a probability distribution on actions $\rho \in \Delta(A)$ to maximize some non-linear value function $V(\rho)$

Examples:

- Allais-style lottery preferences
- Implementation Costs
- Hedging against ambiguity
- Regret minimization

Allais-style lottery preferences

- Agent is choosing between lotteries, $X = \Delta(Z)$
- She has a deterministic nonlinear lottery preference \succsim^ℓ over $\Delta(Z)$
- If \succeq^ℓ is quasiconcave, then the agent likes to toss a "mental coin"

- Example: $x_1 \sim^{\ell} x_2$
- Strictly prefer y
- To implement this, choice from $A = \{x_1, x_2\}$ is $\rho(x_1, A) = \rho(x_2, A) = \frac{1}{2}$
- what if $B = \{x_1, x_2, y\}$? (Is the "mental coin" better or worse than actual coin?)

Allais-style lottery preferences

- Machina (1985): derives some necessary axioms that follow from maximizing any general \succsim^ℓ
- Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2017):
 - characterize maximization of a general \succsim^ℓ Rational Mixing axiom
 - characterize maximization of a specific \succsim^ℓ that belongs to the Cautious Expected Utility class \longrightarrow Rational Mixing + additional axioms
- Other classes of risk preferences \succeq^{ℓ} ?

Implementation Costs

Idea: The agent implements her choices with an error (trembling hands)

- can reduce error at a cost that depends on the tremble probabilities
- When presented with a menu A choose $\rho \in \Delta(A)$ to maximize

$$V(\rho) = \sum_{x} v(x)\rho(x) - C(\rho)$$

- $v \in \mathbb{R}^X$ is a deterministic utility function
- C is the cost of implementing ρ
 - zero for the uniform distribution
 - higher as ρ focuses on a particular outcome
- This is called the Perturbed Utility model, used in game theory

Additive Perturbed Utility

Typically used specification: Additive Perturbed Utility

$$C(\rho) = \eta \sum_{x \in A} c(\rho(x))$$

- log cost: $c(t) = -\log(t)$ (Harsanyi, 1973)
- quadratic cost: $c(t) = t^2$ (Rosenthal, 1989)
- entropy cost: $c(t) = t \log t$ (Fudenberg and Levine, 1995),

General C function used in

 Mattsson and Weibull (2002), Hofbauer and Sandholm (2002), van Damme and Weibull (2002)

The Triple Equivalence

Theorem (Anderson, de Palma, and Thisse, 1992): The following are equivalent

- (i) ρ has a Luce representation
- (ii) ρ has a logit representation
- (iii) ρ has an entropy APU representation

Comments:

 Another application to game theory: Quantal Response Equilibrium (McKelvey and Palfrey, 1995, 1998) uses logit

Additive Perturbed Utility

Theorem † (Fudenberg, lijima, and Strzalecki, 2015): The following are equivalent under Positivity:

- (i) ρ has an APU representation
- (ii) ρ satisfies Acyclicity[†]
- (iii) ρ satisfies Ordinal IIA[†]

Comments:

- Weaker forms of Acyclicity if c is allowed to depend on A or on z (Clark, 1990; Fudenberg, Ijjima, and Strzalecki, 2014)
- ullet The model explains any ho if c is allowed to depend on both A and z
- Hedging against ambiguity interpretation (Fudenberg, lijima, and Strzalecki, 2015)

Evidence

- In experiments (Agranov and Ortoleva, 2017; Dwenger, Kubler, and Weizsacker, 2013) subjects are willing to pay money for an "objective" coin toss
- So "objective" coin better than "mental" coin
- No room in above models for this distinction...

Summary

- Models so far
 - Random Utility
 - Learning
 - Attention
 - Deliberate Randomization

• Lecture 2 uses these as building blocks to study dynamic choices

Lecture 2 on Stochastic Choice

Tomasz Strzalecki

Hotelling Lectures in Economic Theory Econometric Society European Meeting, Lisbon, August 25, 2017

Plan

Purpose: Overview where the field is and where it seems to be going

Lecture 1: Static Choice

- Random Utility (and Discrete Choice)
- Learning, Attention, Deliberate Randomization

Lecture 2: Dynamic Choice

- Dynamic Random Utility
- Dynamic Discrete Choice
- Drift-Diffusion Models

Basic Model (with two periods)

- ullet In period t=0 have ho_0 with a RU representation with utility $ilde{U}_0(x_0)$
- ullet In period t=1 have ho_1 with a RU representation with utility $ilde{U}_1(x_1)$
- ullet $ilde{U}_0$ and $ilde{U}_1$ are possibly correlated
 - preferences are somewhat stable over time
 - "persistent types" in dynamic games/mechanism design/taxation

Question: What does this assume about behavior?

Answer: Selection on Unobservables/History Dependence

History Dependence

If political preferences persistent over time, expect history dependence:

$$\rho(R_{2020}|R_{2016}) > \rho(R_{2020}|D_{2016})$$

History independence only if preferences completely independent over time

Types of History Dependence (Heckman, 1981)

- 1. **Choice Dependence**: A consequence of the informational asymmetry between the analyst and the agent
 - Selection on unobservables
 - Utility is serially correlated (past choices partially reveal it)
- Consumption Dependence: Past consumption changes the state of the agent
 - Habit formation or preference for variety (preferences change)
 - Experimentation (beliefs change)

Questions:

- How to put this into the model?
- What happens if we ignore this?
- How to distinguish between the two?

Dynamic Decisions

Decision Trees: $x_t = (z_t, A_{t+1})$

- Choice today leads to an immediate payoff and a menu for tomorrow

Examples:

- fertility and schooling choices (Todd and Wolpin, 2006)
- engine replacement (Rust, 1987)
- patent renewal(Pakes, 1986)
- occupational choices (Miller, 1984)

Primitive

- The analyst observes the conditional choice probabilities $ho_t(\cdot|h_{t-1})$
 - at each node of a decision tree
- Dynamic Discrete Choice literature
 - typically for a fixed tree
- Decision Theory literature
 - typically across decision trees

Full model (with two periods)

In addition, it is often assumed that:

• In period 0 the agent's utility is

$$ilde{U}_0(z_0,A_1) = ilde{u}_0(z_0) + \delta \mathbb{E}_0 \left[\max_{z_1 \in A_1} ilde{u}_1(z_1)
ight]$$

- \tilde{u}_0 is private information in t=0
- $ilde{u}_1$ is private information in t=1 (so may be unknown in t=0)

Question: What do these additional assumptions mean?

Introduction

 $Dynamic\ Random\ Utility$

Dynamic Discrete Choice

Decision Time.

