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Multiplier preferences

Expected Utility inconsistent with observed behavior

We (economists) may not want to fully trust any probabilistic
model.

Hansen and Sargent: “robustness against model misspecification”



Multiplier preferences

Unlike many other departures from EU, this is very tractable:

Monetary policy — Woodford (2006)
Ramsey taxation — Karantounias, Hansen, and Sargent (2007)
Asset pricing: — Barillas, Hansen, and Sargent (2009)

— Kleshchelski and Vincent (2007)
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Multiplier preferences

But open questions:

— Where is this coming from?
What are we assuming about behavior (axioms)?

— Relation to ambiguity aversion (Ellsberg’s paradox)?

— What do the parameters mean (how to measure them)?



Sources of Uncertainty
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Sources of Uncertainty

Small Worlds (Savage, 1970; Chew and Sagi, 2008)
Issue Preferences (Ergin and Gul, 2004; Nau 2001)

Source-Dependent Risk Aversion (Skiadas)
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Main Result

Within each source (urn) multiplier preferences are EU

But they are a good model of what happens between the sources



Criterion



Savage Setting

S — states of the world
Z — consequences

f:S—Z-act



Expected Utility

u:Z — R — utility function

q € A(S) — subjective probability measure
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Expected Utility

u:Z — R — utility function
q € A(S) — subjective probability measure

V(f) = Jsu(fs)dq(s) — Subjective Expected Utility
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Multiplier preferences
V() = mingea(s) [ u(£)dpls) + 0 R(pl)

Kullback-Leibler divergence
relative entropy:

R(pllg) = [ log (§2) dp

q — reference measure (best guess)
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Multiplier preferences

V() = mingea(s) [ u(£)dpls) + 0 R (pl)

6 € (0, 0]
0 T= model uncertainty |
f = 0o = no model uncertainty

q — reference measure (best guess)



Observational Equivalence

When only one source of uncertainty
Link between model uncertainty and risk sensitivity:
Jacobson (1973); Whittle (1981); Skiadas (2003)

dynamic multiplier preferences = (subjective) Kreps-Porteus-Epstein-Zin



Observational Equivalence

Multiplier Criterion EU Criterion

Y

— u and 6 not identified

— Ellsberg’s paradox cannot be explained



Observational Equivalence

N u for 6 = oo.
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Observational Equivalence

N u for 6 = oo.

bolu) = {—exp (— g) for 8 < o0,

¢g o U is more concave than u
more risk averse



Observational Equivalence

Dupuis and Ellis (1997)

p@iAns/SU(fs)dP()Jr@RPIIq </¢00U ) da(s )



Observational Equivalence

Observation (a) If = has
a multiplier representation
with (0, u, q), then it has a
EU representation with

(¢ 0 u, q).

EU preferences
D
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Observation (a) If = has
a multiplier representation
with (0, u, q), then it has a
EU representation with

(¢ 0 u, q).

EU preferences
\ > |

multiplier preferences

Observation (b) If - has
a EU representation with
(u,q), where u is bounded
from above, then it has
a multiplier representation
with (0,%‘1 o u,q) for any
6 € (0, 00].

EU preferences bounded from above

(-

multiplier preferences



Boundedness Azxiom

Axiom There exist z < z' in Z and a non-null event E, such that
wEz < 7' forallwe Z



Enriching the Domain: Two
Sources



Enriching Domain

f:S — Z — Savage act (subjective uncertainty)
A(Z) — lottery (objective uncertainty)

f:S — A(Z) - Anscombe-Aumann act
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Axiomatization



Variational Preferences

Multiplier preferences are a special case of variational preferences

V(f) = min )/L‘l(fs)dp(s) +(p)

pEA(S
axiomatized by Maccheroni, Marinacci, and Rustichini (2006)

Multiplier preferences:

ViF) = min [ a(5)dp(s) + OR (el 0



MMR Azxioms

A1l (Weak Order) The relation 7 is transitive and complete



MMR Azxioms

A2 (Weak Certainty Independence) For all acts f, g and lotteries
m,m and for any a € (0,1)
af +(1—a)r Zag+ (1 —a)r

)

af + (1 —a)r’ = ag+ (1 — )’



MMR Azxioms

A3 (Continuity) For any f, g, h the sets
{a€0,1] | af + (1 —a)g  h} and
{a €[0,1] | h 7 af + (1 — a)g} are closed



MMR Azxioms

A4 (Monotonicity) If (s) 77 g(s) for all s € S, then f 7 g



MMR Azxioms

A5 (Uncertainty Aversion) For any « € (0,1)

frg=af+(1—a)g o f



MMR Azxioms

A6 (Nondegeneracy) f - g for some f and g



MMR Azxioms

Axioms A1-A6
|}

Variational Preferences



MMR Azxioms

A7 (Unboundedness) There exist lotteries 7’ > 7 such that, for all
a € (0,1), there exists a lottery p that satisfies either
m=ap+ (1 —a)r’ orap+ (1 —a)r =

A8 (Weak Monotone Continuity) Given acts f, g, lottery T,
sequence of events {E,}n>1 with E, | ()

f - g= wE,f - g for large n



MMR Azxioms

Axioms A1-A6
|}

Variational Preferences

Axiom A7 = uniqueness of the cost function c(p)

Axiom A8 = countable additivity of p's.



