Axiomatic Foundations of Multiplier Preferences

Tomasz Strzalecki

Expected Utility inconsistent with observed behavior

We (economists) may not want to fully trust any probabilistic model.

Hansen and Sargent: "robustness against model misspecification"

Unlike many other departures from EU, this is very tractable:

Monetary policy - Woodford (2006)

Ramsey taxation – Karantounias, Hansen, and Sargent (2007)

Asset pricing: - Barillas, Hansen, and Sargent (2009)

Kleshchelski and Vincent (2007)

But open questions:

→ Where is this coming from? What are we assuming about behavior (axioms)?

But open questions:

→ Where is this coming from? What are we assuming about behavior (axioms)?

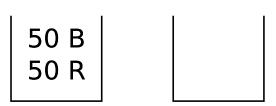
→ Relation to ambiguity aversion (Ellsberg's paradox)?

But open questions:

→ Where is this coming from? What are we assuming about behavior (axioms)?

→ Relation to ambiguity aversion (Ellsberg's paradox)?

 \rightarrow What do the parameters mean (how to measure them)?



50 B 50 R

? B

50 B 50 R

? B ? R

B

R

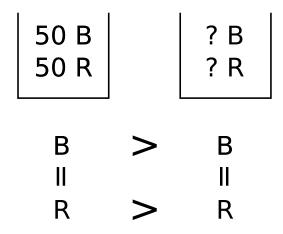
50 B 50 R

? B ? R

B II B

50 B 50 R	? B ? R
В	В
II R	R

50 B	? B
50 R	? R
B	B
II	II
R	R



50 B 50 R

? B ? R

Dow ? B Jones ? R

Dow Jones

Nikkei

Small Worlds (Savage, 1970; Chew and Sagi, 2008)

Issue Preferences (Ergin and Gul, 2004; Nau 2001)

Source-Dependent Risk Aversion (Skiadas)

Main Result

Within each source (urn) multiplier preferences are EU

Main Result

Within each source (urn) multiplier preferences are EU

But they are a good model of what happens between the sources

Criterion

Savage Setting

S – states of the world

Z – consequences

 $f: S \rightarrow Z - act$

 $u: Z \to \mathbb{R}$ – utility function

 $q \in \Delta(S)$ – subjective probability measure

$$u: Z \to \mathbb{R}$$
 – utility function

$$q \in \Delta(S)$$
 – subjective probability measure

$$V(f) =$$
 — Subjective Expected Utility

$$u: Z \to \mathbb{R}$$
 – utility function

$$q \in \Delta(S)$$
 – subjective probability measure

$$V(f) = f_s$$
 — Subjective Expected Utility

$$u:Z \to \mathbb{R}$$
 – utility function

$$q \in \Delta(S)$$
 – subjective probability measure

$$V(f) = u(f_s)$$
 — Subjective Expected Utility

$$u: Z \to \mathbb{R}$$
 – utility function

$$q \in \Delta(S)$$
 – subjective probability measure

$$V(f) = \int_{S} u(f_s) dq(s)$$
 – Subjective Expected Utility

$$V(f) = \int u(f_s) \, \mathrm{d} \rho(s)$$

$$V(f) = \min_{p \in \Delta(S)} \int u(f_s) \, \mathrm{d}p(s)$$

$$V(f) = \min_{p \in \Delta(S)} \int u(f_s) dp(s) + \theta R(p||q)$$

$$V(f) = \min_{p \in \Delta(S)} \int u(f_s) \, \mathrm{d}p(s) + \theta \, R(p\|q)$$

Kullback-Leibler divergence relative entropy: $R(p\|q) = \int \log\left(\frac{\mathrm{d}p}{\mathrm{d}a}\right) \, \mathrm{d}p$

$$V(f) = \min_{p \in \Delta(S)} \int u(f_s) dp(s) + \theta R(p||q)$$

$$V(f) = \min_{p \in \Delta(S)} \int u(f_s) \, \mathrm{d} p(s) + \theta \, R(p \| q)$$

$$\theta \in (0, \infty]$$

$$\theta \uparrow \Rightarrow \mathsf{model \ uncertainty} \downarrow$$

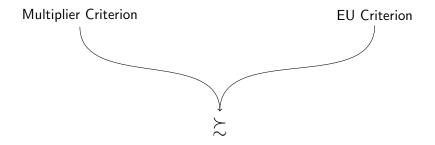
$$\theta = \infty \Rightarrow \mathsf{no \ model \ uncertainty}$$

q – reference measure (best guess)

Observational Equivalence

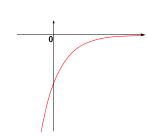
When only one source of uncertainty Link between model uncertainty and risk sensitivity: Jacobson (1973); Whittle (1981); Skiadas (2003)