Decision Trees

Time: t = 0, 1

Per-period outcomes: Z

Decision Nodes: A_t defined recursively:

- period 1: menu A_1 is a subset of $X_1 := Z$
- period 0: menu A_0 is a subset of $X_0 := Z \times A_1$

pairs $x_0 = (z_0, A_1)$ of current outcome and continuation menu

Comment: Everything extends to finite horizon by backward induction; infinite horizon—need more technical conditions (a construction similar to universal type spaces)

Conditional Choice Probabilities

 ρ is a sequence of **history-dependent** choice distributions:

period 0: for each menu A_0 , observe choice distribution

$$ho_0(\cdot,A_0)\in\Delta(A_0)$$

period 1: for each menu A_1 and history h^0 that leads to menu A_1 , observe choice distribution conditional on h^0

$$\rho_1(\cdot, A_1|h^0) \in \Delta(A_1)$$

 $\mathcal{H}_0 \cdot \dots \cdot \dots \cdot$ period-0 histories

$$\mathcal{H}_0 := \{ h^0 = (A_0, x_0) : \rho_0(x_0, A_0) > 0 \}$$

 $\mathcal{H}_0(A_1) \cdot \cdot \cdot \cdot$ is set of histories that lead to menu A_1

$$\mathcal{H}_0(A_1) := \{h^0 = (A_0, x_0) \in \mathcal{H}_0 : x_0 = (z_0, A_1) \text{ for some } z_0 \in Z\}$$

Dynamic Random Utility

Definition: A DRU representation of ρ consists of

- a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- ullet a stochastic process of utilities $ilde{U}_t:\Omega o\mathbb{R}^{X_t}$

such that for all $x_0 \in A_0$

$$\rho_0(x_0, A_0) = \mathbb{P}\left[C(x_0, A_0)\right]$$

and for all $x_1 \in A_1$ and histories $h^0 \in \mathcal{H}_0(A_1)$,

$$\rho_1(x_1,A_1|h^0)=\mathbb{P}\left[C(x_1,A_1)|C(h^0)\right]$$

where $C(x_t,A_t):=\{\omega\in\Omega: \tilde{U}_{t,\omega}(x_t)\geq \tilde{U}_{t,\omega}(y_t) \text{ for all } y_t\in A_t\}$

• for technical reasons allow for ties and use tie-breaking

History Independence

General idea:

- Agent's choice history $h^0 = (A_0, x_0)$ reveals something about his period-0 private information, so expect $\rho_1(\cdot|h^0)$ to depend on h^0
- But dependence cannot be arbitrary: some histories are *equivalent* as far as the private information they reveal
- The axioms of Frick, Iijima, and Strzalecki (2017)
 - Identify two types of equivalence classes of histories
 - Impose history independence of ρ_1 within these classes

Contraction History Independence

Definition: History (A_0, x_0) is contraction equivalent to (B_0, x_0) if

(i)
$$A_0 \subseteq B_0$$

(ii)
$$\rho_0(x_0, A_0) = \rho_0(x_0, B_0)$$

Axiom (Contraction History Independence): If (A_0, x_0) is contraction equivalent to (B_0, x_0) , then

$$\rho_1(\cdot;\cdot|A_0,x_0) = \rho_1(\cdot;\cdot|B_0,x_0)$$

Example

- 2 convenience stores (A & B)
- Stable set of weekly customers with identical preferences
- Week 0 market shares:

milk type	share at A
whole	40%
2%	60%

milk type	share at B
whole	40%
2%	35%
1%	25%
1%	25%

- Alice and Bob buy whole milk in week 0
- Claim: If in week 1 all types of milk available at both stores, expect Alice and Bob's choice probabilities to be the same

Example

Why?

- We have same information about Alice and Bob:
- Possible week-0 preferences:
 - Alice: $w \succ 2 \succ 1$ or $w \succ 1 \succ 2$ or $1 \succ w \succ 2$
 - **Bob:** $w \succ 2 \succ 1$ or $w \succ 1 \succ 2$
- So in principle learn more about Bob
- But condition (ii) of the axiom says

$$\rho_0(w|\{w,1,2\}) = \rho_0(w|\{w,2\}) = 0.4$$

so no customers have ranking 1 > w > 2!

Adding Lotteries

Add lotteries: $X_t = \Delta(Z \times A_{t+1})$, assume each utility function is vNM

- Helps formulate the second kind of history-independence
- Makes it easy to build on the REU axiomatization
- Helps overcome the limited observability problem
 - not all menus observed after a given history; how to impose axioms?
- Helps distinguish choice-dependence from consumption-dependence

$$h^0 = (A_0, x_0)$$
 vs $h^0 = (A_0, x_0, z_0)$

Dynamic Random Expected Utility

First, assume away consumption dependence and allow only for choice dependence

$$\rho_1(\cdot|(A_0,x_0,z_0))=\rho_1(\cdot|(A_0,x_0,z_0'))$$

Theorem[‡] (Frick, lijima, and Strzalecki, 2017): ρ has a DREU representation if and only it satisfies

- REU axioms in each period
- Contraction History Independence
- Linear History Independence[†]
- History-Continuity[†]

How to incorporate Dynamic Optimality?

ullet In the definition above, no structure on the family $(ilde{U}_t)$

Definition: ρ has an *Evolving Utility* representation if it has a DREU representation where the process (\tilde{U}_t) satisfies the Bellman equation

$$ilde{U}_t(z_t, A_{t+1}) = ilde{u}_t(z_t) + \delta \mathbb{E} \left[\max_{x_{t+1} \in A_{t+1}} ilde{U}_{t+1}(x_{t+1}) | \mathcal{G}_t
ight]$$

for $\delta > 0$ and a \mathcal{G}_t -adapted process of vNM utilities $\tilde{u}_t : \Omega \to \mathbb{R}^Z$

Question: What are the additional assumptions?

Answer:

- Option value calculation (Preference for Flexibility)
- Rational Expectations (Sophistication)

Simplifying assumption: No selection

Simplifying Assumption:

- 1. The payoff in t = 0 is fixed
- 2. There is no private information in t = 0

What this means:

- Choices in t = 0:
 - are deterministic
 - can be represented by a preference $A_1 \succsim_0 B_1$
- Choices in t = 1:
 - are random, represented by ρ_1
 - are history-independent
 - t=0 choices do not reveal any information

Preference for Flexibility

Definition: \succsim_0 has an *option-value representation* if there exists a random $u_1:\Omega\to\mathbb{R}^Z$ such that

$$U_0(A_1) = \mathbb{E}_0 \left[\max_{z_1 \in A_1} \tilde{u}_1(z_1)
ight]$$

Axiom (Preference for Flexibility): If $A \supseteq B$, then $A \succsim_0 B$

Theorem^{\dagger} (Kreps, 1979): \succsim_0 has an option-value representation iff it satisfies Completeness, Transitivity, Preference for Flexibility, and Modularity^{\dagger}

Comments:

- In econometrics U_0 is called the *consumer surplus*
- To improve the uniqueness properties, Dekel, Lipman, and Rustichini (2001); Dekel, Lipman, Rustichini, and Sarver (2007) specialize to choice between lotteries, $X_1 = \Delta(Z_1)$

Rational Expectations

Specify to $X_1 = \Delta(Z_1)$ and suppose that

- ullet \succsim_0 has an option-value representation $(\Omega, \mathcal{F}, \mathbb{P}_0, \mathit{u}_1)$
- ρ_1 has a REU representation with $(\Omega, \mathcal{F}, \mathbb{P}_1, u_1)$

Definition: (\succsim_0, ρ_1) has Rational Expectations iff $\mathbb{P}_0 = \mathbb{P}_1$

Axiom (Sophistication)[†]: For any is a menu without ties[†] $A \cup \{x\}$

$$A \cup \{x\} \succ_0 A \iff \rho_1(x, A \cup \{x\}) > 0$$

Theorem[‡] (Ahn and Sarver, 2013): (\succsim_0, ρ_1) has Rational Expectations iff it satisfies Sophistication.

Comment: Relaxed Sophistication (\Rightarrow or \Leftarrow) pins down either an unforeseen contingencies model or a pure freedom of choice model

Identification of Beliefs

Theorem[‡] (Ahn and Sarver, 2013): If (\succeq_0, ρ_1) has Rational Expectations, then the distribution over cardinal utilities u_1 is uniquely identified.

