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Plan

Purpose: Overview where the field is and where it seems to be going

Lecture 1: Static Choice

— Random Utility (and Discrete Choice)

— Learning, Attention, Deliberate Randomization

Lecture 2: Dynamic Choice

— Dynamic Random Utility
— Dynamic Discrete Choice
— Drift-Diffusion Models



Disclaimer

| won't get too deeply into any one area
The ES monograph (in preparation) fills in more details

— Theorem’ means there are some terms | did not define

— Theorem? means that additional technical conditions are needed

| cover mostly work in decision theory. | am not an expert on
neighboring fields, such as discrete choice econometrics, structural 10
and labor, experimental economics, psychology and economics,
cognitive science. Happy to talk if you are one.

All comments welcome at tomasz_strzalecki@harvard.edu


mailto:tomasz_strzalecki@harvard.edu

Notation

set of alternatives

typical alternative

finite choice problem (menu)
probability of x being chosen from A

stochastic choice function (rule)



Stochastic Choice

e Idea: The analyst/econometrician observes an agent/group of agents

e Examples:
— Population-level field data: McFadden (1973)
— Individual-level field data: Rust (1987)
— Between-subjects experiments: Kahneman and Tversky (1979)

— Within-subject experiments: Tversky (1969)



Is indiwvidual choice random? Why?

Stylized Fact: Choice can change, even if repeated shortly after

e Tversky (1969), Hey (1995), Ballinger and Wilcox (1997), Hey
(2001), Agranov and Ortoleva (2017)

Possible reasons:

e Randomly fluctuating tastes
¢ Noisy signals

Attention is random

People just like to randomize

Trembling hands

e Experimentation (experience goods)



Questions

1. What are the properties of p (axioms)?

o Example: "Adding an item to a menu reduces the choice probability of
all other items”

2. How can we “explain” p (representation)?

o Example: “The agent is maximizing utility, which is privately known"



Goals

. Better understand the properties of a model. What kind of predictions
does it make? What axioms does it satisfy?

— ldeally, prove a representation theorem (p satisfies Axioms A and B if
and only if it has a representation R)

. ldentification: Are the parameters pinned down uniquely?

. Determine whether these axioms are reasonable, either normatively, or
descriptively (testing the axioms)

. Compare properties of different models (axioms can be helpful here,
even without testing them on data). Outline the modeling tradeoffs

. Estimate the model, make a counterfactual prediction, evaluate a
policy (I won't talk about those here)



Testing the axioms

Axioms expressed in terms of p, which is the limiting frequency
How to test such axioms when observed data is finite?

Hausman and McFadden (1984) developed a test of Luce's IIA axiom
that characterizes the logit model

Kitamura and Stoye (2016) develop tests of the static random utility
model based on axioms of McFadden and Richter (1990)

| will mention many other axioms here, without corresponding “tests”



Richness

e The work in decision theory often assumes a “rich” menu structure

— Menu variation can be generated in experiments
— But harder in field data

— But don't need a full domain to reject the axioms

e The work in discrete choice econometrics often assumes richness in
“observable attributes”

— | will abstract from this here

e The two approaches lead to somewhat different identification results

— Comparison?
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Random Utility

Idea: Choice is random because:
e There is a population of heterogenous individuals

o Or there is one individual with varying preferences

Models:
e Random Utility

e Discrete Choice

Notation:

(QF,P) v probability space that carries all random variables



Random Utility (RU)

e Let U:Q — RX be a random utility function on X

e C(x,A) is the event in which the agent chooses x from A

C(x,A) :={we Q: U,(x) > U,(y) for all y € A}

e T is the event in which there is a tie

T:={weQ:U,x)= U,(y) for some x # y}

Defin~ition: p has a random utility representation if there exists (Q, F,P)
and U : Q — RX such that P(T) = 0 and

plx, A) = P(C(x, A)
Key assumption:

e P is independent of the menu; it's the structural invariant of the model
e Menu-dependent P can trivially explain any p



Discrete Choice (DC)

e Let v € RX be a deterministic utility function
e Let €: Q — RX be a random unobserved utility shock or error

— the distribution of € has a density and full support

Definition p has a discrete choice representation if it has a RU
representation with U(x) = v(x) + €(x)

This is sometimes called the additive random utility model



Discrete Choice (DC)

e The fact that € has a density rules out ties

e The full support assumption on € ensures that all items are chosen
with positive probability

Axiom (Positivity). p(x,A) >0 for all x € A

e This leads to a non-degenerate likelihood function—good for
estimation

e Positivity cannot be rejected by any finite data set



Ways to deal with ties

e Prohibit them outright by assuming
- P(T)=0

— density on €

e But sometimes more convenient to allow ties

— Use a tiebreaker (Gul and Pesendorfer, 2006)

— Change the primitive (Barberd and Pattanaik, 1986; Lu, 2016; Gul and
Pesendorfer, 2013)

o | will skip over the details in this talk



FEquivalence

Theorem: If X is finite and p satisfies Positivity, then the following are
equivalent:

(i) p has a random utility representation

(7i) p has a discrete choice representation

Questions:
o What do these models assume about p?
o Are their parameters identified?

o Are there any differences between the two approaches?
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Aziomatic Characterizations

Axiom (Regularity). If x € A C B, then p(x, A) > p(x, B)

Intuition When we add an item to a menu, existing items have to “make
room” for it.

Examples of violation:

1. lyengar and Lepper (2000): tasting booth in a supermarket
— 6 varieties of jam — 70% people purchased no jam

— 24 varieties of jam — 97% people purchased no jam

2. Huber, Payne, and Puto (1982): adding a “decoy” option raises
demand for the targeted option



Decoy Effect

preference

dimension 2

preference
dimension 1



Aziomatic Characterizations

Theorem (Block and Marschak, 1960). If p has a random utility
representation, then it satisfies Regularity. Moreover, Regularity is
sufficient if | X]| < 3.
Comments:
e Unfortunately, when | X| > 3, Regularity alone is not enough
e More axioms are needed, but they are hard to interpret

e More elegant axioms if X consists of lotteries (Gul and Pesendorfer,
2006) ~~ later in this lecture



Identification of Utilities/Preferences

o Since utility is ordinal, we cannot identify its distribution—at best we
can hope to pin down the distribution of ordinal preferences

e But it turns out we can't even do that

Example (Fishburn, 1998). Suppose that X = {x,y, z, w}. The following
two distributions over preferences lead to the same p.

(y = x = w > 2) (y = x =z > w)

Aﬂa
Aﬂ—-

(x>=y>=z>w) (x>y»>=w>»2)

Note that these two distributions have disjoint supports!



