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Overview

In this four-day mini-course, I will cover some important mathematical topics that
are relevant for the material taught in the first-year macro sequence. On the first
two days I will go over basic results in the theory of ordinary differential equations.
On the second day I will also cover results on difference equations, which are very
similar to differential equations with most results about the latter extending to the
former. On the third day I will present solution methods for (linearized) systems of
expectational difference equations, that is, difference systems involving expectations
of future realizations of variables. These types of systems are particularly relevant
for the important class of dynamic stochastic general equilibrium (DSGE) models, an
important feature of which is the forward-looking nature of agents’ policies; you will
learn about DSGE models in the third quarter of the macro sequence. On the fourth
day I will cover the theory of optimal control, which is an important method for
solving (deterministic) optimization problems in continuous time. Optimal control
theory is relevant for the second part of the macro sequence on economic growth
as theories of economic growth have typically been formulated in continuous rather
than discrete time, in contrast to most other areas of macroeconomics.

I will not cover important mathematical topics that are explicitly covered in class
during the first-year sequence. In particular, I do not cover at all dynamic program-
ming, by far the most important and widely used optimization method in economics
(both in discrete and in continuous time); it deserves a course of its own, the first
quarter of the macro sequence.

It is simply not possible for me to cover all of the aforementioned topics in full
detail and for you to absorb all of this material, especially if you have not seen it be-
fore, within just four days of class. So, a large portion of the material in these notes
will not be covered in detail or at all in class. I wrote the following chapters, which
are quite comprehensive and include examples and economic applications chosen
for their relevance for the first-year macro sequence, with the intention that they
serve as a good reference for you during your first year and beyond. With this goal
in mind, I also include an index of key terms so that you can use these notes as a ref-
erence more effectively. The starred sections and the last chapter on loglinearization
methods (relevant for the third quarter of the macro sequence) will not be covered
in class; they are included for completeness and as a point of reference for further
study.

v



vi OVERVIEW

I have also prepared short, informal problem sets for you to work on after each
of the first three days of class. The problem sets are strictly optional; the course is
not graded in any explicit or implicit manner. The exercises are meant to incentivize
and help guide your review of the material after each day of class. The problem
sets are not to be turned in; we will go over the problems and their solutions in the
beginning of class the following day.

I have consulted a number of textbooks and papers in preparing these notes.
These sources are all included in the bibliography and I provide a list with my main
sources for the material in each chapter at the end of this booklet, but I provide
minimal citation of my sources within the text (with the exception of the sources
of included figures) both for ease of exposition and due to the standard nature of
the material covered (so that my source of the material, usually a textbook, does not
necessarily reflect origin of the concept or application).



Chapter 1

Continuous Dynamical Systems:
Solution Methods

This chapter discusses solution methods for deterministic ordinary differential equa-
tion (ODE) systems.

1.1 Introduction

Most models in macroeconomics are formulated in discrete time. That is, there are
time periods t = 0, 1, 2, . . . , where the unit of time is in general arbitrary and can re-
fer to a day, a month, or a decade. This arbitrariness suggests that it may be helpful,
especially when looking at model dynamics, to make the time unit as small as pos-
sible. Thus, a number of models in macroeconomics are formulated in continuous
time. When we compare continuous-time dynamical systems with discrete-time dy-
namical systems in Chapter 3, we will see that continuous systems have a number of
advantages: they allow for a more flexible analysis of dynamics and allow for explicit
solutions in a wider set of circumstances. This is particularly so for heterogeneous-
agent models. In addition, a number of “pathological” results of models formulated
in discrete time disappear once we move to the corresponding continuous-time ver-
sion of the model.

Consider a function x : T →R, where T is an interval in R. Given a real number
∆t, function x satisfies

x(t +∆t)− x(t) = G(x(t), t,∆t)

where G(x(t), t,∆t) is a real-valued function. Divide both sides of this equation by
∆t and consider the limit as ∆t→ 0. We obtain the differential equation

ẋ(t) ≡ dx(t)
dt

= g(x(t), t) (1.1)

where

g(x(t), t) ≡ lim
∆t→0

G(x(t), t,∆t)
∆t

(1.2)

1



2 CHAPTER 1. ODE SYSTEMS: SOLUTION METHODS

is assumed to exist.
More generally, a differential equation is an equation for an (unknown) func-

tion of one or more independent variables (in the example above, the independent
variable is time t) that relates the values of the function, the values of the (pos-
sibly higher-order) derivatives of the function, and the values of the independent
variables. If the function has a single independent variable it is called an ordinary
differential equation (ODE). If, instead, the function is multivariate we have a par-
tial differential equation. We will only cover ordinary differential equations in math
camp.

A differential equation is explicit if it is of the form

x(n)(t) = g(x(n−1)(t), . . . , x(t), t) (1.3)

that is, the highest-order derivative of the differential equation is separated from the
other terms. In contrast, an implicit differential equation has the form

g(x(n)(t), x(n−1)(t), . . . , x(t), t) = 0 (1.4)

We will only deal with explicit ODEs in math camp.
A differential equation is of order n if the highest derivative appearing in the

equation is of order n. It is autonomous if it does not explicitly depend on time (the
independent variable) as a separate argument. Otherwise, the differential equation
is called nonautonomous. For example,

ẋ(t) = g(x(t)) (1.5)

is an autonomous first-order ODE.
A differential equation is linear if it takes the form

an(t)x(n)(t) + an−1(t)x(n−1)(t) + · · ·+ a1(t)ẋ(t) + a(t)x(t) + b(t) = 0 (1.6)

where a(t), a1(t), . . . , an(t) and b(t) are arbitrary functions of time. It is nonlinear oth-
erwise. Clearly, a linear differential equation is autonomous if and only if it has
constant coefficients. Finally, a linear differential equation as in (1.6) with b(t) = 0∀ t
is called homogeneous.