Comments:

- Just looking at ρ_1 only identifies the distribution over ordinal risk preferences (Gul and Pesendorfer, 2006)
- \bullet Just looking at \succsim_0 identifies even less (Dekel, Lipman, and Rustichini, 2001)
- But jointly looking at the evaluation of a menu and the choice from the menu helps with the identification

Putting Selection Back In

- In general, want to relax the simplifying assumption
 - in reality there are intermediate payoffs
 - and informational asymmetry in each period
 - choice is stochastic in each period
 - and there is history dependence
- To characterize the evolving utility model need to add Preference for Flexibility and Sophistication
 - but those are expressed in terms of \succeq_0
 - when the simplifying assumption is violated we only have access to ho_0
 - Frick, lijima, and Strzalecki (2017) find a way to extract \succeq_0 from ρ_0

Passive and Active Learning

- Evolving Utility: randomness in choice comes from changing tastes
- Passive Learning: randomness in choice comes from random signals
 - tastes are time-invariant, but unknown $\tilde{u}_t = \mathbb{E}[\tilde{u}|\mathcal{G}_t]$ for some time-invariant vNM utility $\tilde{u}: \Omega \to \mathbb{R}^Z$
- To characterize the passive learning model, need to add a "martingale" axiom
- The paper also relaxes consumption-independence and characterizes habit-formation and active learning (experimentation) models
 - parametric models of active learning used by, e.g., Erdem and Keane (1996), Crawford and Shum (2005)
- Uniqueness of the utility process, discount factor, and information

Related Work

- The Bayesian probit model Natenzon (2016) can be viewed as a model of a sequence of static choice problems where choice probabilities are time dependent
- Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2017) also study a sequence of static choice problems using a Luce-like model
- Gabaix and Laibson (2017) use a model of gradual learning to microfound "as-if" discounting and present bias
- ullet Lu and Saito (2016) study t=0 choices between consumption stream
- Krishna and Sadowski (2012, 2016) characterize a class of models similar to Evolving Utility by looking at menu-preferences

Preference for making choices late

 Positive value of information: desire to delay the choice as late as possible to capitalize on incoming information (unless there is a cost)

Theorem[†]: If ρ has an Evolving Utility representation, then absent ties[†] $\rho_0(A_1^{\text{late}},\{A_1^{\text{early}},A_1^{\text{late}}\})=1$

Introduction

Dynamic Random Utility

 $Dynamic\ Discrete\ Choice$

Decision Times

$DDC \ model$

DDC: There is a process of shocks $\tilde{\epsilon}_t : \Omega \to \mathbb{R}^{X_t}$ s.t.

$$V_t(z_t, A_{t+1}) = \left(v_t(z_t) + \delta \mathbb{E}\left[\max_{x_{t+1} \in A_{t+1}} V_{t+1}(x_{t+1}) | \mathcal{G}_t\right]\right) + \tilde{\epsilon}_t^{(z_t, A_{t+1})}$$

where

- v₊ are deterministic
 - \mathcal{G}_t is generated by $\widetilde{\epsilon}_t$

Special cases of DDC

- $\tilde{\epsilon}_t^{(z_t,A_{t+1})}$ and $\tilde{\epsilon}_{\tau}^{(y_t,B_{t+1})}$ are i.i.d.
 - shocks to actions
 - I will also refer to it as i.i.d. DDC
 - $-\rho$ is history independent

- $\tilde{\epsilon}_t^{(z_t, A_{t+1})} = \tilde{\epsilon}_t^{(z_t, B_{t+1})} =: \tilde{\epsilon}_t^{z_t}$
 - shocks to payoffs
 - allows for serial correlation of $ilde{\epsilon}_t$
 - ho is a special case of evolving utility

Dynamic logit

- ullet A special case of i.i.d. DDC where $\tilde{\epsilon}_t$ are distributed extreme value
- Very tractable due to the "log-sum" expression for "consumer surplus"

$$V_t(A_{t+1}) = \log \left(\sum_{x_{t+1} \in A_{t+1}} e^{v_{t+1}(x_{t+1})} \right)$$

- (This formula is also the reason why nested logit is so tractable)
- Dynamic logit is a workhorse for estimation
 - e.g., Miller (1984), Rust (1989), Hendel and Nevo (2006), Gowrisankaran and Rysman (2012)

Axiomatization (Fudenberg and Strzalecki, 2015)

Axiom (Recursivity):

$$\rho_{t}((z_{t}, A_{t+1}), \{(z_{t}, A_{t+1}), (z_{t}, B_{t+1})\}) \geq \rho_{t}((z_{t}, B_{t+1}), \{(z_{t}, A_{t+1}), (z_{t}, B_{t+1})\})$$

$$\updownarrow$$

$$\rho_{t+1}(A_{t+1}, A_{t+1} \cup B_{t+1}) \geq \rho_{t+1}(B_{t+1}, A_{t+1} \cup B_{t+1})$$

Axiom (Weak Preference for Flexibility): If $A_{t+1} \supseteq B_{t+1}$, then

$$\rho_t((z_t, A_{t+1}), \{(z_t, A_{t+1}), (z_t, B_{t+1})\}) \ge \rho_t((z_t, B_{t+1}), \{(z_t, A_{t+1}), (z_t, B_{t+1})\})$$

Comments:

- Recursivity leverages the "log-sum" expression
- \bullet Preference for flexibility is weak because support of $\tilde{\epsilon}_t$ is unbounded
- ullet Also, identification results, including uniqueness of δ

Models that build on Dynamic Logit

- View $\tilde{\epsilon}_t$ as errors, not utility shocks
 - Fudenberg and Strzalecki (2015): errors lead to "choice aversion"
 - Ke (2016): a dynamic model of mistakes
- Dynamic attribute rule
 - Gul, Natenzon, and Pesendorfer (2014)

Questions about DDC

- Characterization of the general i.i.d. DDC model? General DDC?
 - In general, no formula for the "consumer surplus", but the theorem of Williams–Daly–Zachary says that the choice probabilities are the derivative of the "social surplus" (Chiong, Galichon, and Shum, 2016)
 - It is an envelope-theorem result, like the Hotelling lemma
 - It ties together choices in different time periods so conceptually related to Sophistication, Recursivity, and the axiom of Lu (2016)
- There is a vast DDC literature on identification (Manski, 1993; Rust, 1994; Magnac and Thesmar, 2002; Norets and Tang, 2013)
 - δ not identified unless make assumptions about "observable attributes"
 - How does this compare to the "menu variation" approach

Properties of i.i.d. DDC

Key Assumption: Shocks to actions, $\tilde{\epsilon}_t^{(z_t,A_{t+1})}$ and $\tilde{\epsilon}_t^{(z_t,B_{t+1})}$ are i.i.d. regardless of the nature of the menus A_{t+1} and B_{t+1}

Theorem (Fudenberg and Strzalecki, 2015; Frick, lijima, and Strzalecki, 2017): If ρ has a i.i.d. DDC representation with $\delta < 1$, then $\rho_0(A_1^{\text{late}}, \{A_1^{\text{early}}, A_1^{\text{late}}\}) < \frac{1}{2}$

Intuition:

- ullet The agent gets the ϵ not at the time of consumption but at the time of decision (even if the decision has only delayed consequences)
- \bullet So making decisions early allows him to get the $\max \epsilon$ earlier

Question: How much does this result extend beyond i.i.d. ?