Identification of “Marginal” Preferences

Theorem (Falmagne, 1978). If P; and P, are random preference
representations of the same p, then for any x € X

P1(x is k-th best in X) = P(x is k-th best in X)

for all k



Identification in DC

Theorem: If (v1,€1) is a DC representation of p, then for any v, € RX
there exists €, such that (v, ;) is another representation of p

Comments:

e So can't identify v (even ordinally) unless make assumptions on
unobservables

o If assume a given distribution of €, then can pin down more

e Also, stronger identification results are obtained in the presence of
“observable attributes” (see, e.g. Matzkin, 1992)
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i.1.d. DC

e |t is often assumed that €, are i.i.d. across x € X
- logit
— probit

e Ini.i.d. DC the binary choice probabilities are given by
p(x,{x,y}) = F(v(x) — v(y)) where F is the cdf of & — €,

— such models are called Fechnerian



The Luce Model

o In the logit model the choice probabilities are given by the closed-form
ev(x)
ZyeA ev(y)

e This is known as the Luce representation

p(x, A) =

Axiom (Luce's lIA). For all x,y € AN B whenever the probabilities are
positive
p(x,A) _ p(x, B)

p(y,A)  ply,B)

Theorem (Luce, 1959; McFadden, 1973): The following are equivalent
(i) p satisfies Positivity and Luce's |1A

(ii) p has a Luce representation

(iii) p has a logit representation



FEuvidence

e Luce's IIA axiom is routinely violated

— Blue bus/red bus problem (Debreu, 1960)
— Actually, blue bus/red bus is a problem for all i.i.d. DC models

e Fix: relax the i.i.d. assumption

nested logit

— GEV (generalized extreme value)
- multivariate probit

mixed logit

e Another axiom that i.i.d. DC satisfies: Strong Stochastic Transitivity

— often violated in experiments (Rieskamp, Busemeyer, and Mellers, 2006)



Generalizations of Luce

Elimination by aspects (Tversky, 1972)

Random Attention (Manzini and Mariotti, 2014)

Attribute rule (Gul, Natenzon, and Pesendorfer, 2014)

Additive Perturbed Utility (Fudenberg, lijima, and Strzalecki, 2015)

Perception adjusted Luce (Echenique, Saito, and Tserenjigmid, 2013)
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Random Ezxpected Utility (REU)

e Gul and Pesendorfer (2006) study choice between lotteries

e Specify the RU model to X = A(Z), where Z is a finite set of prizes

Definition: p has a REU representation if has a RU representation where
with probability one U has vNM form:

U(x) =) i(2)x(2)

zeZ

for some i € R?



REU—Azioms

Notation: Ext(A) is the set of extreme points of A
Axiom (Extremeness). p(Ext(A),A) =1

Idea: The indifference curves are linear, so maximized at an extreme point

of the choice set

—

\L



REU—Azioms

Axiom (Linearity). For any oo € (0,1) and x € Aand y € X

p(x,A) = p(ax + (1 — a)y, {ax’ + (1 —a)y : X' € A})

Idea: Just like the vNM Independence axiom



REU—Gul and Pesendorfer (2006) Results

Theorem! (Characterization). p has a REU representation if and only if it
satisfies

— Regularity
— Extremeness
— Linearity

— Continuity'

Theorem! (Uniqueness). In a REU representation the distribution over
ordinal preferences is essentially! identified.



REU—Comments

Simple axioms
Better identification results

Stronger assumptions: Allais (1953) paradox is a rejection of Linearity

— We'll see soon what happens if vNM is relaxed

Gul and Pesendorfer (2006) also developed a version with tie-breakers,
need to weaken continuity

Model used as a building block for a lot to come

This is only one possible specification of risk preferences ...



Measuring Risk Preferences

o Let Uy be a family of vNM forms with CARA or CRRA indexes

o Higher 0 is more risk-aversion
— allow for risk-aversion and risk-loving

Model 1 (a la REU): There is a probability distribution IP over error shocks
€ to the preference parameter 0

pREY(x, A) = P{Upy2(x) > Ugie(y) for all y € A}

Model 2 (a la DC): There is a probability distribution P over error shocks
€ to the expected value

pE < (x, A) = P{Up(x) + &(x) > Up(y) + &(y) for all y € A}

Comment: In Model 2, preferences over lotteries are not vNM!



Measuring Risk Preferences

Notation:
e FOSD—First Order Stochastic Dominance
e SOSD—Second Order Stochastic Dominance

Observation 1: Model 1 has intuitive properties:

e If x FOSD y, then pfEY(x, {x,y}) =1
o If x SOSD y, then piEV(x, {x,y}) is increasing in ¢

Observation 2: Model 2 not so much:

o If x FOSD y, then pPC(x, {x,y}) <1

o If x SOSD y, then pP¢(x, {x,y}) is not monotone in &



Measuring Risk Preferences

Theort_am: (Wilcox, 2008, 2011; Apesteguia and Ballester, 201_7) There
exists 0 such that pP¢(x, {x,y}) is strictly decreasing for 6 > 0.

Comments:
e This biases parameter estimates

e Subjects may well violate FOSD and SOSD. Better to model these
violations explicitly rather than as artifacts of the error specification?

o A similar lack of monotonicity for discounted utility time-preferences

e Apesteguia, Ballester, and Lu (2017) study a general notion of
single-crossing for random utility models



Recap

e RU and DC are equivalent as far as p is concerned

o But have different parameters:

— distribution over preferences

— deterministic v and random €

e Suggestive of different parametric specifications
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Learning

e In RU choice is stochastic because preferences are fluctuating

e Another possible reason: choices are driven by agent’s noisy signals

e This is a special case of RU

— with “preferences” equal to “expected utility conditional on the signal”

Question: Can any RU p be represented this way?