Boundary conditions are needed to pin down a specific solution to an ODE of
the form (1.3) or (1.4). In general, we need n boundary conditions to pin down a
solution to an ODE of order n. The most common form of an ODE problem is the
initial value problem, whereby an ODE, for example, a first-order ODE of the form
(1.1) is specified together with an initial condition x(0) = x0. A solution to this initial
value problem is a function x : T →R that satisfies (1.1) for all t ∈ T with x(0) = x0.
A family of functions {x : T → Rsuch thatx satisfies(1.1) ,∀ t ∈ T } is often referred
to as a general solution, while an element of this family that satisfies the boundary
condition is called a particular solution.
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Important ODE problems in economics are associated with boundary conditions
other than initial values. For example, a terminal value condition specifies what the
value of x(t) should be at some finite horizon T < ∞ and a transversality condition
specifies what x(t) should be at the limit as t→∞.

An explicit ODE of the form (1.3) can be generalized by taking x(t) and g(·) to
be vector-valued functions, that is, x(t) : R→ R

m. We then have an m-dimensional
system of differential equations of the form

x
(n)
1 (t)

x
(n)
2 (t)
...

x
(n)
m (t)

 =


g1(x(n−1)(t), . . . , x(t), t)
g2(x(n−1)(t), . . . , x(t), t)

...
gm(x(n−1)(t), . . . , x(t), t)

 (1.7)

where xi(t) refers to the ith component of vector x(t).
A first-order ODE system of the form

ẋ1(t)
ẋ2(t)
...

ẋm(t)

 =


g1(x(t), t)
g2(x(t), t)

...
gm(x(t), t)

 (1.8)

will be the main focus of our analysis in this chapter. It may at first appear that (1.8)
is a restrictive special case of (1.7) but this is not true. Any higher-order differential
equation or system can be transformed into an equivalent first-order ODE system by
introducing additional variables in vector x(t). For a concrete example, consider the
second-order differential equation

1
2
b2x′′(t) + ax′(t)− ρx(t) = 0 (1.9)

where b, a, and ρ are constants. Let y(t) denote a two-dimensional vector with y1(t) =
x(t) and y2(t) = x′(t). Then, (1.9) is equivalent to the first-order system[

y′1(t)
y′2(t)

]
=

[
0 1
2ρ
b2 −2a

b2

]
·
[
y1(t)
y2(t)

]
(1.10)

Thus, there is no loss of generality in restricting our attention to (1.8). Inciden-
tally, in the same vein one can transform any nonautonomous system like (1.8) into
an equivalent autonomous system by introducing the independent variable, t, as an
additional component of vector x(t). However, the latter transformation is not that
useful. As we will see in Section 1.3, only autonomous systems have explicit solu-
tions. In addition, only autonomous systems have steady states (equilibrium points)
in general and are thus amenable to stability analysis, which is the focus of Chapter
2.
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1.2 Basic Results in Linear Algebra

In this section we briefly review some concepts and results from linear algebra the-
ory that we will use in our analysis of ODE systems in the following sections of this
chapter.

1.2.1 Linear Map, Change of Basis

Recall from the micro part of math camp the definition of a vector space. Important
examples of vector spaces include the Euclidean space R

n for n ∈ N, the set of all
infinite sequences R∞, and the set of all functions from an arbitrary set S to R (in all
of these examples the underlying scalar field is R).

A (linear) subspace W ⊂ V of a vector space is a subset of V that contains the zero
vector, and for any x, y ∈W , x + y ∈W and λx ∈W , where λ is an arbitrary scalar. A
subspace of a vector space is itself a vector space.

Let V be a vector space and let S be a nonempty subset of V . The span of S,
denoted by span(S), is defined to be the set consisting of all linear combinations of
vectors in S. By convention, span(∅) = {0}. A vector space is finite-dimensional if it is
spanned by a finite set of vectors, and infinite-dimensional otherwise.

A set of vectors v1, ,v2, . . . , vn ∈ V are linearly independent if a1v1+a2v2+· · ·+anvn =
0, where a1, , a2, . . . , an are scalars, implies that a1 = a2 = · · · = an = 0. If a set B ⊂ V
consists of linearly independent vectors and B spans V then each element v ∈ V can
be uniquely expressed as a linear combination of the elements in B. Such a subset is
called a basis of V . If V is finite-dimensional and B is a basis of V with n elements,
then V is said to have dimension n. For example, the standard or Euclidean basis of
R
n are the n n-dimensional vectors (1,0, . . . ,0), (0,1, . . . ,0),. . . , (0,0, . . . ,1).

Definition 1.1 (Linear map). A linear map from a vector space V to a vector space U
is a function L : V →U such that

• L(v +w) = L(v) +L(w), ∀ v,w ∈ V (additivity)

• L(λv) = λL(v), ∀ v ∈ V , and λ ∈ F , where F is the underlying scalar field of V
(homogeneity of degree 1)

A linear ODE system, that is, a system of the form (1.8) where each function
gi(·, ·) is a linear function of its arguments, is an example of a linear map. It maps a
function (an element of a vector space of differentiable functions) to its derivative.