• Mixture models: Kasahara and Shimotsu (2009)

Modeling Choices

- DRU: so far few convenient parametrization (Pakes, 1986) but
 - bigger menus w/prob. 1
 - late decisions w/prob. 1
- i.i.d. DDC: statistical tractability, but
 - bigger menus w/prob. $\in (\frac{1}{2}, 1)$
 - late decisions w/prob. $\in (0, \frac{1}{2})$

Comments:

- i.i.d. DDC violates a key feature of Bayesian rationality: positive option value
- Does this mean the model is misspecified?
 - Maybe not as a model of (potentially behavioral) consumers
 - But what about profit maximizing firms?
 - biased parameter estimates?

Modeling Choices

Comments:

- Note that in the static setting i.i.d. DC is a special case of RU
 - though it has its own problems (blue bus/red bus)
- But in the dynamic setting, i.i.d. DDC is outside of DRU!
- Negative option value is not a consequence of history independence
 - no such problem in the Evolving Utility model with i.i.d utility
- It is a consequence of shocks to actions vs shocks to payoffs

Introduction

Dynamic Random Utility

Dynamic Discrete Choice

Decision Times

Decision Times

New Variable: How long does the agent take to decide?

Time:
$$\mathcal{T} = [0, \infty)$$
 or $\mathcal{T} = \{0, 1, 2, \ldots\}$

Observe: Joint distribution $\rho \in \Delta(A \times T)$

Question:

• Are fast decisions "better" or "worse" than slow ones?

Decision Times

Intuitions:

- More time ⇒ more information ⇒ better decisions
- But time is costly, so speed-accuracy tradeoff
 - Want to stop early if get an informative signal ightarrow selection effect

Comment: These two effects push in opposite directions. Which one wins?

Stylized fact: Decreasing accuracy: fast decisions are "better"

- Well established in perceptual tasks, where "better" is objective
- Also in experiments where subjects choose between consumption items

Experiment of Krajbich, Armel, and Rangel (2010)

- X: 70 different food items
- Step 1: Rate each $x \in X$ on the scale -10, ..., 10
- Step 2: Choose from $A = \{x, y\}$ (100 different pairs)
 - record choice and decision time
- Step 3: Draw a random pair and get your choice

Decreasing Accuracy

(based on data from Krajbich, Armel, and Rangel, 2010)

Model

Model

- S · · · set of unknown states
- $p \in \Delta(S)$ · · · prior belief
- ullet $v: \mathcal{S}
 ightarrow \mathbb{R}^{\mathcal{X}}$ \cdots state-dependent utility function
- $(G_t) \cdots$ information of the agent (filtration)
- $\tau \cdots$ stopping time (with respect to \mathcal{G}_t)
- · Conditional on stopping, the agent maximizes expected utility

$$\mathsf{choice}_{\tau} = \mathsf{argmax}_{x \in \mathcal{A}} \, \mathbb{E}[v(x)|\mathcal{G}_{\tau}]$$

So the only problem is to choose the stopping time

Optimal Stopping Problem

The agent chooses the stopping time optimally

$$\max_{\tau} \mathbb{E}[v(\mathsf{choice}_{\tau})] - C(\tau)$$

Comments:

- ullet (\mathcal{G}_t) and au generate a joint distribution of choices and times
 - conditional on the state $\rho^s \in \Delta(A \times T)$
 - unconditional (averaged out according to p) $\rho \in \Delta(A \times T)$
- ullet Even though (\mathcal{G}_t) is fixed, there is an element of optimal attention
 - Waiting longer gives more information at a cost
 - Choosing au is like choosing the distribution over posteriors μ
 - How close is this to the static model of optimal attention?

Optimal Stopping: Further Assumptions

- Continuous time, linear cost C(t) = ct
- Binary choice $A = \{x, y\}$
- $s = (u(x), u(y)) \in \mathbb{R}^2$
- Signal: G_t is generated by (G_t^x, G_t^y) where

$$G_t^x = t \cdot u(x) + B_t^x$$
 and $G_t^y = t \cdot u(y) + B_t^y$

and B_t^x, B_t^y are Brownian motions; often look at $G_t := G_t^x - G_t^y$

- Two classes of priors:
 - Binary: the state is $(\lambda,0)$ or $(0,\lambda)$ with equal probabilities
 - Normal (independent):

$$u(x) \sim N(\mu_0, \sigma_0^2)$$
 and $u(y) \sim N(\mu_0, \sigma_0^2)$

Binary Prior

Theorem (Wald, 1945): With binary prior the optimal strategy in the stopping model takes a boundary-hitting form: there exists $b \ge 0$ such that

$$au := \inf\{t \geq 0 : |G_t| \geq b\}$$
 choice $_{ au} := egin{cases} x & \text{if} & G_{ au} = b \ y & \text{if} & G_{ au} = -b \end{cases}$

Binary Prior

Theorem (Wald, 1945): With binary prior the optimal strategy in the stopping model takes a boundary-hitting form: there exists $b \ge 0$ such that

$$au := \inf\{t \geq 0 : |G_t| \geq b\}$$
 choice $_{ au} := egin{cases} x & \text{if} & G_{ au} = b \ y & \text{if} & G_{ au} = -b \end{cases}$

Binary Prior

Theorem (Wald, 1945): With binary prior the optimal strategy in the stopping model takes a boundary-hitting form: there exists $b \ge 0$ such that

$$au := \inf\{t \geq 0 : |G_t| \geq b\}$$
 choice $_{ au} := egin{cases} x & \text{if} & G_{ au} = b \ y & \text{if} & G_{ au} = -b \end{cases}$

Drift-Diffusion Models

- The boundary-hitting model is called a Drift-Diffusion Model
- Most often used as a reduced-form model
 - No optimization problem, just a boundary-hitting exercise
- Brought to the psychology literature by Stone (1960) and Edwards (1965) to study perception; memory retrieval (Ratcliff, 1978)
- Closed-form solutions for choice probabilities (logit) and expected decision time

Accuracy

Definition: Accuracy is the probability of making the correct choice

$$\alpha(t) := \mathbb{P}\left[\mathsf{choice}(\tau) = \mathsf{argmax}_{x \in \mathcal{A}} \, \tilde{\mathit{u}}(x) | \tau = t\right]$$

Problem: In DDM $\alpha(t)$ is constant in t, so the model does not explain the stylized fact

Intuition:

- Unconditional on stopping:
 - higher $t \Rightarrow$ more information \Rightarrow better accuracy
- But t is not chosen at random: it depends on information
 - stop early after informative signals
- The two effects balance each other out perfectly!

Drift-Diffusion Models

Many ad-hoc extensions, in particular time-varying boundary b(t)

$$au := \inf\{t \geq 0 : |G_t| \geq b(t)\} \qquad \mathsf{choice}(au) := egin{cases} x & \mathsf{if} & G_ au = b(au) \ y & \mathsf{if} & G_ au = -b(au) \end{cases}$$

Theorem (Fudenberg, Strack, and Strzalecki, 2017): Conditional on state

 $\textbf{Comment:} \ \, \textbf{Unconditional on state---analogous relation but need to look} \\ \text{at a different monotonicity condition on } \\ b$

Normal Prior

Question: How to microfound such non-constant boundaries? Do they correspond to any particular optimization problem?