Answer: Depends if the model is rich enough to permit a separation of
tastes and beliefs



Learning—rprobabilistic model
e Fix a probability space (2, F,P) and a random utility U : Q@ — RX
o Let G represent the information the agent is learning

o Conditional on the signal the agent maximizes E[U(x)|G]

Comments:

e Choices are random because they depend on the signal realization
— No information (G trivial) = choices are deterministic
— Full information (G = F) = this is just a RU model
— In general, the finer the G, the more random the choices, keeping
(Q, F,P) constant

¢ p has a (probabilistic) learning representation iff it has a RU
representation

e Strictly special case of RU in a dynamic setting (Frick, lijima, and
Strzalecki, 2017) ~~ Lecture 2



Learning—statistical model

S set of unknown states
PEA(S) oo prior belief

viSRX state-dependent utility function
Epv(x) «coovvvveeeeeennns (ex ante) expected utility of x

o Signal structure: in each state s there is a distribution over signals

o For each signal realization, posterior beliefs are given by the Bayes rule

e The prior p and the signal structure = distribution @ over posteriors

— Often convenient to work with y directly

— For each posterior § the agent maximizes max,ca E4v(x)



Learning—statistical model

For each s, the model generates a choice distribution p°(x, A)

— In some lab experiments the analyst can control/observe s

An average of p° according to the prior p generates p(x, A)

Comments:

e The class of p generated this way equals the RU class
o For each s conditional choices p® also belong to the RU class

— Consistency conditions of p° across s?

e The (statistical) learning model becomes a strictly special case of RU
when specified to Anscombe—Aumann acts (Lu, 2016)



Learning—the Lu (2016) model

Random Utility model of choice between Anscombe—Aumann acts

This means X = A(Z)°

— In each state the agent gets a lottery over prizes in a finite set Z

Random Utility U(x) = Y ses V(x(s))d(s), where
— v is a (deterministic) vNM form over A(Z)

— § is the (random) posterior over S

The distribution over § is given by p



Learning—the Lu (2016) model

Theorem? (Characterization). p has a (statistical) learning representation
iff it satisfies the Gul and Pesendorfer (2006) axioms plus S-independencef,
Non-degeneracy!, and C-determinisim?.

— Ties dealt with by changing the primitive (3rd kind)

Theorem? (Uniqueness). The prior p is unique, the information structure
1 is unique and the utility function v is cardinally-unique.
— In fact, the parameters can be identified on binary menus

— Test functions: calibration through constant acts

Theorem? (Comparative Statics). Fix v and p and consider two
information structures p and p/. pis “more random” than p’ if and only if
1t is Blackwell-more informative than p/'.



More about learning

e Models of learning so far:

— the probabilistic model (information is G)

— the statistical model (information is y)
— the Lu (2016) model

e In all of them information is independent of the menu

e But it could reasonably depend on the menu:

— if new items provide more information

— or if there is limited attention — next section



Example

‘ U, (steak tartare) U, (chicken) U, (fish)

w = good chef 10 7 3
w = bad chef 0 5 0

o fish provides an informative signal about the quality of the chef
— glsief} gives full information:

— if the whole restaurant smells like fish — chef is bad
— if the whole restaurant doesn’t smell like fish — chef is good

- p(s,{s,c,f}) = p(c,{s,c,f}) = % and p(f,{s,c,f})=0

e in absence of f get no signal

— glsch gives no information
— p(s,{s,c}) =0, p(c,{s, c}) =1 (if prior uniform)

¢ violation of the Regularity axiom!
— menu-dependent information is like menu-dependent (expected) utility



Bayesian Probit

¢ Natenzon (2016) develops a Bayesian Probit model of this, where the
agent observes noisy signal of the utility of each item in the menu

— signals are jointly normal and correlated
— model explains decoy effect, compromise effect, and similarity effects

— correlation = new items shed light on relative utilities of existing items

¢ Note: adding an item gives Blackwell-more information about the
state, the state is uncorrelated with the menu



Ezample (Luce and Raiffa, 1957)

‘ U, (steak tartare) U, (chicken) U, (frog legs)

w = good chef 10 7 3
w = bad chef 0 5 0

e frog legs provides an informative signal about the quality of the chef
— only good chefs will attempt to make frog legs
- so {s, c, f} signals w = good chef
- so {s, c} signals w = bad chef

e this implies

= p(s,{s,c.f}) =1, p(c.{s,c,f}) = p(f,{s,c,f}) =0
- p(s,{s,c}) =0, p(c,{s, c}) =1 (if prior uniform)

e so here the menu is directly correlated with the state

— unlike in the fish example where there is no correlation
— Kamenica (2008)-model where consumers make inferences from menus
(model explains choice overload and compromise effect)



Learning—recap

¢ Information independent of menu

— Special case of RU (or equivalent to RU depending on the formulation)

— More informative signals = more randomness in choice

e Information depends on the menu

— More general than RU (can violate Regularity)

— Two flavors of the model:

® more items = more information (Natenzon, 2016)

e correlation between menu and state (Kamenica, 2008)

— General analysis? Axioms?



Introduction

Random Utility/Discrete Choice
Properties of RU

Special Cases
Random Expected Utility (REU)

Learning

Attention
Optimal Attention
Random Attention

Deliberate Randomization



Optimal Attention

e Imagine now that the signal structure is chosen by the agent

— instead of being fixed

e The agent may want to choose to focus on some aspect
— depending on the menu
e One way to model this margin of choice is to let the agent choose
attention optimally:
— Costly Information Acquisition (Raiffa and Schlaifer, 1961)

— Rational Inattention (Sims, 2003)

— Costly Contemplation (Ergin, 2003; Ergin and Sarver, 2010)



Value of Information

For each information structure p its value to the agent is

= > [maXIE~ x)]u(q)

geA(S

Comment: Blackwell's theorem says the value of information is always
positive: more information is better



Optimal Attention

e For every menu A, the agent chooses 1 to maximize:

max V(p) = (1)

e where C(u) is the cost of choosing the signal structure p

— could be a physical cost

— or mental/cognitive

e this is another case where information depends on the menu A

— this time endogenously



Optimal Attention

Special cases of the cost function:

 Mutual information: C(u) =3 ,cn(s) ot (q)p(q)
where ¢KL(q) is the relative entropy of g with respect to the prior

e Separable cost functions C(u) = 3" cn(s) ¢(9)1(q)

for some general ¢
¢ Neighborhood-based cost functions (Hébert and Woodford, 2017)

e General cost functions: C is just Blackwell-monotone and convex

Questions:
e Is it harder to distinguish “nearby” states than “far away” states?