Once the bases of the (finite-dimensional) vector spacesU and V in the definition
above are specified, a matrix can capture all of the information of, and thus be iden-
tified with, map L. Assume V ⊆ R

m with basis {vj}mj=1 and U ⊆ R
n with basis {ui}ni=1.

Then, the n-by-m matrix P = [pij] that corresponds to map L under the specified
bases satisfies

L(vj) = p1ju1 + · · ·+ pnjun ∀j = 1, . . . ,m (1.11)
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Once we know P we can find the value of L(v) for any v ∈ V in the following
way. Let c = [cj]

m
j=1 = c(v, {vj}mj=1) be the m-dimensional vector that represents vector

v under the specified basis: v = c1v1 + · · ·+ cmvm. Then,

L(v) = L(c1v1 + · · ·+ cmvm)
= c1L(v1) + · · ·+ cmL(vm)

=

 m∑
j=1

p1jcj

u1 + · · ·+

 m∑
j=1

pnjcj

un
= P c (1.12)

where the last line uses the convention that the ith component of a vector is the
coefficient of the ith element of a given basis of its vector space when the vector is
written as a linear combination of that basis.

An implication of this is that any (autonomous) linear ODE system can be written
as

ẋ(t) = Ax(t) (1.13)

where x(t) ∈ R
n, n ∈ N, A is an n × n matrix, and x(t) is the representation of the

underlying vector with respect to the standard Euclidean basis of Rn, or as

ż(t) =D z(t) (1.14)

for a different n × n matrix D where z is the representation of the same underlying
vector with respect to another basis of Rn. Matrices A and D, which represent the
linear map M(t) : Rn → R

n associated with the same ODE system under different
bases, are called similar.

How are the representations x(t) and z(t) of equations (1.13) and (1.14) related
to each other? In our discussion of equations (1.11) and (1.12), take V = U = R

n,
so that m = n, and {ui}ni=1 = {ei}ni=1 (the standard Euclidean basis) and {vj}nj=1 are two
different bases of Rn, associated with representations x(t) and z(t), respectively. That
is, map L now represents the change of basis from basis {vj}nj=1 to the standard basis
of Rn (note that map L is different from map M associated with the ODE system in
(1.13) and (1.14)). Then, z is precisely vector c in equation (1.12), so that

x(t) = P z(t) (1.15)

where the jth column of P corresponds to the standard Euclidean representation of
basis vector vj .

1.2.2 Eigenvalues and eigenvectors

An n× n (square) matrix A is nonsingular or invertible if its determinant is not zero,
det A , 0, or equivalently if the only n × 1 column vector v that is a solution to
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equation

Av = 0 (1.16)

is the zero vector v = (0, . . . ,0)T . In other words, the columns of an invertible matrix
are linearly independent. If A is invertible, there exists matrix A−1 such that A−1A =
In, where In is the n×n identity matrix. Conversely, if there exists a nonzero solution
v to (1.16) or if det A = 0, then A is singular and does not have an inverse.

A complex number λ is an eigenvalue of A if

det (A−λIn) = 0 (1.17)

pA(λ) = det (A−λIn) is a polynomial of order n in λ, called the characteristic polyno-
mial of A. Thus, λ is an eigenvalue of A if and only if it is a root of its characteristic
polynomial. A is invertible if and only if none of its eigenvalues are equal to zero.

Given the eigenvalue λ of A, the n× 1 nonzero column vector vλ is an eigenvector
of A if

(A−λIn)vλ = 0 (1.18)

Clearly, vλ can only be unique up to a normalization, since if vλ satisfies (1.18) then
so does avλ for any a ∈R.

Lemma 1.1. If λ1, . . . ,λk are k distinct eigenvalues of square matrix A, so that λi , λj for
all i , j, then the associated eigenvectors vλ1

, . . . , vλk are linearly independent.

From this lemma, it follows that if A has n distinct eigenvalues, then the associ-
ated eigenvectors form a basis of Rn, called the eigenbasis for A. A key result is the
following.

Theorem 1.1 (Spectral Decomposition). Suppose n × n matrix A has n distinct
eigenvalues. Then, A satisfies

A = PDP −1 (1.19)

where D is the diagonal matrix with the eigenvalues λ1, . . . ,λn on the diagonal, and
P = (vλ1

, . . . , vλn) is a matrix with the corresponding eigenvectors as its columns.

Going back to our discussion of change of basis in the previous subsection, P,
whose jth column is the (standard Euclidean representation of the) jth eigenvector,
is associated with the linear map representing the change of basis from the eigenba-
sis to the standard Euclidean basis of Rn.

The space spanned by the eigenvectors corresponding to a subset of eigenvalues
is called the eigenspace of matrix A associated with these eigenvalues and is a linear
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subspace of Rn. In Section 2.2, we will see that the stable subspace of a (homoge-
neous) linear system is precisely the eigenspace associated with the system’s negative
eigenvalues (eigenvalues with negative real parts, if complex).

Finally, note that when A has repeated eigenvalues, diagonalization is still pos-
sible through the use of generalized eigenvectors, which satisfy (A − λIn)kvλ = 0 for
some k ∈N. However, in this case matrix D will be block diagonal rather than di-
agonal (it has the Jordan form). We will not cover this case in detail, although it is
straightforward.

A final result we will make use of is summarized in the following Lemma:

Lemma 1.2. Let A be an n × n matrix with eigenvalues λ1, . . . ,λk and m1, . . . ,mk denote
the multiplicity of the corresponding eigenvalue. Then,

(i) The determinant of A equals the product of its eigenvalues, repeated according to
their multiplicity,

det(A) = λm1
1 · · ·λ

mk
k (1.20)

(ii) The trace of A, tr(A) (defined to be the sum of the diagonal entries of A), equals the
sum of its eigenvalues, repeated according to their multiplicity.