Theorem (Fudenberg, Strack, and Strzalecki, 2017): In the Normal optimal stopping problem the optimal behavior leads to decreasing accuracy (unconditional on state)

Intuition: Decreasing Boundary. Suppose $G_t^x \approx G_t^y$ after a long t

- With a binary prior agent thinks: "the signal must have been noisy"
 - so she doesn't learn anything \Rightarrow she continues
- With a Normal prior agent thinks: "I must be indifferent"
 - so she learned a lot \Rightarrow she stops

Other Boundaries

Question: How to microfound other non-constant boundaries? Do they correspond to any particular optimization problem?

Theorem \ddagger (Fudenberg, Strack, and Strzalecki, 2017): For any b there exists a (nonlinear) cost function C such that b is the optimal solution to the stopping problem

Optimal Attention

• Pure optimal stopping problem (given a fixed (G_t) , choose τ):

$$\max_{ au} \mathbb{E} \left[\max_{x \in A} \mathbb{E} [\tilde{u}(x) | \mathcal{G}_{ au}] \right] - C(au)$$

• Pure optimal attention (given a fixed τ , choose (\mathcal{G}_t))

$$\max_{(\mathcal{G}_t)} \mathbb{E} \left[\max_{x \in A} \mathbb{E} [\tilde{u}(x) | \mathcal{G}_\tau] \right] - C(\mathcal{G}_t)$$

Joint optimization

$$\max_{\tau,(\mathcal{G}_t)} \mathbb{E}\left[\max_{x \in A} \mathbb{E}[\tilde{u}(x)|\mathcal{G}_{\tau}]\right] - C(\tau,\mathcal{G}_t)$$

Optimal Attention

- In the pure optimal attention problem information choice is more flexible than in the pure stopping problem
 - The agent can focus on one item, depending on what she learned so far
- Woodford (2014) solves a pure optimal attention problem
 - with a constant boundary
 - shows that optimal behavior leads to a decreasing choice accuracy
- · Joint optimization puts the two effects together
- In experiments eye movements are often recorded (Krajbich, Armel, and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu, Camerer, and Rangel, 2012)
 - Do the optimal attention models predict them?

Optimal Attention

- Liang, Mu, and Syrgkanis (2017) study the pure attention as well as joint optimization models
 - Find conditions under which the dynamically optimal strategy is close to the myopic strategy
- Che and Mierendorff (2016) study the joint optimization problem in a Poisson environment with two states; find that coexistence of two strategies is optimal:
 - Contradictory strategy that seeks to challenge the prior
 - Confirmatory strategy that seeks to confirm the prior

Other Models

- Ke and Villas-Boas (2016) joint optimization with two states per alternative in the diffusion environment
- Steiner, Stewart, and Matějka (2017) optimal attention with the mutual information cost and evolving (finite) state
- Branco, Sun, and Villas-Boas (2012); Ke, Shen, and Villas-Boas (2016) application to consumers searching for products
- Epstein and Ji (2017): ambiguity averse agents may never learn
- Gabaix and Laibson (2005): a model of bounded rationality

Optimal Stopping vs Optimal Attention

- ullet In the pure optimal stopping problem (\mathcal{G}_t) is fixed like in the passive learning model
- But there is an element of optimal attention
 - Waiting longer gives more information at a cost
 - Choosing au is like choosing the distribution over posteriors μ
 - Morris and Strack (2017) show all μ can be obtained this way if |S|=2
- So in a sense this boils down to a static optimal attention problem
 - With a specific cost function: Morris and Strack (2017) show that the class of such cost functions is equal to separable cost functions as long as the flow cost depends only on the current posterior
- Hébert and Woodford (2017) show a similar reduction to a static separable problem in the joint optimization problem
 - Converse to their theorem?

Other Questions

Question:

• Are "close" decisions faster or slower?

Intuitions:

- People "overthink" decision problems which don't matter, "underthink" those with big consequences
- It is optimal to think more when options are closer (higher option value)

Experiment: Oud, Krajbich, Miller, Cheong, Botvinick, and Fehr (2014)

Other questions

Question: How does the decision time depend on the menu size?

- "Hick-Hyman Law:" the decision time increases logarithmically in the menu size
 - At least for perceptual tasks (Luce, 1986)
- Frick and lijima (2015) introduce a model that explains the monotonic relationship (among other things)
 - The decision maker is "conflicted" about the choice
 - Different "selves" are playing a Poisson competition game

Other questions

Question: Are fast decisions impulsive/instinctive and slow deliberate/cognitive?

 Rubinstein (2007); Rand, Greene, and Nowak (2012); Krajbich, Bartling, Hare, and Fehr (2015); Caplin and Martin (2016)

Question: Use reaction times to understand how people play games?

 Costa-Gomes, Crawford, and Broseta (2001); Johnson, Camerer, Sen, and Rymon (2002); Brocas, Carrillo, Wang, and Camerer (2014)

Final Slide: Some Open Questions

- A general model of learning with menu-dependent information
- Comparison of DRU and DDC
 - Are the parameter estimates indeed biased?
 - Comparison of identification results ("menu" vs "attribute" variation)
- How to extend other static models to decision trees?
 - E.g, Random Attention, Perturbed Utility
- General analysis of DDM and related models
 - Without relying on distributional assumptions
 - Axioms?

Thank you!

$Appendix:\ additional\ material$

Tiebreakers

Random Utility Axioms

 $Stochastic \ Transitivity$

Fechnerian models

References

Random Utility (with a tiebreaker)

- To break ties, Gul and Pesendorfer (2006) introduce a *tie-breaker* $w: \Omega \to \mathbb{R}^X$, (which is always a strict preference)
- The agent first maximizes u and if there is a tie, it gets resolved using w
- For any $v \in \mathbb{R}^X$ let $M(v, A) = \operatorname{argmax}_{x \in A} v(x)$
- $C^{u,w}(x,A) := \{\omega \in \Omega : x \in M(w_\omega, M(u_\omega, A))\}$

Definition: ρ has a random utility representation with a tie-breaker if there exists $(\Omega, \mathcal{F}, \mathbb{P})$, $u, w : \Omega \to \mathbb{R}^X$ such that $\mathbb{P}(Tie^w) = 0$, and

$$\rho(x,A) = \mathbb{P}\left(C^{u,w}(x,A)\right).$$

Equivalence

Theorem: The following are equivalent:

- ullet ρ has a random utility representation
- ullet ho has a random utility representation with a tiebreaker

Tiebreakers

Random Utility Axioms

 $Stochastic \ Transitivity$

Fechnerian models

References

Axiom (Block and Marschak, 1960) For all $x \in A$

$$\sum_{B\supseteq A} (-1)^{|B\setminus A|} \rho(x,A) \ge 0.$$

Axiom (McFadden and Richter, 1990) For any n, for any sequence $(x_1, A_1), \ldots, (x_n, A_n)$ such that $x_i \in A_i$

$$\sum_{i=1}^n \rho(x_i, A_i) \leq \max_{\omega \in \Omega} \sum_{i=1}^n \mathbb{1}_{C^{\succsim}(x_i, A_i)}(\succsim).$$

Axiom (Clark, 1996) For any n, for any sequence $(x_1, A_1), \ldots, (x_n, A_n)$ such that $x_i \in A_i$, and for any sequence of real numbers $\lambda_1, \ldots, \lambda_n$

$$\sum_{i=1}^n \lambda_i \mathbb{1}_{C^{\sim}(x_i,A_i)} \geq 0 \Longrightarrow \sum_{i=1}^n \lambda_i \rho(x_i,A_i) \geq 0.$$

Remark: The last two axioms refer to the canonical random preference representation where Ω is the set of all strict preference relations and the mapping \succsim is the identity

Characterization

Theorem: The following are equivalent

- (i) ρ has a random utility representation
- (ii) ρ satisfies the Block–Marschak axiom
- (iii) ρ satisfies the McFadden–Richter axiom
- (iv) ρ satisfies the Clark axiom.