 $dynamic\ multiplier\ preferences = (subjective)\ Kreps-Porteus-Epstein-Zin$

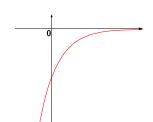


- \rightarrow u and θ not identified
- \rightarrow Ellsberg's paradox cannot be explained

$$\phi_{\theta}(u) = \begin{cases} -\exp\left(-\frac{u}{\theta}\right) & \text{for } \theta < \infty, \\ u & \text{for } \theta = \infty. \end{cases}$$



$$\phi_{\theta}(u) = \begin{cases} -\exp\left(-\frac{u}{\theta}\right) & \text{for } \theta < \infty, \\ u & \text{for } \theta = \infty. \end{cases}$$



 $\phi_{ heta} \circ u$ is more concave than u more risk averse

Dupuis and Ellis (1997)

$$\min_{p \in \Delta S} \int_{S} u(f_s) \, \mathrm{d}p(s) + \theta R(p \| q) = \phi_{\theta}^{-1} \left(\int_{S} \phi_{\theta} \circ u(f_s) \, \mathrm{d}q(s) \right)$$

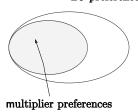
Observation (a) If \succsim has a multiplier representation with (θ, u, q) , then it has a EU representation with $(\phi_{\theta} \circ u, q)$.

EU preferences multiplier preferences

Observation (a) If \succeq has a multiplier representation with (θ, u, q) , then it has a EU representation with $(\phi_{\theta} \circ u, q)$.

Observation (b) If \succsim has a EU representation with (u,q), where u is bounded from above, then it has a multiplier representation with $(\theta,\phi_{\theta}^{-1}\circ u,q)$ for any $\theta\in(0,\infty]$.

EU preferences



EU preferences bounded from above

multiplier preferences

Boundedness Axiom

Axiom There exist $z \prec z'$ in Z and a non-null event E, such that $wEz \prec z'$ for all $w \in Z$

Enriching the Domain: Two

Sources

Enriching Domain

$$f: S \rightarrow Z$$
 – Savage act (subjective uncertainty)

$$\Delta(Z)$$
 – lottery (objective uncertainty)

$$f:S o \Delta(Z)$$
 – Anscombe-Aumann act

Anscombe-Aumann Expected Utility

$$f_s \in \Delta(Z)$$

$$\bar{u}(f_s) = \sum_z u(z) f_s(z)$$

Anscombe-Aumann Expected Utility

$$f_s \in \Delta(Z)$$
 $ar{u}(f_s) = \sum_{z} u(z) f_s(z)$

$$V(f) = \int_{S} \bar{u}(f_s) \, \mathrm{d}q(s)$$

Axiomatization

Variational Preferences

Multiplier preferences are a special case of variational preferences

$$V(f) = \min_{p \in \Delta(S)} \int \bar{u}(f_s) dp(s) + c(p)$$

axiomatized by Maccheroni, Marinacci, and Rustichini (2006)

Multiplier preferences:

$$V(f) = \min_{p \in \Delta(S)} \int \bar{u}(f_s) \, \mathrm{d}p(s) + \theta R(p \| q)$$

A1 (Weak Order) The relation \succsim is transitive and complete

A2 (Weak Certainty Independence) For all acts f, g and lotteries π, π' and for any $\alpha \in (0,1)$

$$\alpha f + (1 - \alpha)\pi \succsim \alpha g + (1 - \alpha)\pi$$

$$\alpha f + (1 - \alpha)\pi' \succsim \alpha g + (1 - \alpha)\pi'$$

A3 (Continuity) For any f, g, h the sets $\{\alpha \in [0,1] \mid \alpha f + (1-\alpha)g \succsim h\}$ and $\{\alpha \in [0,1] \mid h \succsim \alpha f + (1-\alpha)g\}$ are closed

A4 (Monotonicity) If $f(s) \succsim g(s)$ for all $s \in S$, then $f \succsim g$

A5 (Uncertainty Aversion) For any $\alpha \in (0,1)$

$$f \sim g \Rightarrow \alpha f + (1 - \alpha)g \succsim f$$

A6 (Nondegeneracy) $f \succ g$ for some f and g

Axioms A1-A6

Variational Preferences

A7 (Unboundedness) There exist lotteries $\pi' \succ \pi$ such that, for all $\alpha \in (0,1)$, there exists a lottery ρ that satisfies either $\pi \succ \alpha \rho + (1-\alpha)\pi'$ or $\alpha \rho + (1-\alpha)\pi \succ \pi'$.

A8 (Weak Monotone Continuity) Given acts f, g, lottery π , sequence of events $\{E_n\}_{n\geq 1}$ with $E_n\downarrow\emptyset$

$$f \succ g \Rightarrow \pi E_n f \succ g$$
 for large n

Axiom A7 \Rightarrow uniqueness of the cost function c(p)Axiom A8 \Rightarrow countable additivity of p's.