— Caplin and Dean (2013), Morris and Yang (2016), Hébert and
Woodford (2017)



Optimal Attention

e Matejka and McKay (2014) analyze the mutual information cost
function used in Sims (2003)
— they show the optimal solution leads to weighted-Luce choice
probabilities p°
— can be characterized by two Luce IlA-like axioms on p®
— demonstrate a violation of Regularity

Example (Matejka and McKay, 2014): p(x,{x,y, z}) > p(x,{x,y})
because adding z adds incentive to learn about the state




Optimal Attention

e Caplin and Dean (2015) characterize general cost C
— assume choice is between Savage acts
— assume the analyst knows the agent'’s utility function and the prior
— can be characterized by two acyclicity-like axioms on p°

— partial uniqueness: bounds on the cost function

e Lin (2017) also characterizes general cost C
— building on Lu (2016) and De Oliveira, Denti, Mihm, and Ozbek (2016)
— the utility and prior are recovered from the data

— can be characterized by a relaxation of REU axioms plus the
De Oliveira, Denti, Mihm, and Ozbek (2016) axioms

— essential uniqueness of parameters: minimal cost function unique
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Random Attention

In the Optimal Attention model, paying attention meant optimally
choosing an informative signal about its utility (at a cost)

In the Random Attention model, attention is exogenous (and random)

- F(A) C A'is a random Consideration Set
~ v € RX is a deterministic utility function
~ for each possible realization [ (A) the agent maximizes v on T (A)

— so for each menu we get a probability distribution over choices



Random Attention

e Manzini and Mariotti (2014)

— each x € A belongs to ['(A) with prob (x), independently over x
— if [(A) = 0, the agent chooses a default option
— axiomatic characterization, uniqueness result

— turns out this is a special case of RU

e Brady and Rehbeck (2016)

— allow for correlation
— axiomatic characterization, uniqueness result

— now can violate Regularity

e Cattaneo and Masatlioglu (2017)

— an even more general model of attention filters, following Masatlioglu,
Nakajima, and Ozbay (2011)
— axiomatic characterization, uniqueness result
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Deliberate Randomization

Idea: The agent directly chooses a probability distribution on actions
p € A(A) to maximize some non-linear value function V/(p)

Examples:
o Allais-style lottery preferences
o Implementation Costs
e Hedging against ambiguity

e Regret minimization



Allais-style lottery preferences

e Agent is choosing between lotteries, X = A(Z)
e She has a deterministic nonlinear lottery preference ¢ over A(2)

e If = is quasiconcave, then the agent likes to toss a “mental coin”

— Example: xg ~ xo

— Strictly prefer y

— To implement this, choice
from A= {x,x2} is
p(X17 A) = p(X27A) = %

— what if B = {xy,x,y}?
(Is the “mental coin” better or
worse than actual coin?)




Allais-style lottery preferences

e Machina (1985): derives some necessary axioms that follow from
maximizing any general =*

¢ Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2017):
— characterize maximization of a general -* — Rational Mixing axiom

~ characterize maximization of a specific ¢ that belongs to the Cautious
Expected Utility class — Rational Mixing + additional axioms

e Other classes of risk preferences =7



Implementation Costs

Idea: The agent implements her choices with an error (trembling hands)

— can reduce error at a cost that depends on the tremble probabilities

When presented with a menu A choose p € A(A) to maximize

v € RX is a deterministic utility function

C is the cost of implementing p

— zero for the uniform distribution

— higher as p focuses on a particular outcome

This is called the Perturbed Utility model, used in game theory



Additive Perturbed Utility

Typically used specification: Additive Perturbed Utility

Clp)=n_ clp(x))

X€EA

e log cost: ¢(t) = —log(t) (Harsanyi, 1973)
e quadratic cost: c¢(t) = t? (Rosenthal, 1989)
e entropy cost: c(t) = tlogt (Fudenberg and Levine, 1995),

General C function used in

e Mattsson and Weibull (2002), Hofbauer and Sandholm (2002),
van Damme and Weibull (2002)



The Triple Equivalence

Theorem (Anderson, de Palma, and Thisse, 1992): The following are
equivalent

(i) p has a Luce representation
(ii) p has a logit representation
(#i) p has an entropy APU representation

Comments:

o Another application to game theory: Quantal Response Equilibrium
(McKelvey and Palfrey, 1995, 1998) uses logit



Additive Perturbed Utility

TheoremT(Fudenberg, lijima, and Strzalecki, 2015): The following are
equivalent under Positivity:

(i) p has an APU representation
(ii) p satisfies Acyclicity'
(iii) p satisfies Ordinal AT

Comments:

o Weaker forms of Acyclicity if ¢ is allowed to depend on A or on z
(Clark, 1990; Fudenberg, lijima, and Strzalecki, 2014)

e The model explains any p if ¢ is allowed to depend on both A and z

e Hedging against ambiguity interpretation (Fudenberg, lijima, and
Strzalecki, 2015)



FEuvidence

e In experiments (Agranov and Ortoleva, 2017; Dwenger, Kubler, and
Weizsacker, 2013) subjects are willing to pay money for an “objective”
coin toss

e So “objective” coin better than “mental” coin

e No room in above models for this distinction...



Summary

e Models so far
— Random Utility
— Learning

Attention

Deliberate Randomization

o lecture 2 uses these as building blocks to study dynamic choices



Lecture 2 on Stochastic Choice

Tomasz Strzalecki

Hotelling Lectures in Economic Theory
Econometric Society European Meeting, Lisbon, August 25, 2017



Plan

Purpose: Overview where the field is and where it seems to be going

Lecture 1: Static Choice

— Random Utility (and Discrete Choice)

— Learning, Attention, Deliberate Randomization

Lecture 2: Dynamic Choice

— Dynamic Random Utility
— Dynamic Discrete Choice
— Drift-Diffusion Models



Basic Model (with two periods)

e In period t = 0 have pg with a RU representation with utility Ug(xo)
e In period t = 1 have p; with a RU representation with utility Ul(xl)

e Uy and U are possibly correlated

— preferences are somewhat stable over time

— “persistent types” in dynamic games/mechanism design/taxation

Question: What does this assume about behavior?

Answer: Selection on Unobservables/History Dependence



History Dependence

If political preferences persistent over time, expect history dependence:

p(R2020|R2016) > p(R2020]D2016)

History independence only if preferences completely independent over time



Types of History Dependence (Heckman, 1981)

1. Choice Dependence: A consequence of the informational asymmetry
between the analyst and the agent

— Selection on unobservables
— Utility is serially correlated (past choices partially reveal it)

2. Consumption Dependence: Past consumption changes the state of
the agent

— Habit formation or preference for variety (preferences change)
— Experimentation (beliefs change)

Questions:
e How to put this into the model?
e What happens if we ignore this?
e How to distinguish between the two?