Comments:

- The equivalence (i)-(ii) was proved by Falmagne (1978) and Barberá and Pattanaik (1986).
- The equivalences (i)-(iii) and (i)-(iv) were proved by McFadden and Richter (1990, 1971) and Clark (1996) respectively. They hold also when X is infinite (Clark, 1996; McFadden, 2005; Chambers and Echenique, 2016).

Tiebreakers

Random Utility Axioms

 $Stochastic \ Transitivity$

Fechnerian models

References

Stochastic Preference

Definition: $x \succsim^s y$ iff $\rho(x, A) \ge \rho(y, A)$ for $A = \{x, y\}$

Comments:

- In Fechnerian models, where v is part of the representation
 - the Luce model
 - i.i.d. DC
 - APU

the following is true $p \succsim^s q$ iff $v(p) \ge v(q)$

- In fact, in Luce we have $x \succeq^s y$ iff $\rho(x,A) \ge \rho(y,A)$ for all A
 - this characterizes the Luce model under a richness condition
 (Gul, Natenzon, and Pesendorfer, 2014)

Weak Stochastic Transitivity

Definition: ρ satisfies Weak Stochastic Transitivity iff \succsim^s is transitive

Satisfied by:

- Fechnerian models

Can be violated by:

- RU (Marschak, 1959)
- random attention
- deliberate randomization (Machina, 1985)

Stylized Fact: Weak Stochastic Transitivity is typically satisfied in lab experiments (Rieskamp, Busemeyer, and Mellers, 2006)

Forms of Stochastic Transitivity

Let
$$p = \rho(x, \{x, y\})$$
, $q = \rho(y, \{y, z\})$, $r = \rho(x, \{x, z\})$.

Definition: Suppose that $p, q \ge 0.5$. Then ρ satisfies

- Weak Stochastic Transitivity if $r \ge 0.5$
- Moderate Stochastic Transitivity if $r \ge \min\{p, q\}$
- Strong Stochastic Transitivity if $r \ge \max\{p, q\}$

Fechnerian Models

Definition: ρ has a *Fechnerian* representation if there exist a utility function $v: X \to \mathbb{R}$ and a strictly increasing transformation function F such that

$$\rho(x,\{x,y\}) = F(v(x) - v(y))$$

Comments:

- \bullet This property of ρ depends only on its restriction to binary menus
- The following models are Fechnerian
 - Luce
 - APU
 - i.i.d. DC
- RU in general is not Fechnerian because it violates Weak Stochastic Transitivity (Marschak, 1959)

References: Davidson and Marschak (1959); Block and Marschak (1960); Debreu (1958); Scott (1964)

References I

- AGRANOV, M., AND P. ORTOLEVA (2017): "Stochastic choice and preferences for randomization," *Journal of Political Economy*, 125(1), 40–68.
- AHN, D. S., AND T. SARVER (2013): "Preference for flexibility and random choice," *Econometrica*, 81(1), 341–361.
- Allais, M. (1953): "Le Comportment de l'Homme Rational devant le Risque, Critique des Postulates et Axiomes de l'Ecole Americaine," *Econometrica*, 21, 803–815.
- Anderson, S., A. de Palma, and J. Thisse (1992): Discrete choice theory of product differentiation. MIT Press.
- APESTEGUIA, J., M. BALLESTER, AND J. Lu (2017): "Single-Crossing Random Utility Models," *Econometrica*.
- APESTEGUIA, J., AND M. A. BALLESTER (2017): "Monotone Stochastic Choice Models: The Case of Risk and Time Preferences," *Journal of Political Economy*.
- Ballinger, T. P., and N. T. Wilcox (1997): "Decisions, error and heterogeneity," *The Economic Journal*, 107(443), 1090–1105.
- BARBERÁ, S., AND P. PATTANAIK (1986): "Falmagne and the rationalizability of stochastic choices in terms of random orderings," *Econometrica*, pp. 707–715.

References II

- BLOCK, D., AND J. MARSCHAK (1960): "Random Orderings And Stochastic Theories of Responses," in *Contributions To Probability And Statistics*, ed. by I. O. et al. Stanford: Stanford University Press.
- Brady, R. L., AND J. Rehbeck (2016): "Menu-Dependent Stochastic Feasibility," *Econometrica*, 84(3), 1203–1223.
- Branco, F., M. Sun, and J. M. Villas-Boas (2012): "Optimal search for product information," *Management Science*, 58(11), 2037–2056.
- Brocas, I., J. D. Carrillo, S. W. Wang, AND C. F. Camerer (2014): "Imperfect choice or imperfect attention? Understanding strategic thinking in private information games," *The Review of Economic Studies*, p. rdu001.
- ——— (2015): "Revealed preference, rational inattention, and costly information acquisition," *The American Economic Review*, 105(7), 2183–2203.
- Caplin, A., and D. Martin (2016): "The Dual-Process Drift Diffusion Model: Evidence from Response Times," *Economic Inquiry*, 54(2), 1274–1282.
- CATTANEO, M., AND Y. MASATLIOGLU (2017): "A Random Attention Model: Identification, Estimation and Testing," *mimeo*.

References III

- CERREIA-VIOGLIO, S., D. DILLENBERGER, P. ORTOLEVA, AND G. RIELLA (2017): "Deliberately Stochastic," *mimeo*.
- CERREIA-VIOGLIO, S., F. MACCHERONI, M. MARINACCI, AND A. RUSTICHINI (2017): "Multinomial logit processes and preference discovery," .
- CHAMBERS, C. P., AND F. ECHENIQUE (2016): Revealed preference theory, vol. 56. Cambridge University Press.
- CHE, Y.-K., AND K. MIERENDORFF (2016): "Optimal Sequential Decision with Limited Attention," in prepraration.
- CHIONG, K. X., A. GALICHON, AND M. SHUM (2016): "Duality in dynamic discrete-choice models," *Quantitative Economics*, 7(1), 83–115.
- CLARK, S. (1996): "The random utility model with an infinite choice space," *Economic Theory*, 7(1), 179–189.
- CLARK, S. A. (1990): "A concept of stochastic transitivity for the random utility model," *Journal of Mathematical Psychology*, 34(1), 95–108.
- COSTA-GOMES, M., V. P. CRAWFORD, AND B. BROSETA (2001): "Cognition and behavior in normal-form games: An experimental study," *Econometrica*, 69(5), 1193–1235.
- CRAWFORD, G. S., AND M. SHUM (2005): "Uncertainty and learning in pharmaceutical demand," *Econometrica*, 73(4), 1137–1173.