(iii) Let pA(λ) = λn + c1λ
n−1 + · · ·+ cn be the characteristic polynomial of A. Then

c1 = −tr(A)
cn = (−1)ndet(A)

In particular, when A is a 2× 2 matrix with eigenvalues λ1 and λ2,

pA(λ) = λ2 − tr(A)λ+ det(A) (1.21)
= λ2 − (λ1 +λ2)λ+λ1λ2 (1.22)

1.3 Solutions of Autonomous Linear Systems

In this section, we will cover solutions to autonomous linear differential equations
and systems.

1.3.1 Homogeneous Systems

A linear first-order differential equation has the general form

ẋt = a(t)x(t) + b(t) (1.23)

Recall that a linear differential equation (or ODE system) is autonomous if and only
if it has constant coefficients. Thus, an autonomous first-order linear differential
equation takes the general form
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ẋ(t) = ax(t) + b (1.24)

Let us first consider the homogeneous linear equation

ẋ(t) = ax(t) (1.25)

We can divide both sides with x(t), integrate with respect to t, and recall that for
x(t) , 0, ∫

ẋ(t)
x(t)

dt = log |x(t)|+ c0 and∫
adt = at + c1

where c0 and c1 are constants of integration. Now, taking exponents on both sides,
we obtain the general solution to (1.25),

x(t) = cexp(at) (1.26)

where c is a constant of integration combining c0 and c1. Suppose we are given an
initial condition x(0) = x0. This condition then pins down the unique value of the
constant of integration. In this case, c = x0.

We can generalize this simple derivation to arrive at the solution of a homoge-
neous first-order system of the form

ẋ(t) = Ax(t) (1.27)

where x(t) ∈Rn and A is an n×n matrix.
Under the assumption that A has n distinct real eigenvalues, we can transform

(1.27) to an equivalent diagonal or “decoupled” system using Theorem 1.1. The
transformed diagonal system is then simply a set of independent first-order linear
homogeneous equations of the form (1.25), which have the solution (1.26) as we have
already shown.

As we discussed in the previous section, we need to perform a change of basis
from the standard Euclidean basis to the eigenbasis. The relationship between the
representation of the vector under the standard basis, x(t), and the representation
of the same vector under the eigenbasis, z(t), is once again given by equation (1.15).
We then have

ż(t) = P −1ẋ(t)
= P −1Ax(t)
= P −1AP z(t)
=Dz(t) (1.28)

whose solution is z1(t) = c1 exp(λ1t), . . . , zn(t) = cn exp(λnt), where λ1, . . . ,λn are the n
distinct eigenvalues of matrix A.

We have thus derived the following result:
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Theorem 1.2 (Solution to Homogeneous Autonomous Linear ODE Systems). Sup-
pose n×n matrix A has n distinct eigenvalues λ1, . . . ,λn. Then the unique solution to
(1.27), ẋ(t) = Ax(t), with initial value x(0) = x0 takes the form

x(t) =
n∑
j=1

cj exp(λjt)vλj (1.29)

where vλ1
, . . . , vλn are the eigenvectors corresponding to the eigenvalues λ1, . . . ,λn and

c1, . . . , cn denote the constants of integration (pinned down by the initial value condi-
tion).

Theorem 1.2 applies only when all eigenvalues ofA are real. What happens when
some of the eigenvalues are complex (with nonzero imaginary parts)? The method
and solution of Theorem 1.2 in fact still applies. Since A is a matrix with real entries,
complex eigenvalues will always come in conjugate pairs. For example, assume A
has two complex eigenvalues, λ1 = α + iµ and λ2 = α − iµ, where i ≡

√
−1 is the

imaginary unit, and vλ1
= d + if and vλ2

= d − if are the corresponding eigenvectors.
The remaining n − 2 eigenvalues of A are real. Then, standard results in the theory
of complex numbers imply that the general solution of (1.27) has the form

x(t) = c1 exp(αt)(d cos(µt)− f sin(µt))
+ c2 exp(αt)(f cos(µt) + d sin(µt))

+
n∑
j=3

cj exp(λjt)vλj

What happens when A has repeated eigenvalues? Recall our brief mention of
generalized eigenvectors and the Jordan form in the previous section. It turns out
that if A has k distinct eigenvalues λ1, . . . , λk with multiplicities m1, . . . , mk, respec-
tively, the general solution to (1.27) has the form

x(t) =
k∑
i=1

Pi(t)exp(λit)

=
k∑
i=1

mi∑
j=1

pijt
j−1 exp(λit)

where Pi(t) is a polynomial in t with vector-valued coefficients.
As will become clear later in the chapter, the case of n distinct real eigenvalues is

by far the most relevant for economic applications.

1.3.2 Nonhomogeneous Systems

Next consider the autonomous but nonhomogeneous first-order linear equation
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ẋ(t) = ax(t) + b (1.30)

To derive the solution, use the change of variables y(t) = x(t) + b
a . Writing (1.30)

in terms of y(t),

ẏ(t) = ay(t) (1.31)

which is a homogeneous linear equation, whose solution (1.26) we derived above.
Transforming the equation back into x(t), we obtain the general solution to (1.30) as

x(t) = −b
a

+ cexp(at) (1.32)

Application 1.1 (The Cobb-Douglas Version of the Solow Growth Model). Consider
the key equation of the Solow growth model

k̇(t) = sf (k(t))− δk (1.33)

with initial condition k(0) = k0 > 0. (1.33) says that capital (the capital-labor ra-
tio), k(t), which is the state variable of the model, grows by an amount equal to new
investment minus depreciation. Investment equals the exogenously given and con-
stant savings rate of the economy, s (where 0 ≤ s ≤ 1), times output at time t, f (k(t)).
Depreciation equals the exogenously given and constant depreciation rate, δ (where
0 ≤ δ ≤ 1) times the level of capital at time t.