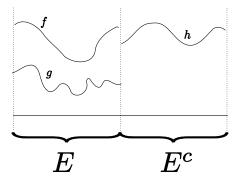
Axioms for Multiplier

Preferences

P2 (Savage's Sure-Thing Principle)

For all events E and acts $f, g, h, h' : S \rightarrow Z$

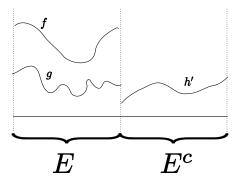
$$fEh \succsim gEh \Longrightarrow fEh' \succsim gEh'$$



P2 (Savage's Sure-Thing Principle)

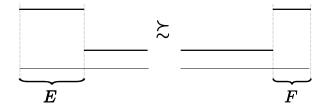
For all events E and acts $f, g, h, h' : S \rightarrow Z$

$$fEh \succsim gEh \Longrightarrow fEh' \succsim gEh'$$



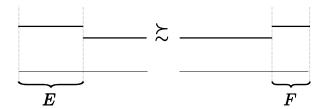
P4 (Savage's Weak Comparative Probability)

For all events E and F and lotteries $\pi \succ \rho$ and $\pi' \succ \rho'$ $\pi E \rho \succsim \pi F \rho \Longrightarrow \pi' E \rho' \succsim \pi' F \rho'$



P4 (Savage's Weak Comparative Probability)

For all events E and F and lotteries $\pi \succ \rho$ and $\pi' \succ \rho'$ $\pi E \rho \succsim \pi F \rho \Longrightarrow \pi' E \rho' \succsim \pi' F \rho'$



P6 (Savage's Small Event Continuity)

For all Savage acts $f \succ g$ and $\pi \in \Delta(Z)$, there exists a finite partition $\{E_1, \ldots, E_n\}$ of S such that for all $i \in \{1, \ldots, n\}$

$$f \succ \pi E_i g$$
 and $\pi E_i f \succ g$.

Main Theorem

Axioms A1-A8, together with P2, P4, and P6, are necessary and sufficient for \succeq to have a multiplier representation (θ, u, q) .

Moreover, two triples (θ', u', q') and (θ'', u'', q'') represent the same multiplier preference \succeq if and only if q' = q'' and there exist $\alpha > 0$ and $\beta \in \mathbb{R}$ such that $u' = \alpha u'' + \beta$ and $\theta' = \alpha \theta''$.

Proof Idea

 \succeq on lotteries \rightarrow identify u (uniquely)

MMR axioms $\rightarrow V(f) = I(\bar{u}(f))$

I defines a preference on utility acts $x, y : S \to \mathbb{R}$

 $x \gtrsim^* y \text{ iff } I(x) \geq I(y)$

Where I(x + k) = I(x) + k for $x : S \to \mathbb{R}$ and $k \in \mathbb{R}$

(Like CARA, but utility effects, rather than wealth effects)

P2, P4, and P6, together with MMR axioms imply other Savage axioms, so

$$f \succsim g \; \mathrm{iff} \; \int \psi(f_s) \, \mathrm{d}q(s) \geq \int \psi(g_s) \, \mathrm{d}q(s)$$

$$\pi' \succsim \pi \text{ iff } \psi(\pi') \ge \psi(\pi) \text{ iff } \bar{u}(\pi') \ge \bar{u}(\pi).$$

 ψ and \bar{u} are ordinally equivalent, so there exists a strictly increasing function ϕ , such that $\psi=\phi\circ \bar{u}$.

$$f \succsim g \text{ iff } \int \phi(\bar{u}(f_s)) \, \mathrm{d}q(s) \ge \int \phi(\bar{u}(g_s)) \, \mathrm{d}q(s)$$

Because of Schmeidler's axiom, ϕ has to be concave.

$$x \succeq^* y \text{ iff } \int \phi(x) dq \ge \int \phi(y) dq$$

iff (Step 1)
$$x + k \succsim^* y + k$$
 iff $\int \phi(x+k) \, \mathrm{d}q \geq \int \phi(y+k) \, \mathrm{d}q$

So
$$\succsim^*$$
 represented by $\phi^k(x) := \phi(x+k)$ for all k

So functions ϕ^k are affine transformations of each other

Thus,
$$\phi(x+k) = \alpha(k)\phi(x) + \beta(k)$$
 for all x, k .