Dynamic Decisions

Decision Trees: x; = (z;, At41)

— Choice today leads to an immediate payoff and a menu for tomorrow

Examples:

— fertility and
schooling choices
(Todd and Wolpin,
2006)

~ engine replacement
(Rust, 1987)

— patent renewal
(Pakes, 1986)

— occupational
choices (Miller,
1984)

patent expires




Primative

e The analyst observes the conditional choice probabilities p;(-|ht—1)

— at each node of a decision tree

e Dynamic Discrete Choice literature

— typically for a fixed tree

e Decision Theory literature

— typically across decision trees



Full model (with two periods)

In addition, it is often assumed that:

o In period 0 the agent’s utility is

00(20,;41) = ﬁo(ZO) + 0Eq |:maX ﬁ1(21)1|

z1€EA]

e (i is private information in t =0

e (i is private information in t = 1 (so may be unknown in t = 0)

Question: What do these additional assumptions mean?
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Deciston Trees
Time: t =0,1
Per-period outcomes: Z

Decision Nodes: A; defined recursively:

e period 1: menu A; is a subset of X; :=Z
e period 0: menu Ag is a subset of X := Z x A3

pairs xo = (2o, A1) of current outcome and continuation menu

Comment: Everything extends to finite horizon by backward induction;
infinite horizon—need more technical conditions (a construction similar to
universal type spaces)



Conditional Choice Probabilities
p is a sequence of history-dependent choice distributions:

period 0: for each menu Ap, observe choice distribution
po(:; Ao) € A(Ao)

period 1: for each menu A; and history hO that leads to menu Aj, observe
choice distribution conditional on h°

p( Aclh®) € A(A)

L2/ RRREEERERRRE period-0 histories
Ho = {h® = (Ao, x0) : po(x0, Ag) > 0}
Ho(Ap) - vovenee is set of histories that lead to menu A;

Ho(A1) = {h0 = (Ao, Xx0) € Ho : xo = (20, A1) for some zy € Z}



Dynamic Random Utility
Definition: A DRU representation of p consists of
e a probability space (2, F,P)
e a stochastic process of utilities U, : Q = RX
such that for all xg € Ag
po(x0, Ao) = P [C(x0, Ao)]
and for all x; € A; and histories h° € Ho(A1),
p1(x1, Arlh°) = P [C(x1, A1)|C(hO)]

where C(x¢, At) :={w e Q: Ut,w(xt) > Utw(yt) for all y; € A;}

o for technical reasons allow for ties and use tie-breaking



History Independence

General idea:

e Agent's choice history h® = (Ag, xo) reveals something about his
period-0 private information, so expect p1(:|h°) to depend on h°

e But dependence cannot be arbitrary: some histories are equivalent as
far as the private information they reveal

e The axioms of Frick, lijima, and Strzalecki (2017)

— Identify two types of equivalence classes of histories

— Impose history independence of p; within these classes



Contraction History Independence

Definition: History (Ao, xo) is contraction equivalent to (By, xo) if
(i) Ao C Bo

(i3) po(x0, Ao) = po(x0, Bo)

Axiom (Contraction History Independence): If (Ao, xp) is contraction
equivalent to (Bg, x0), then

p1(+; -|Ao; x0) = p1(+; | Bo, x0)



Example

2 convenience stores (A & B)
Stable set of weekly customers with identical preferences
Week 0 market shares:

milk type share at B

milk type share at A

whole 40% whole 40%
29 60% 2% 35%
0 0 1% 25%

Alice and Bob buy whole milk in week 0

Claim: If in week 1 all types of milk available at both stores, expect
Alice and Bob’s choice probabilities to be the same



Example

Why?
e We have same information about Alice and Bob:

e Possible week-0 preferences:

— Alice: w>=2>=1lorw>=1=2o0orl>=w>2

- Bob: w>=2>1orw>1>2
e So in principle learn more about Bob

e But condition (7i) of the axiom says

po(wl{w,1,2}) = po(w|{w,2}) = 0.4

so no customers have ranking 1 > w > 2!



Adding Lotteries

Add lotteries: X; = A(Z X A¢41), assume each utility function is vNM
e Helps formulate the second kind of history-independence
o Makes it easy to build on the REU axiomatization
e Helps overcome the limited observability problem
— not all menus observed after a given history; how to impose axioms?

e Helps distinguish choice-dependence from consumption-dependence

hO = (AQ,XQ) VS hO = (Ao,Xo,Zo)



Dynamic Random Ezxpected Utility

First, assume away consumption dependence and allow only for choice
dependence

p1(+(Ao, X0, 20)) = p1(-I(Ao, %0, 20))

Theorem? (Frick, lijima, and Strzalecki, 2017): p has a DREU
representation if and only it satisfies

— REU axioms in each period

Contraction History Independence
~ Linear History Independencef

~ History-Continuity!



How to incorporate Dynamic Optimality?
e In the definition above, no structure on the family (U;)

Definition: p has an Evolving Utility representation if it has a DREU
representation where the process (U;) satisfies the Bellman equation

Ut(zs, Aty1) = Gie(z:) + 0E | max 0t+1(Xt+1)’gt

Xe+1€AL 41

for § > 0 and a G-adapted process of vNM utilities &, : Q — R?

Question: What are the additional assumptions?

Answer:

e Option value calculation (Preference for Flexibility)

¢ Rational Expectations (Sophistication)



Simplifying assumption: No selection

Simplifying Assumption:
1. The payoff in t = 0 is fixed

2. There is no private information in t =0

What this means:
e Choices in t =0:
— are deterministic

— can be represented by a preference A; 7o By

e Choices in t = 1:

— are random, represented by p;
— are history-independent

— t = 0 choices do not reveal any information



Preference for Flexibility

Definition: —y has an option-value representation if there exists a random
u1 : Q — RZ such that

Uo(Al) == Eo [max ﬁl(Zl):|
z21€A;

Axiom (Preference for Flexibility): If AD B, then A 7o B

Theorem’ (Kreps, 1979): - has an option-value representation iff it
satisfies Completeness, Transitivity, Preference for Flexibility, and
Modularity?

Comments:
e In econometrics Uy is called the consumer surplus

e To improve the uniqueness properties, Dekel, Lipman, and Rustichini
(2001); Dekel, Lipman, Rustichini, and Sarver (2007) specialize to
choice between lotteries, X1 = A(Z;)



Rational Expectations
Specify to X; = A(Z1) and suppose that

e o has an option-value representation (Q, F,Po, u1)

¢ p1 has a REU representation with (Q, F, Py, u;)
Definition: (2o, p1) has Rational Expectations iff Py = P;
Axiom (Sophistication)': For any is a menu without ties’ AU {x}

AU{x} =0 A<= pi(x,AU{x}) >0

Theorem? (Ahn and Sarver, 2013): (2o, p1) has Rational Expectations iff
it satisfies Sophistication.