References IV

- VAN DAMME, E., AND J. WEIBULL (2002): "Evolution in games with endogenous mistake probabilities," *Journal of Economic Theory*, 106(2), 296–315.
- DAVIDSON, D., AND J. MARSCHAK (1959): "Experimental Tests of Stochastic Decision Theory," in *Measurement Definitions and Theories*, ed. by C. W. Churchman. John Wiley and Sons.
- DE OLIVEIRA, H., T. DENTI, M. MIHM, AND M. K. OZBEK (2016): "Rationally inattentive preferences and hidden information costs," *Theoretical Economics*, pp. 2–14.
- Debreu, G. (1958): "Stochastic Choice and Cardinal Utility," *Econometrica*, 26(3), 440444.
- DEBREU, G. (1960): "Review of RD Luce, Individual choice behavior: A theoretical analysis," *American Economic Review*, 50(1), 186–88.
- DEKEL, E., B. LIPMAN, AND A. RUSTICHINI (2001): "Representing preferences with a unique subjective state space," *Econometrica*, 69(4), 891–934.
- Dekel, E., B. L. Lipman, A. Rustichini, and T. Sarver (2007): "Representing Preferences with a Unique Subjective State Space: A Corrigendum1," *Econometrica*, 75(2), 591–600.
- DWENGER, N., D. KUBLER, AND G. WEIZSACKER (2013): "Flipping a Coin: Theory and Evidence," Discussion paper.

References V

- ECHENIQUE, F., K. SAITO, AND G. TSERENJIGMID (2013): "The Perception Adjusted Luce Model," Discussion paper.
- EDWARDS, W. (1965): "Optimal strategies for seeking information: Models for statistics, choice reaction times, and human information processing," *Journal of Mathematical Psychology*, 2(2), 312–329.
- EPSTEIN, L. G., AND S. JI (2017): "Optimal Learning and Ellsberg's Urns," .
- Erdem, T., And M. P. Keane (1996): "Decision-making under uncertainty: Capturing dynamic brand choice processes in turbulent consumer goods markets," $Marketing\ science,\ 15(1),\ 1-20.$
- Ergin, H. (2003): "Costly contemplation," Unpublished paper, Department of Economics, Duke University. [22] Ergin, Haluk and Todd Sarver (2010), A unique costly contemplation representation. Econometrica, 78, 1285–1339.
- Ergin, H., AND T. Sarver (2010): "A unique costly contemplation representation," Econometrica, 78(4), 1285–1339.
- Falmagne, J. (1978): "A representation theorem for finite random scale systems," Journal of Mathematical Psychology, 18(1), 52–72.
- FISHBURN, P. C. (1998): "Stochastic Utility," *Handbook of Utility Theory: Volume 1: Principles*, p. 273.

References VI

- $\mbox{Frick, M., AND R. Iijima (2015): "A Warring Selves Model of Random Choice and Delay," .$
- FRICK, M., R. IIJIMA, AND T. STRZALECKI (2017): "Dynamic Random Utility," mimeo.
- FUDENBERG, D., R. IIJIMA, AND T. STRZALECKI (2014): "Stochastic choice and revealed perturbed utility," working paper version.
- ——— (2015): "Stochastic choice and revealed perturbed utility," *Econometrica*, 83(6), 2371–2409.
- FUDENBERG, D., AND D. K. LEVINE (1995): "Consistency and Cautious Fictitious Play," *Journal of Economic Dynamics and Control*, 19, 1065–1089.
- FUDENBERG, D., P. STRACK, AND T. STRZALECKI (2017): "Speed, Accuracy, and the Optimal Timing of Choices," \cdot
- FUDENBERG, D., AND T. STRZALECKI (2015): "Dynamic logit with choice aversion," *Econometrica*, 83(2), 651–691.
- GABAIX, X., AND D. LAIBSON (2005): "Bounded rationality and directed cognition," *Harvard University*.
- ——— (2017): "Myopia and Discounting," .
- GOWRISANKARAN, G., AND M. RYSMAN (2012): "Dynamics of Consumer Demand for New Durable Goods," *mimeo*.

References VII

- GUL, F., P. NATENZON, AND W. PESENDORFER (2014): "Random Choice as Behavioral Optimization," *Econometrica*, 82(5), 1873–1912.
- Gull, F., AND W. Pesendorfer (2006): "Random expected utility," *Econometrica*, 74(1), 121–146.
- Gull, F., AND W. Pesendorfer (2013): "Random Utility Maximization with Indifference." mimeo.
- HARSANYI, J. (1973): "Oddness of the number of equilibrium points: A new proof," *International Journal of Game Theory*, 2(1), 235–250.
- HAUSMAN, J., AND D. McFADDEN (1984): "Specification tests for the multinomial logit model," *Econometrica: Journal of the Econometric Society*, pp. 1219–1240.
- HÉBERT, B., AND M. WOODFORD (2017): "Rational Inattention with Sequential Information Sampling," *mimeo*.
- HECKMAN, J. J. (1981): "Heterogeneity and state dependence," in *Studies in labor markets*, pp. 91–140. University of Chicago Press.
- HENDEL, I., AND A. NEVO (2006): "Measuring the implications of sales and consumer inventory behavior," *Econometrica*, 74(6), 1637–1673.
- HEY, J. D. (1995): "Experimental investigations of errors in decision making under risk," *European Economic Review*, 39(3), 633–640.

References VIII

- ———— (2001): "Does repetition improve consistency?," Experimental economics, 4(1), 5–54.
- HOFBAUER, J., AND W. SANDHOLM (2002): "On the global convergence of stochastic fictitious play," Econometrica, 70(6), 2265–2294.
- HUBER, J., J. W. PAYNE, AND C. PUTO (1982): "Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis," *Journal of Consumer Research*, 9.
- IYENGAR, S. S., AND M. R. LEPPER (2000): "When choice is demotivating: Can one desire too much of a good thing?," *Journal of Personality and Social Psychology*, 79(6), 995–1006.
- JOHNSON, E. J., C. CAMERER, S. SEN, AND T. RYMON (2002): "Detecting failures of backward induction: Monitoring information search in sequential bargaining," *Journal of Economic Theory*, 104(1), 16–47.
- Kahneman, D., and A. Tversky (1979): "Prospect theory: An analysis of decision under risk," *Econometrica*, pp. 263–291.
- Kamenica, E. (2008): "Contextual Inference in Markets: On the Informational Content of Product Lines," *American Economic Review*, 98, 2127–2149.
- KASAHARA, H., AND K. SHIMOTSU (2009): "Nonparametric identification of finite mixture models of dynamic discrete choices," *Econometrica*, 77(1), 135–175.

References IX

- KE, S. (2016): "A Dynamic Model of Mistakes," working paper.
- KE, T., AND M. VILLAS-BOAS (2016): "Optimal Learning before Choice," mimeo.
- KE, T. T., Z.-J. M. SHEN, AND J. M. VILLAS-BOAS (2016): "Search for information on multiple products," *Management Science*, 62(12), 3576–3603.
- ${
 m KITAMURA,\ Y.,\ AND\ J.\ STOYE}$ (2016): "Nonparametric analysis of random utility models: testing," .
- KRAJBICH, I., C. ARMEL, AND A. RANGEL (2010): "Visual fixations and the computation and comparison of value in simple choice," *Nature neuroscience*, 13(10), 1292–1298.
- Krajbich, I., B. Bartling, T. Hare, and E. Fehr (2015): "Rethinking fast and slow based on a critique of reaction-time reverse inference.," *Nature Communications*, 6(7455), 700.
- KRAJBICH, I., D. LU, C. CAMERER, AND A. RANGEL (2012): "The attentional drift-diffusion model extends to simple purchasing decisions," Frontiers in psychology, 3, 193.
- KRAJBICH, I., AND A. RANGEL (2011): "Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions," Proceedings of the National Academy of Sciences, 108(33), 13852–13857.