We now solve (1.33) under the Cobb-Douglas specification for the output pro-
duction function, f (k(t)) = Ak(t)α, where 0 ≤ α ≤ 1. Thus, (1.33) becomes

k̇(t) = sAk(t)α − δk (1.34)

This is a nonlinear differential equation, so it appears that our results above are
not applicable to this problem. However, if we let x(t) ≡ k(t)1−α and express equation
(1.34) in terms of this new auxiliary variable, we get a linear differential equation.

Differentiating the definition of the auxiliary variable and applying the chain
rule, ẋ = (1−α)k−α k̇. Then (1.34) implies

ẋ
(1−α)k−α

= sAkα − δk

ẋ = (1−α)sA− (1−α)δk1−α

ẋ(t) = −(1−α)δx(t) + (1−α)sA

which is an autonomous, nonhomogeneous linear first-order differential equation in
x(t). A direct application of formula (1.32) then gives

x(t) =
sA
δ

+ cexp(−(1−α)δt) (1.35)



1.3. SOLUTIONS OF AUTONOMOUS LINEAR SYSTEMS 11

where c is the constant of integration, pinned down by the initial condition x(0) =
x0 = k1−α

0 :

x(t) =
sA
δ

+
[
x0 −

sA
δ

]
exp(−(1−α)δt) (1.36)

Expressing this in terms of k(t), we obtain the solution to our initial value prob-
lem

k(t) =
{sA
δ

+
[
k1−α

0 − sA
δ

]
exp(−(1−α)δt)

} 1
1−α

(1.37)

The solution reveals, in particular, that the economy converges to the steady-state

level of capital k̄ =
{
sA
δ

} 1
1−α and the gap between k(t) and k̄ narrows at the exponen-

tial rate (1 − α)δ. That is, less diminishing returns to capital (higher α) and slower
depreciation (lower δ) imply slower adjustment to the steady state. �

The derivation of (1.32) illustrates that nonhomogeneous linear equations and
systems, whether autonomous or nonautonomous, can be easily transformed into
homogeneous systems with a simple change of variables; yet, it is convenient to
explicitly derive the solution for nonhomogeneous systems of the form

ẋ(t) = Ax(t) +B (1.38)

where B is an n× 1 vector with constant coefficients.
It turns out that the general solution of such a system can be written as

xN (t) = xH (t) + xP (t)

where xH (t) is the general solution of the corresponding homogeneous system, ẋ(t) =
Ax(t), and xP (t) is an arbitrary particular solution of the nonhomogeneous system.
We will see in the next section that this holds for nonautonomous linear systems as
well.

Since we already know how to compute the solution to the homogeneous system,
we only need to find one particular solution of the nonhomogeneous system. An
obvious choice is the stationary solution of the system, denoted by x̄, whenever it
exists. The stationary solution by definition satisfies

ẋ|x=x = 0
⇒ Ax̄ = −B
⇒ x̄ = −A−1B

provided A is invertible (that is, it does not have any zero eigenvalues).
We then obtain the following result, a direct analog to (1.32) for systems:
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Theorem 1.3 (Solution to Nonhomogeneous Autonomous Linear ODE Systems).
Suppose n×nmatrix A has n distinct nonzero eigenvalues λ1, . . . ,λn. Then the unique
solution to (1.38), ẋ(t) = Ax(t) +B, with initial value x(0) = x0 takes the form

x(t) = x̄+
n∑
j=1

cj exp(λjt)vλj (1.39)

where x̄ = −A−1B is the unique stationary state of the system, vλ1
, . . . , vλn are the

eigenvectors corresponding to the eigenvalues λ1, . . . ,λn, and c1, . . . , cn denote the con-
stants of integration (pinned down by the initial value condition).

Application 1.2 (Liquidity Traps in the New Keynesian Model). Consider a deter-
ministic, continuous-time, linearized version of the New Keynesian model as in
Werning (2012):

ẋ(t) = γ−1 (i(t)−π(t)− r(t)) (1.40)
π̇(t) = ρπ(t)−κx(t) (1.41)
i(t) ≥ 0 (1.42)

where ρ, γ, κ > 0. As you will see in the third quarter of the macro sequence, the
key assumption behind the model is that nominal rigidities (sticky prices) imply
that inflation has an effect on equilibrium output (another way to put this is that
aggregate demand affects equilibrium output). The two key endogenous variables
are the output gap, x(t), which represents the log difference between actual output
and the hypothetical output that would prevail in an identical economy that is not
subject to nominal rigidities (that is, in which prices are fully flexible), and inflation
π(t) ≡ ṗ(t), where p(t) is an economy-wide price index. i(t) is the nominal interest
rate, so that i(t) − π(t) is, by definition, the equilibrium real interest rate. Finally,
the exogenous variable r(t) stands for the natural real interest rate, that is, the real
interest rate that would prevail in an identical economy in which prices are fully
flexible. Equation (1.40) is the Dynamic IS (DIS) equation and reflects consumers’
optimal intertemporal decision between consumption and saving. The DIS equa-
tion represents the demand side of the model. Equation (1.41) is the New Keynesian
Phillips Curve (NKPC) and represents the supply side of the model. The mone-
tary authority, which dislikes both output gaps (whether positive or negative) and
inflation (whether positive or negative), is free to choose the nominal interest rate,
subject to the constraint (1.42). Constraint (1.42), i(t) ≥ 0, is the Zero Lower Bound
(ZLB) constraint, which captures the fact that the monetary authority is unable to
set a negative nominal interest rate, or people would exchange their savings for cash,
ensuring a (net) nominal return equal to zero.