This is Pexider equation. Only solutions are ϕ_{θ} for $\theta \in (0, \infty]$

$$f\succsim g \Longleftrightarrow \int \phi_{ heta}ig(ar{u}(f_{s})ig)\,\mathrm{d}q(s) \geq \int \phi_{ heta}ig(ar{u}(g_{s})ig)\,\mathrm{d}q(s)$$

$$f\succsim g \Longleftrightarrow \int \phi_{ heta}ig(ar{u}(f_{s})ig)\,\mathrm{d}q(s)\geq \int \phi_{ heta}ig(ar{u}(g_{s})ig)\,\mathrm{d}q(s)$$

From Dupuis and Ellis (1997)

$$\phi_{ heta}^{-1}\Bigg(\int_{S}\phi_{ heta}\circar{u}(f_{s})\,\mathrm{d}q(s)\Bigg)=\min_{p\in\Delta S}\int_{S}ar{u}(f_{s})\,\mathrm{d}p(s)+ heta R(p\|\,q)$$

Proof: Step 5

$$f\succsim g \Longleftrightarrow \int \phi_{ heta}ig(ar{u}(f_{s})ig)\,\mathrm{d}q(s)\geq \int \phi_{ heta}ig(ar{u}(g_{s})ig)\,\mathrm{d}q(s)$$

From Dupuis and Ellis (1997)

$$\phi_{\theta}^{-1} \left(\int_{S} \phi_{\theta} \circ \bar{u}(f_{s}) \, \mathrm{d}q(s) \right) = \min_{p \in \Delta S} \int_{S} \bar{u}(f_{s}) \, \mathrm{d}p(s) + \theta R(p \| q)$$

So

$$\min_{p \in \Delta S} \int \bar{u}(f_s) \, \mathrm{d}p(s) + \theta R(p\|q) \geq \min_{p \in \Delta S} \int \bar{u}(g_s) \, \mathrm{d}p(s) + \theta R(p\|q)$$

Interpretation

$$V(f) = \int \phi_{\theta} (u(f_s)) \, \mathrm{d}q(s)$$

(1)
$$u(z) = z$$
 $\theta = 1$
(2) $u(z) = -\exp(-z)$ $\theta = \infty$

Anscombe-Aumann Savage
$$u \text{ is identified} \qquad \qquad \text{Only } \phi_\theta \circ u \text{ is identified} \\ (1) \neq (2) \qquad \qquad (1) = (2)$$

Ellsberg Paradox

$$V(f) = \int \phi_{\theta} \left(\sum_{z} u(z) f_{s}(z) \right) \mathrm{d}q(s)$$

Objective gamble: $\frac{1}{2} \cdot 10 + \frac{1}{2} \cdot 0 \rightarrow \phi_{\theta} \left(\frac{1}{2} \cdot u(10) + \frac{1}{2} \cdot u(0) \right)$

Subjective gamble:
$$\longrightarrow \frac{1}{2}\phi_{ heta}ig(u(10)ig) + \frac{1}{2}\phi_{ heta}ig(u(0)ig)$$

For
$$\theta = \infty$$
 objective \sim subjective For $\theta < \infty$ objective \succ subjective

Measurement of Parameters

Ellsberg Paradox - Measuring Parameters

$$V(f) = \int \phi_{\theta} \left(\sum_{z} u(z) f_{s}(z) \right) \mathrm{d}q(s)$$

Certainty equivalent for the objective gamble:

$$\phi_{\theta}(u(x)) = \phi_{\theta}(\frac{1}{2} \cdot u(10) + \frac{1}{2} \cdot u(0))$$

Certainty equivalent for the subjective gamble: $\phi_{\theta} \big(u(y) \big) = \frac{1}{2} \phi_{\theta} \big(u(10) \big) + \frac{1}{2} \phi_{\theta} \big(u(0) \big)$

$$x \to \text{curvature of } u$$

 $(x - y) \to \text{value of } \theta$

Sources of Uncertainty

Multiplier Preferences

$$V(f) = \int \phi_{\theta} \bigg(\sum_{z} u(z) f_{s}(z) \bigg) \, \mathrm{d}q(s)$$

Anscombe-Aumann Expected Utility

$$V(f) = \int \left(\sum_{z} u(z) f_{s}(z)\right) dq(s)$$

$$V(f) = \int \left(\sum_{z} \phi_{\theta}(u(z)) f_{s}(z)\right) dq(s)$$

Second Order Expected Utility

Neilson (1993)

$$V(f) = \int \phi\bigg(\sum u(z)f_s(z)\bigg)\,\mathrm{d}q(s)$$

Ergin and Gul (2009)

$$V(f) = \int_{S_b} \phi \left(\int_{S_a} u(f(s_a, s_b)) \, \mathrm{d}q_a(s_a) \right) \, \mathrm{d}q_b(s_b)$$

Conclusion

Axiomatization of multiplier preferences

Multiplier preferences measure the difference of attitudes toward different sources of uncertainty

Measurement of parameters of multiplier preferences

Thank you

BARILLAS, F., L. P. HANSEN, AND T. J. SARGENT (2009):