References X

- KREPS, D. (1979): "A representation theorem for" preference for flexibility"," Econometrica, pp. 565–577.
- LIANG, A., X. Mu, AND V. SYRGKANIS (2017): "Optimal Learning from Multiple Information Sources," .
- LIN, Y.-H. (2017): "Stochastic Choice and Rational Inattention," mimeo.
- Lu, J. (2016): "Random choice and private information," Econometrica, 84(6), 1983–2027.
- Lu, J., AND K. Saito (2016): "Random intertemporal choice," Discussion paper, mimeo.
- Luce, D. (1959): Individual choice behavior. John Wiley.
- Luce, R. D. (1986): Response times. Oxford University Press.
- LUCE, R. D., AND H. RAIFFA (1957): Games and decisions: Introduction and critical survey. New York: Wiley.
- MACHINA, M. (1985): "Stochastic choice functions generated from deterministic preferences over lotteries," *The Economic Journal*, 95(379), 575–594.

References XI

- MAGNAC, T., AND D. THESMAR (2002): "Identifying dynamic discrete decision processes," *Econometrica*, 70(2), 801–816.
- MANSKI, C. F. (1993): "Dynamic choice in social settings: Learning from the experiences of others," *Journal of Econometrics*, 58(1-2), 121–136.
- MANZINI, P., AND M. MARIOTTI (2014): "Stochastic choice and consideration sets," *Econometrica*, 82(3), 1153–1176.
- MARSCHAK, J. (1959): "Binary Choice Constraints on Random Utility Indicators," Cowles Foundation Discussion Papers 74, Cowles Foundation for Research in Economics, Yale University.
- MASATLIOGLU, Y., D. NAKAJIMA, AND E. Y. OZBAY (2011): "Revealed attention," 102, 2183–2205.
- MATEJKA, F., AND A. McKay (2014): "Rational inattention to discrete choices: A new foundation for the multinomial logit model," *The American Economic Review*, 105(1), 272–298.
- MATTSSON, L.-G., AND J. W. WEIBULL (2002): "Probabilistic choice and procedurally bounded rationality," *Games and Economic Behavior*, 41, 61–78.
- ${\rm MATZKIN,\ R.\ L.\ (1992):\ "Nonparametric \ and\ distribution-free\ estimation\ of\ the\ binary\ threshold\ crossing\ and\ the\ binary\ choice\ models,"\ \textit{Econometrica},\ pp.\ 239–270.}$

References XII

- McFadden, D. (1973): "Conditional logit analysis of qualitative choice behavior," in *Frontiers in Econometrics*, ed. by P. Zarembka. Institute of Urban and Regional Development, University of California.
- McFadden, D., AND M. Richter (1971): "On the Extension of a Set Function on a Set of Events to a Probability on the Generated Boolean σ -algebra," *University of California, Berkeley, working paper.*
- McFadden, D., AND M. Richter (1990): "Stochastic rationality and revealed stochastic preference," *Preferences, Uncertainty, and Optimality, Essays in Honor of Leo Hurwicz*, pp. 161–186.
- McFadden, D. L. (2005): "Revealed stochastic preference: a synthesis," *Economic Theory*, 26(2), 245–264.
- McKelvey, R., and T. Palfrey (1995): "Quantal Response Equilibria for Normal Form Games," *Games and Economic Behavior*, 10, 638.
- MCKELVEY, R. D., AND T. R. PALFREY (1998): "Quantal response equilibria for extensive form games," *Experimental economics*, 1(1), 9–41.
- MILLER, R. (1984): "Job matching and occupational choice," *The Journal of Political Economy*, 92, 1086–1120.
- MORRIS, S., AND P. STRACK (2017): "The Wald Problem and the Equivalence of Sequential Sampling and Static Information Costs," *mimeo*.

References XIII

- MORRIS, S., AND M. YANG (2016): "Coordination and Continuous Choice," .
- NATENZON, P. (2016): "Random choice and learning," .
- NORETS, A., AND X. TANG (2013): "Semiparametric Inference in dynamic binary choice models," *The Review of Economic Studies*, p. rdt050.
- OUD, B., I. KRAJBICH, K. MILLER, J. H. CHEONG, M. BOTVINICK, AND E. FEHR (2014): "Irrational Deliberation in Decision Making," *mimeo*.
- Pakes, A. (1986): "Patents as options: Some estimates of the value of holding European patent stocks," *Econometrica*, 54, 755–784.
- RAIFFA, H., AND R. SCHLAIFER (1961): *Applied statistical decision theory*. Boston: Division of Research, Harvard Business School.
- RAND, D. G., J. D. GREENE, AND M. A. NOWAK (2012): "Spontaneous giving and calculated greed," *Nature*, 489(7416), 427–430.
- RATCLIFF, R. (1978): "A theory of memory retrieval.," Psychological review, 85(2), 59.
- RIESKAMP, J., J. R. BUSEMEYER, AND B. A. MELLERS (2006): "Extending the Bounds of Rationality: Evidence and Theories of Preferential Choice," *Journal of Economic Literature*, 44(3), 631–661.
- ROSENTHAL, A. (1989): "A bounded-rationality approach to the study of noncooperative games," *International Journal of Game Theory*, 18.

References XIV

- RUBINSTEIN, A. (2007): "Instinctive and cognitive reasoning: A study of response times," *The Economic Journal*, 117(523), 1243–1259.
- Rust, J. (1987): "Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher," *Econometrica*, pp. 999–1033.
- ——— (1989): "A Dynamic Programming Model of Retirement Behavior," in *The Economics of Aging*, ed. by D. Wise, pp. 359–398. University of Chicago Press: Chicago.
- ——— (1994): "Structural estimation of Markov decision processes," *Handbook of econometrics*, 4, 3081–3143.
- Scott, D. (1964): "Measurement structures and linear inequalities," *Journal of mathematical psychology*, 1(2), 233–247.
- SIMS, C. A. (2003): "Implications of rational inattention," *Journal of monetary Economics*, 50(3), 665–690.
- STEINER, J., C. STEWART, AND F. MATĚJKA (2017): "Rational Inattention Dynamics: Inertia and Delay in Decision-Making," *Econometrica*, 85(2), 521–553.
- STONE, M. (1960): "Models for choice-reaction time," Psychometrika, 25(3), 251–260.
- Todd, P. E., and K. I. Wolpin (2006): "Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility," *American economic review*, 96(5), 1384–1417.

References XV

- TVERSKY, A. (1969): "Intransitivity of Preferences," *Psychological Review*, 76, 31–48.
- ——— (1972): "Choice by Elimination," *Journal of Mathematical Psychology*, 9, 341–367.
- WALD, A. (1945): "Sequential tests of statistical hypotheses," *The Annals of Mathematical Statistics*, 16(2), 117–186.
- WILCOX, N. T. (2008): "Stochastic models for binary discrete choice under risk: A critical primer and econometric comparison," in *Risk aversion in experiments*, pp. 197–292. Emerald Group Publishing Limited.
- ——— (2011): "Stochastically more risk averse: A contextual theory of stochastic discrete choice under risk," *Journal of Econometrics*, 162(1), 89–104.
- WOODFORD, M. (2014): "An Optimizing Neuroeconomic Model of Discrete Choice," *Columbia University working paper*.

Table of Contents

Lecture 1

Introduction
Random Utility/Discrete Choice
Properties of RU
Special Cases
Random Expected Utility (REU)
Learning
Attention
Optimal Attention
Random Attention

Deliberate Randomization

Lecture 2

Introduction
Dynamic Random Utility
Dynamic Discrete Choice
Decision Times