Axioms for Multiplier
Preferences
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P6 (Savage’s Small Event Continuity)

For all Savage acts f > g and m € A(Z), there exists a finite
partition {E1, ..., Ep} of S such that for all i € {1,...,n}

f >~ mEg and wEf > g.



Main Theorem

Axioms Al-A8, together with P2, P4, and P6, are necessary and
sufficient for 7~ to have a multiplier representation (6, u, q).

Moreover, two triples (¢, ¢, q") and (6", u”, q") represent the
same multiplier preference = if and only if ¢ = ¢” and there exist
a>0and B € R such that v/ = au” + 3 and 6’ = af”.



Proof |dea



Proof: Step 1

2~ on lotteries — identify u (uniquely)

MMR axioms — V/(f) = I (a(f))

I defines a preference on utility acts x,y : § = R

x ZFy iff1(x) = I(y)

Where I(x + k) = I(x) + k for x: S — R and k € R

(Like CARA, but utility effects, rather than wealth effects)



Proof: Step 2

P2, P4, and P6, together with MMR axioms imply other Savage
axioms, so

f = g iff [¢(£)dq(s) > [4(gs)da(s)
7' = iff (7)) > p(w) iffa(n’) > a().

1) and @ are ordinally equivalent, so there exists a strictly
increasing function ¢, such that ¢ = ¢ odil.

f Z g iff [ ¢(@(f)) da(s) > [ 6(a(es)) da(s)

Because of Schmeidler’s axiom, ¢ has to be concave.



Proof: Step 3

x Zhy iff [é(x)dg > [é(y)dq
iff (Step 1) x+ k Z* y + k iff [¢(x+ k)dg > [¢(y + k)dq

So =* represented by ¢*(x) := ¢(x + k) for all k

~



Proof: Step 4

So functions ¢ are affine transformations of each other
Thus, ¢(x + k) = a(k)p(x) + B(k) for all x, k.

This is Pexider equation. Only solutions are ¢y for 6 € (0, oo]



Proof: Step 5

frge / 60 (@(%)) da(s) > / o0 (@(gs)) da(s)



Proof: Step 5
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Proof: Step 5

Frg e [n@f)dals) > [ onla(en) dals
From Dupuis and Ellis (1997)

¢91(/5¢eoﬁ(r‘s)dq(5)> = p@iAns/SU(é)dp(S)Jr@R(plq)

So

min, [ a(£)dp(s) + OR(pl) = min [ ale.) dp(s) + OR(pla)



Interpretation



V(f) = | do(u(f)) da(s)

(1) u(z) =z =1

(2) u(z) = —exp(—z) 0 = o0
Anscombe-Aumann Savage

u is identified Only ¢g o u is identified

(1) #(2) 1)=(2)



Ellsberg Paradox
v = [ o X u@)iz) ) aats)

Objective gamble: 310+ 1 -0 — ¢g(3 - u(10) + 1 - u(0))

Subjective gamble:
FE E°

objective ~ subjective

For 0 = oo
objective > subjective

For 6 < oo



Measurement of Parameters



Ellsberg Paradoxr — Measuring Parameters

vin = [ ¢e<§ W2(2) ) dals)

Certainty equivalent for the objective gamble:

o (u(x)) = ¢ (5 - u(10) + 3 - u(0))
Certainty equivalent for the subjective gamble:

oo (u(y)) = 3¢9 (u(10)) + 39 (u(0))

X — curvature of u

(x —y) — value of 6



Sources of Uncertainty



Multiplier Preferences

vin = [ ¢9<zz: W2E(2) ) dals)

Anscombe-Aumann Expected Utility

vin = [ (L uat@) dats)

z

vin - [ (gqﬁa(u(z))fs(z)) da(s)



Second Order FExpected Utility

Neilson (1993)

Ergin and Gul (2009)

vin= [, ¢( . wlrtens) dqa(sa)) das(ss)



Conclusion

Axiomatization of multiplier preferences

Multiplier preferences measure the difference of attitudes toward
different sources of uncertainty

Measurement of parameters of multiplier preferences



Thank you
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