Comment: Relaxed Sophistication (= or <) pins down either an
unforeseen contingencies model or a pure freedom of choice model



Identification of Beliefs

Theorem? (Ahn and Sarver, 2013): If (2o, p1) has Rational Expectations,
then the distribution over cardinal utilities vy is uniquely identified.
Comments:

e Just looking at p; only identifies the distribution over ordinal risk
preferences (Gul and Pesendorfer, 2006)

e Just looking at 7o identifies even less (Dekel, Lipman, and Rustichini,
2001)

o But jointly looking at the evaluation of a menu and the choice from
the menu helps with the identification



Putting Selection Back In

¢ In general, want to relax the simplifying assumption

— in reality there are intermediate payoffs
— and informational asymmetry in each period
— choice is stochastic in each period

— and there is history dependence

e To characterize the evolving utility model need to add Preference for
Flexibility and Sophistication

— but those are expressed in terms of -
— when the simplifying assumption is violated we only have access to pg

— Frick, lijima, and Strzalecki (2017) find a way to extract 7o from pyg



Passive and Active Learning

Evolving Utility: randomness in choice comes from changing tastes

Passive Learning: randomness in choice comes from random signals

— tastes are time-invariant, but unknown &, = E[i|G;] for some
time-invariant vNM utility & : Q — R?

To characterize the passive learning model, need to add a
“martingale” axiom

The paper also relaxes consumption-independence and characterizes
habit-formation and active learning (experimentation) models
— parametric models of active learning used by, e.g., Erdem and Keane
(1996), Crawford and Shum (2005)

Uniqueness of the utility process, discount factor, and information



Related Work

The Bayesian probit model Natenzon (2016) can be viewed as a
model of a sequence of static choice problems where choice
probabilities are time dependent

Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2017) also
study a sequence of static choice problems using a Luce-like model

Gabaix and Laibson (2017) use a model of gradual learning to
microfound “as-if” discounting and present bias

Lu and Saito (2016) study t = 0 choices between consumption stream

Krishna and Sadowski (2012, 2016) characterize a class of models
similar to Evolving Utility by looking at menu-preferences



Preference for making choices late

e Positive value of information: desire to delay the choice as late as
possible to capitalize on incoming information (unless there is a cost)

y

{y: 2} >

Theorem': If p has an Evolving Utility represetation, then absent ties’
oA, (A, A ) = 1
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DDC model

DDC: There is a process of shocks & : Q — R*t s.t.

Vt(Zt, At+1) = <Vt(Zt) + 5E |: max Vt+]_(X1_-+1)|gt:|> + ggznAH—l)

Xt+1€AL+1

where

— V¢ are deterministic

— G is generated by &;



Special cases of DDC

Aye.B .
and V0B e i d.

° gEZuAH-l)
— shocks to actions
— | will also refer to it as i.i.d. DDC

— p is history independent

~(z¢,A ~(z:,B ~
N EE A1) _ €§ t,Bt11) _. eit

— shocks to payoffs
— allows for serial correlation of &;

— p is a special case of evolving utility



Dynamic logit
A special case of i.i.d. DDC where €; are distributed extreme value

Very tractable due to the “log-sum” expression for “consumer surplus”

Vi(A¢r1) = log Z eviri(xei)

Xt+1€A+1

(This formula is also the reason why nested logit is so tractable)

Dynamic logit is a workhorse for estimation

— e.g., Miller (1984), Rust (1989), Hendel and Nevo (2006),
Gowrisankaran and Rysman (2012)



Axiomatization (Fudenberg and Strzalecki, 2015)
Axiom (Recursivity):

pe((ze, Ar+1), {(2t, Aev1), (26, Be1)}) = pe((2t, Bev1), {(2e, Aev1), (2e, Beta)]
)

Pe+1(At+1, Arp1 U Be1) 2> pey1(Betr, A1 U Beya)
Axiom (Weak Preference for Flexibility): If A;11 2 Bty1, then

pt((ze, Ar+1), {(2t, Aev1), (26, Be1)}) = pe((2e, Bev1), {(2e, Aev1), (2e, Bet1)]

Comments:

o Recursivity leverages the “log-sum” expression
o Preference for flexibility is weak because support of €; is unbounded

e Also, identification results, including uniqueness of ¢



Models that build on Dynamic Logit

e View €; as errors, not utility shocks

— Fudenberg and Strzalecki (2015): errors lead to “choice aversion”

- Ke (2016): a dynamic model of mistakes

e Dynamic attribute rule

— Gul, Natenzon, and Pesendorfer (2014)



Questions about DDC

o Characterization of the general i.i.d. DDC model? General DDC?

— In general, no formula for the “consumer surplus”, but the theorem of
Williams—Daly—Zachary says that the choice probabilities are the
derivative of the “social surplus” (Chiong, Galichon, and Shum, 2016)

— It is an envelope-theorem result, like the Hotelling lemma

— It ties together choices in different time periods so conceptually related
to Sophistication, Recursivity, and the axiom of Lu (2016)

e There is a vast DDC literature on identification (Manski, 1993; Rust,
1994; Magnac and Thesmar, 2002; Norets and Tang, 2013)

— 6 not identified unless make assumptions about “observable attributes’

— How does this compare to the “menu variation” approach



Properties of 1.1.d. DDC

Key Assumption: Shocks to actions, €§Zt’At“) and EEZ“B*“) are i.i.d.

regardless of the nature of the menus A;11 and Biq1

Theorem (Fudenberg and Strzalecki, 2015; Frick, lijima, and Strzalecki,
2017): If p has a i.i.d. DDC representation with § < 1, then

po(AP™e (AT, Af*e}) < §

Intuition:

e The agent gets the € not at the time of consumption but at the time
of decision (even if the decision has only delayed consequences)

e So making decisions early allows him to get the maxe earlier

Question: How much does this result extend beyond i.i.d. ?
e Mixture models: Kasahara and Shimotsu (2009)



Modeling Choices

e DRU: so far few convenient parametrization (Pakes, 1986) but

— bigger menus w/prob. 1
— late decisions w/prob. 1

e i.i.d. DDC: statistical tractability, but

~ bigger menus w/prob. € (3,1)
~ late decisions w/prob. € (0, 1)

Comments:

e i.i.d. DDC violates a key feature of Bayesian rationality: positive
option value

o Does this mean the model is misspecified?

— Maybe not as a model of (potentially behavioral) consumers
— But what about profit maximizing firms?

— biased parameter estimates?



Modeling Choices

Comments:

o Note that in the static setting i.i.d. DC is a special case of RU

— though it has its own problems (blue bus/red bus)

e But in the dynamic setting, i.i.d. DDC is outside of DRU!

e Negative option value is not a consequence of history independence

— no such problem in the Evolving Utility model with i.i.d utility

e It is a consequence of shocks to actions vs shocks to payoffs
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Decision Times

New Variable: How long does the agent take to decide?
Time: 7 =[0,00) or T ={0,1,2,...}
Observe: Joint distribution p € A(A x T)

Question:

e Are fast decisions “better” or “worse” than slow ones?