A liquidity trap refers to a situation where the natural real interest rate r(t) is
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negative. In particular, assume that, for some T > 0,

r(t) = r < 0 for 0 ≤ t < T (1.43)
r(t) = r > 0 for t ≥ T (1.44)

That is, the economy exits the liquidity trap at some (known) future date T . Also
assume that the monetary authority cannot precommit to a future course of action,
so that agents take it as given that, when the economy exits the liquidity trap at
time T , monetary policy will return to its “normal-times” optimal action, setting
i∗(t) = r(t) = r, regardless of any promises it previously made to the contrary (any
such promises are not credible). This policy is optimal at T as it implies that x(t) =
π(t) = 0 for all t ≥ T , replicating the flexible-price equilibrium. Note that policy
i(t) = r(t) is not feasible for t < T due to the ZLB constraint. Unable to do any better,
the monetary policy will set i∗(t) = 0 for t < T .1

Since we have that (x(t),π(t)) = (0,0) for all t ≥ T , we now need to solve system
(1.40)-(1.42) for t ∈ [0,T ) in order to fully characterize the dynamics of an economy
faced with a liquidity trap. Given our assumptions on the exogenous process for r(t)
and the monetary authority’s policy i∗(t) during the liquidity trap, we end up with a
terminal value problem consisting of the 2× 2 linear system

ẋ(t) = −π(t)− r (1.45)
π̇(t) = ρπ(t)−κx(t) (1.46)

for t ∈ T = [0,T ] and the terminal value condition x(T ) = π(T ) = 0. Note that we
have assumed for simplicity that γ = 1.2

First write the system in matrix form:3

[
κẋ
π̇

]
=

=A︷     ︸︸     ︷[
0 −κ
−1 ρ

][
κx
π

]
+
[
−κr

0

]
(1.47)

which reveals that our system is a 2 × 2 autonomous nonhomogeneous linear ODE
system, whose solution is given in Theorem 1.3 (with the constants of integration
now pinned down by the terminal value condition).

The characteristic polynomial of matrix A is

pA(λ) = det(A−λI2)
= λ2 − ρλ−κ (1.48)

1Cochrane (2014) has recently criticized the standard line of argument that lack of commitment
pins down (x(T ),π(T )) = (0,0) as the only possible equilibrium outcome. Also see the discussion of
monetary policy determinacy in Chapter 4.

2γ is the inverse of the intertemporal elasticity of substitution of the representative consumer.
3We have multiplied the first equation by κ as it turns out to yield simpler algebraic manipula-

tions; this step is not necessary.
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where the second line follows directly from part (iii) of Lemma 1.2. The roots of this
quadratic equation are the two eigenvalues of the system

λ+ =
1
2

(
ρ+

√
ρ2 + 4κ

)
(1.49)

λ− =
1
2

(
ρ −

√
ρ2 + 4κ

)
(1.50)

We have λ+ > 0 > λ−, since κ is a positive constant (κ reflects the degree of price
rigidity, so that κ = 0 implies no price rigidity).

Manipulating these expressions and simply recalling from Lemma 1.2 that, for a
2× 2 matrix,

pA(λ) = λ2 − tr(A)λ+ det(A) (1.51)
= λ2 − (λ+ +λ−)λ+λ+λ− (1.52)

we have λ+ +λ− = ρ, λ+λ− = −κ, and λ+ −λ− =
√
ρ2 + 4κ.

To find the eigenvectors corresponding to each eigenvalue, note that the eigen-
vector for the positive root, which can be represented as vλ+

= (v,1) after a nor-
malization (recall that one component of the eigenvector can always be normalized)
must satisfy

(A−λ+In)vλ+
= 0 (1.53)

⇒−λ+v −κ = 0 (1.54)

Using the relation λ+λ− = −κ we find that vλ+
= [λ−,1]T . Similarly, for the negative

eigenvalue we get vλ− = [λ+,1]T .
Next, we compute the steady state of the system, which corresponds to vector x

in the statement of Theorem 1.3. The steady state by definition satisfies

ẋ = 0⇒ π = −r > 0 (1.55)

π̇ = 0⇒ x =
ρ

κ
π (1.56)

Combining them, we get [
x
π

]
=

[
−ρκ r
−r

]
> 0

Note that this is the steady state associated with the system (1.45)-(1.46), not the
steady state of the model, which evolves under a different system after time T (so
that the steady state of the model is (x,π) = (0,0)).

We are now able to apply the result of Theorem 1.3, which gives a solution for
our system [

κx(t)
π(t)

]
=

[
−ρr
−r

]
+ c+ exp(λ+t)

[
λ−
1

]
+ c− exp(λ−t)

[
λ+
1

]
(1.57)
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where c+ and c− are constant of integrations pinned down by our boundary condition
(x(T ),π(T )) = (0,0). In particular,

x(T ) = 0⇒ c+λ− exp(λ+T ) + c−λ+ exp(λ−T ) = ρr (1.58)
π(T ) = 0⇒ c+ exp(λ+T ) + c− exp(λ−T ) = r (1.59)

This is a 2× 2 system of linear equations in c+ and c−, which can be easily solved
to yield

c+ =
(ρ −λ+)r

(λ− −λ+)exp(λ+T )
=

λ−r

−
√
ρ2 + 4κ

exp(−λ+T ) < 0 (1.60)

c− =
(ρ −λ−)r

(λ+ −λ−)exp(λ−T )
=

λ+r√
ρ2 + 4κ

exp(−λ−T ) < 0 (1.61)

Plugging the values for the constants back to (1.57), we get the solution to our
terminal value problem:

[
κx(t)
π(t)

]
=

[
−ρr
−r

]
+

(−)︷     ︸︸     ︷
r√

ρ2 + 4κ

[
λ2

+ −λ2
−

λ+ −λ−

][
exp(−λ−(T − t))
exp(−λ+(T − t)

]
(1.62)

We can now explore the dynamics of our system during the liquidity trap. First,
for the output gap, we can calculate the rate of change in x(t) from (1.62) as

ẋ(t) =
r

κ
√
ρ2 + 4κ

λ−λ
2
+ exp(−λ−(T − t))−

r

κ
√
ρ2 + 4κ

λ+λ
2
− exp(−λ+(T − t)) (1.63)

> 0 ∀ t ∈ [0,T )

This tells us that the output gap is negative but decreasing in absolute value during
the liquidity trap until the time it reaches t = T , at which time it becomes zero (and
stays at zero for all t ≥ T ). Also note that if, counterfactually, the economy obeyed
system (1.45)-(1.46) even after time T , the derivative computed above implies that
the output gap would keep growing to positive territory (towards positive infinity).

Now, consider the dynamics of inflation. We immediately see from (1.62) that
π(t) < 0, that is, the economy faces deflation during the liquidity trap. The rate of
change of inflation is

π̇(t) =
r√

ρ2 + 4κ
[λ+λ− exp(−λ−(T − t))−λ−λ+ exp(−λ+(T − t))]

= − κr√
ρ2 + 4κ

[exp(−λ−(T − t))− exp(−λ+(T − t))] (1.64)

> 0 ∀ t ∈ [0,T )

from which we see that π̇(T ) = 0 and, computing the second derivative of inflation,
π̈(t) < 0 for all t ≤ T . Thus, as time progresses and we get closer to the time when
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Figure 1.1: Phase diagram for a New Keynesian economy in a liquidity trap when
the monetary authority lacks policy commitment. Source: Werning (2012).

the economy exits the liquidity trap, inflation increases (decreases in absolute mag-
nitude), π̇(t) > 0, but does so at a decelerating pace, π̈(t) < 0. If, counterfactually, the
economy obeyed system (1.45)-(1.46) even after time T, inflation would go back to
negative territory after reaching π(T ) = 0, since π̇(T ) = 0 and π̈(T ) = κr < 0.

The dynamics are nicely illustrated graphically in a phase diagram, shown in Fig-
ure 1.1. This example is, therefore, a good opportunity for an introduction to graph-
ical analysis, which is particularly useful in the stability analysis of planar (2 × 2)
continuous-time systems, covered in Chapter 2.

Let’s explain the different elements of this phase diagram. System dynamics are
depicted in state space, that is, each axis represents the values that each state variable
can take (this contrasts with a graphical representation of the system where state
variables are plotted over time, that is, time is on the horizontal axis). The two blue
lines are called phase lines.4 Each line shows the combination of points that feature
no time movement in a given variable. In our case, the phase line for x corresponds

4Phase lines are also referred to as nullclines or zero-growth isoclines.
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to the points for which ẋ = 0 and the phase line for π corresponds to the points for
which π̇ = 0. As we saw in equation (1.55), π = −r for all points on the phase line for
x, so that it is a vertical line. As we saw in equation (1.56), all points on the phase
line for inflation satisfy x = ρ

κπ, so that the phase line is a straight line through the
origin with slope ρ

κ > 0. The steady state or equilibrium point of the system (1.45)-
(1.46) (which, once again, is different from the steady state of the economy which is
(0,0)) is the intersection of the two phase lines. As we saw above, both the output
gap and inflation are positive at the steady state, so that the intersection lies in the
positive quadrant.

The (π,x) plane is thus divided into four regions by the two phase lines (in non-
linear planar models the phase lines, which are curved, may intersect more than
once, in which case the plane may be divided into more regions). The little gray
arrows are called arrows of motion of the system and describe the direction of motion
of the system along each of the axes. For example, let’s consider the direction of mo-
tion in the region to the southwest of the steady state. Fix a given value for inflation
in this region. In the DIS equation (1.45), which determines the rate of change of
the output gap, we see that the derivative of x depends negatively on the level of
π. Since the value of π that we are considering is lower than the value that makes
ẋ = 0, we must have ẋ > 0. This is portrayed as an arrow pointing upwards, that is,
in the direction of increasing x. Now fix a a value for the output gap in this region.
In the New Keynesian Phillips Curve (1.46), which determines the rate of change of
inflation, we see that the derivative of π depends negatively on the level of x. Since
the value of x that we are considering is lower than the value that makes π̇ = 0, we
must have π̇ > 0. This is portrayed as an arrow pointing to the right, that is, in the
direction of increasing π.

The solid green line depicts the trajectory of the system over time (the arrows
on the line represent the direction of time). Note that, since the trajectory is in the
region to the southwest of the steady state (the point of intersection of the phase
lines), it must obey the direction of the arrows of motion of that region. Hence, we
see that both the output gap and inflation are increasing during the liquidity trap,
as we derived analytically above.