Decision Times

Intuitions:

e More time = more information = better decisions
e But time is costly, so speed-accuracy tradeoff

— Want to stop early if get an informative signal — selection effect

Comment: These two effects push in opposite directions. Which one wins?

Stylized fact: Decreasing accuracy: fast decisions are “better”

o Well established in perceptual tasks, where “better” is objective

e Also in experiments where subjects choose between consumption items



Experiment of Krajbich, Armel, and Rangel (2010)

X: 70 different food items

Step 1: Rate each x € X on the scale -10, ..., 10

Step 2: Choose from A = {x, y} (100 different pairs)

— record choice and decision time

Step 3: Draw a random pair and get your choice



08

07

06

Percent of higher-ranked choices

05

Quintile of response time

(based on data from Krajbich, Armel, and Rangel, 2010)



Model




Model

S --- set of unknown states

p € A(S) --- prior belief

v:S — RX ... state-dependent utility function

(Gt) - -+ information of the agent (filtration)

T --- stopping time (with respect to G;)

Conditional on stopping, the agent maximizes expected utility

choice, = argmax, 4 E[v(x)|G]

So the only problem is to choose the stopping time



Optimal Stopping Problem

The agent chooses the stopping time optimally

max E[v(choice;)] — C(7)

Comments:
e (G:) and T generate a joint distribution of choices and times

~ conditional on the state p° € A(Ax T)
— unconditional (averaged out according to p) p € A(Ax T)
e Even though (G;) is fixed, there is an element of optimal attention

— Waiting longer gives more information at a cost
— Choosing 7 is like choosing the distribution over posteriors p

— How close is this to the static model of optimal attention?



Optimal Stopping: Further Assumptions

Continuous time, linear cost C(t) = ct
Binary choice A= {x,y}
s = (u(x), u(y)) € R?
Signal: G; is generated by (G, G}) where
Gf=t-u(x)+Bf and Gl =t-uly)+ B/

and By, B{ are Brownian motions; often look at G; := G} — G}
Two classes of priors:

— Binary: the state is (A, 0) or (0, \) with equal probabilities

— Normal (independent):

U(X) ~ N(MOaag) and U(y) ~ N(:ano-(z))



Binary Prior

Theorem (Wald, 1945): With binary prior the optimal strategy in the
stopping model takes a boundary-hitting form: there exists b > 0 such that

x if G =b

=inf{t >0: |G| >b choice, 1=
T {t=0:[G = b} {yifG:—b




Binary Prior

Theorem (Wald, 1945): With binary prior the optimal strategy in the
stopping model takes a boundary-hitting form: there exists b > 0 such that

x if G-=0b

=inf{t >0: |G| >b choice, 1=
T {t=0:[G = b} {yifG:—b

:
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Binary Prior

Theorem (Wald, 1945): With binary prior the optimal strategy in the
stopping model takes a boundary-hitting form: there exists b > 0 such that

x if G-=0b

=inf{t >0: |G| >b choice, 1=
T {t=0:[G = b} {yifG:—b




Drift-Diffusion Models

The boundary-hitting model is called a Drift-Diffusion Model

Most often used as a reduced-form model

— No optimization problem, just a boundary-hitting exercise

Brought to the psychology literature by Stone (1960) and Edwards
(1965) to study perception; memory retrieval (Ratcliff, 1978)

Closed-form solutions for choice probabilities (logit) and expected
decision time



Accuracy

Definition: Accuracy is the probability of making the correct choice

a(t) := P[choice(T) = argmax,c4 i(x)|T = t]

Problem: In DDM «(t) is constant in t, so the model does not explain
the stylized fact

Intuition:
e Unconditional on stopping:

— higher t = more information = better accuracy

e But t is not chosen at random: it depends on information

— stop early after informative signals

e The two effects balance each other out perfectly!



Drift-Diffusion Models

Many ad-hoc extensions, in particular time-varying boundary b(t)

x if G = b(7)

T:=inf{t >0: |G > b(t)} choice(7) := {y if G, — —b(r)

Theorem (Fudenberg, Strack, and Strzalecki, 2017): Conditional on state

increasing increasing
accuracy « is ¢ decreasingp iff boundary b is ¢ decreasing

constant constant

Comment: Unconditional on state—analogous relation but need to look
at a different monotonicity condition on b



Normal Prior

Question: How to microfound such non-constant boundaries? Do they
correspond to any particular optimization problem?

Theorem (Fudenberg, Strack, and Strzalecki, 2017): In the Normal
optimal stopping problem the optimal behavior leads to decreasing
accuracy (unconditional on state)

Intuition: Decreasing Boundary. Suppose GX ~ G} after a long t

o With a binary prior agent thinks: “the signal must have been noisy”
— so she doesn't learn anything = she continues

e With a Normal prior agent thinks: “l must be indifferent”
— so she learned a lot = she stops



Other Boundaries

Question: How to microfound other non-constant boundaries? Do they
correspond to any particular optimization problem?

Theoremi (Fudenberg, Strack, and Strzalecki, 2017): For any b there
exists a (nonlinear) cost function C such that b is the optimal solution to
the stopping problem



Optimal Attention

e Pure optimal stopping problem (given a fixed (G;), choose 7):

T

maxE [ma;E[ﬁ(xﬂgT]] — C(7)
X€e
e Pure optimal attention (given a fixed 7, choose (G;))

maxcE [%E[a(x)y@]} ()

e Joint optimization

THE%E [TSA(E[U(X)QT]} - C(7,G)



Optimal Attention

In the pure optimal attention problem information choice is more
flexible than in the pure stopping problem

— The agent can focus on one item, depending on what she learned so far

Woodford (2014) solves a pure optimal attention problem

— with a constant boundary

— shows that optimal behavior leads to a decreasing choice accuracy

Joint optimization puts the two effects together

In experiments eye movements are often recorded (Krajbich, Armel,
and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu, Camerer,
and Rangel, 2012)

— Do the optimal attention models predict them?



Optimal Attention

e Liang, Mu, and Syrgkanis (2017) study the pure attention as well as
joint optimization models

— Find conditions under which the dynamically optimal strategy is close
to the myopic strategy

e Che and Mierendorff (2016) study the joint optimization problem in a

Poisson environment with two states; find that coexistence of two
strategies is optimal:

— Contradictory strategy that seeks to challenge the prior

— Confirmatory strategy that seeks to confirm the prior



Other Models

Ke and Villas-Boas (2016) joint optimization with two states per
alternative in the diffusion environment

Steiner, Stewart, and Mat&jka (2017) optimal attention with the
mutual information cost and evolving (finite) state

Branco, Sun, and Villas-Boas (2012); Ke, Shen, and Villas-Boas
(2016) application to consumers searching for products

Epstein and Ji (2017): ambiguity averse agents may never learn

Gabaix and Laibson (2005): a model of bounded rationality



Optimal Stopping vs Optimal Attention

In the pure optimal stopping problem (G;) is fixed like in the passive
learning model

But there is an element of optimal attention

— Waiting longer gives more information at a cost
— Choosing 7 is like choosing the distribution over posteriors p
— Morris and Strack (2017) show all i can be obtained this way if |S| = 2

So in a sense this boils down to a static optimal attention problem

— With a specific cost function: Morris and Strack (2017) show that the
class of such cost functions is equal to separable cost functions as long
as the flow cost depends only on the current posterior

Hébert and Woodford (2017) show a similar reduction to a static
separable problem in the joint optimization problem

— Converse to their theorem?



Other Questions

Question:

e Are “close” decisions faster or slower?

Intuitions:

e People “overthink” decision problems which don't matter,
“underthink” those with big consequences

e It is optimal to think more when options are closer (higher option
value)

Experiment: Oud, Krajbich, Miller, Cheong, Botvinick, and Fehr (2014)



Other questions

Question: How does the decision time depend on the menu size?

e “Hick—Hyman Law:" the decision time increases logarithmically in the
menu size

— At least for perceptual tasks (Luce, 1986)
e Frick and lijima (2015) introduce a model that explains the monotonic
relationship (among other things)

— The decision maker is “conflicted” about the choice

— Different “selves” are playing a Poisson competition game



Other questions

Question: Are fast decisions impulsive/instinctive and slow
deliberate/cognitive?

¢ Rubinstein (2007); Rand, Greene, and Nowak (2012); Krajbich,
Bartling, Hare, and Fehr (2015); Caplin and Martin (2016)

Question: Use reaction times to understand how people play games?

e Costa-Gomes, Crawford, and Broseta (2001); Johnson, Camerer, Sen,
and Rymon (2002); Brocas, Carrillo, Wang, and Camerer (2014)



Final Slide: Some Open Questions

A general model of learning with menu-dependent information

Comparison of DRU and DDC

— Are the parameter estimates indeed biased?

— Comparison of identification results (“menu” vs “attribute” variation)

How to extend other static models to decision trees?

— E.g, Random Attention, Perturbed Utility

General analysis of DDM and related models

— Without relying on distributional assumptions

— Axioms?



Thank you!



Appendix: additional material
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Random Utility (with a tiebreaker)

To break ties, Gul and Pesendorfer (2006) introduce a tie-breaker
w: Q — RX, (which is always a strict preference)

The agent first maximizes u and if there is a tie, it gets resolved
using w

e For any v € RX let M(v, A) = argmax,4 v(x)

C""(x,A) :={w e Q:x e M(w,, M(u,, A))}

Definition: p has a random utility representation with a tie-breaker if there
exists (Q, F,P), u,w : Q — RX such that P(Tie") = 0, and

p(x, A) = P(C"¥(x, A)).



FEquivalence

Theorem: The following are equivalent:

e p has a random utility representation

e p has a random utility representation with a tiebreaker
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Axiom (Block and Marschak, 1960) For all x € A
S (-1)BVp(x, A) > 0.
BDA

Axiom (McFadden and Richter, 1990) For any n, for any sequence
(Xl, Al), R (X,,, An) such that x; € A;

n n
ZP(XI;AI) < Tgéz ]lci(x,,A,)(i)
i=1 i=1

Axiom (Clark, 1996) For any n, for any sequence (xi, A1), ..., (Xn, An)
such that x; € A;, and for any sequence of real numbers A\1,..., A\,

n n
D Ailczgoa) = 0= Niplxi, A)) > 0.
i=1 i=1

Remark: The last two axioms refer to the canonical random preference
representation where € is the set of all strict preference relations and the
mapping - is the identity



Characterization
Theorem: The following are equivalent
(i) p has a random utility representation
(ii) p satisfies the Block—Marschak axiom
(iii) p satisfies the McFadden—Richter axiom

(iv) p satisfies the Clark axiom.

Comments:

e The equivalence (i)-(ii) was proved by Falmagne (1978) and Barbera
and Pattanaik (1986).

e The equivalences (i)—(%ii) and (i)—(iv) were proved by McFadden and
Richter (1990, 1971) and Clark (1996) respectively. They hold also
when X is infinite (Clark, 1996; McFadden, 2005; Chambers and
Echenique, 2016).
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Stochastic Preference

Definition: x =° y iff p(x, A) > p(y, A) for A= {x,y}

Comments:

e In Fechnerian models, where v is part of the representation

— the Luce model
- i.i.d. DC
- APU

the following is true p 72° q iff v(p) > v(q)

e In fact, in Luce we have x =° y iff p(x,A) > p(y,A) for all A
— this characterizes the Luce model under a richness condition
(Gul, Natenzon, and Pesendorfer, 2014)



Weak Stochastic Transitivity

Definition: p satisfies Weak Stochastic Transitivity iff 7-° is transitive

Satisfied by:

— Fechnerian models

Can be violated by:
— RU (Marschak, 1959)
— random attention

— deliberate randomization (Machina, 1985)

Stylized Fact: Weak Stochastic Transitivity is typically satisfied in lab
experiments (Rieskamp, Busemeyer, and Mellers, 2006)



Forms of Stochastic Transitivity

Let p = p(x,{x,¥}), a = p(y, {y, 2}). r = p(x,{x, z}).
Definition: Suppose that p,q > 0.5. Then p satisfies
— Weak Stochastic Transitivity if r > 0.5
— Moderate Stochastic Transitivity if r > min{p, q}

— Strong Stochastic Transitivity if r > max{p, q}



Fechnerian Models
Definition: p has a Fechnerian representation if there exist a utility
function v : X — R and a strictly increasing transformation function F

such that
p(x, {x,y}) = F (v(x) = v(y))

Comments:
e This property of p depends only on its restriction to binary menus

e The following models are Fechnerian
— Luce
- APU
- i.i.d. DC
e RU in general is not Fechnerian because it violates Weak Stochastic
Transitivity (Marschak, 1959)

References: Davidson and Marschak (1959); Block and Marschak (1960);
Debreu (1958); Scott (1964)
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