We now discuss the dynamics of an economy entering a liquidity trap. Suppose
that, for all t < 0, the economy is at its long-run steady state, (x(t),π(t)) = (0,0). At
time 0, the agents are informed of an (unanticipated) jump of the real interest rate
to the negative value r = r for all t ∈ [0,T ) and they also know with certainty that the
interest rate will jump back to its positive value r = r at time T , so that the economy
will be at its long-run steady state (0,0) at time T and stay at point (0,0) forever
after time T . What happens at time 0 when the real interest rate shock occurs? The
economy will jump from (0,0) to a point in the region to the southwest of the steady
state. This is the (unique) point that ensures that the economy will go back to point
(0,0) at T while obeying the liquidity-trap dynamics (1.45)-(1.46) in the mean time.
In other words, it is the terminal value condition that pins down the point at which
the economy will “enter” the liquidity-trap dynamics at time 0. As can been by the
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arrows of motions of the four regions in Figure 1.1, the economy could not reach
point (0,0) at time T if it jumped at time 0 to any region other than that to the
southwest of the liquidity-trap steady state.5

What are the comparative statics of (x(0),π(0)) with respect to the duration T of
the liquidity trap? The figure makes clear that, as T increases, the economy would
have to jump to more and more negative values for the output gap and inflation at
time 0 in order to still be able to reach point (0,0) at time T . That the magnitude of
the recession is increasing in the expected duration of the liquidity trap is one of the
key predictions of the liquidity-trap version of the New Keynesian model.

Finally, the dashed green line depicts the trajectory of the economy after time T
in the counterfactual scenario that the economy continued to obey the system (1.45)-
(1.46) even after time t. This would be the case if, as soon as the economy reached
its long-term point (0,0) at time T (given the initial expectation that the economy
would exit the liquidity trap at time T ), agents were unexpectedly informed that the
economy would in fact remain in the liquidity trap forever (that is, the real interest
rate would be stuck at its negative value, r). Just as we derived above, in that case
inflation would turn back to negative territory after reaching 0 at time T . �

1.4 Solutions of General (Nonautonomous) Linear Sys-
tems

1.4.1 Homogeneous Systems

Unfortunately, nonautonomous linear systems, that is, systems whose coefficients
are time-varying, in general do not admit explicit solutions of the form (1.39) with
the exception of a few special cases, such as the unidimensional case (that is, an
equation rather than a system) and the special class of nonautonomous systems dis-
cussed in subsection 1.4.3.

Consider the homogeneous but nonautonomous linear equation

ẋ(t) = a(t)x(t) (1.65)

defined over t ≥ 0. That is, a(t) is the instantaneous growth rate of variable x(t) at
time t. Following the same procedure as for the autonomous analog, (1.25), of this
equation, we obtain the general solution

x(t) = cexp(R(t)) (1.66)

5It may appear arbitrary that the economy must jump at time 0 and follow a continuous path
in state space afterwards. The reason is that in many continuous-time economic models, jumps in
certain variables that are fully expected are inconsistent with equilibrium because they imply arbitrage
opportunities. Therefore, jumps can only occur when new information arrives.
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where

R(t) ≡
∫ t

0
a(s)ds

We now consider the homogeneous system

ẋ(t) = A(t)x(t) (1.67)

Recall our discussion of vector spaces in Section 1.2 . The following is an impor-
tant result about the algebraic structure of the space of solutions of (1.67).

Theorem 1.4. The set

SH = {x(t), t ∈ T , such that ẋ(t) = A(t)x(t) ∀ t ∈ T } (1.68)

of solutions of (1.67) is a vector space of dimension n.

A set {x1(t), . . . , xn(t)} of n linearly independent solutions of (1.67), that is, a basis
of SH , is called a fundamental set of solutions of (1.67) and

X(t) ≡
[
x1(t), . . . ,xn(t)

]
(1.69)

is a fundamental matrix for the system. Note that the fundamental matrix itself sat-
isfies equation (1.67), that is, Ẋ(t) = A(t)X(t).

Since a fundamental set of solutions is a basis of SH any arbitrary solution x̃(t) of
(1.67) can be written uniquely as a linear combination of x1(t), . . . ,xn(t), that is, there
exist unique scalars c1, . . . , cn such that

x̃(t) =
n∑
i=1

cix
i(t) = X(t)c (1.70)

Therefore, (1.70) is the general solution of system (1.67). A particular solution of
the system corresponds to a specific choice of the constants {ci}ni=1, pinned down by
a given set of boundary conditions.

Boundary conditions can take the form x̃(t0) = x0 for any t0 ∈ T . Take x̃(0) = x0 to
be a given set of boundary (initial value) conditions. Then, we have x̃(0) = X(0)c = x0,
so that c is pinned down as c = [X(0)]−1x0 and the solution to a given initial value
problem is

x̃(t) = X(t)[X(0)]−1x0 (1.71)

A different way to state the general and particular solutions (1.70) and (1.71)
of the homogeneous system (1.67) is by defining the state transition matrix, Φ(t, s),
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corresponding to A(t). The state transition matrix is defined as the the n× n matrix
function that is differentiable in its first argument and is uniquely defined by

d
dt

Φ(t, s) = A(t)Φ(t, s) and (1.72)

Φ(t, t) = In (1.73)

for all t, s ∈ T . In the one-dimensional case, (1.65), the state transition matrix reduces
to the scalar Φ(t, s) = exp(R(t)−R(s)).

It can be shown that that the state-transition matrix satisfies

x̂(t) = Φ(t, s)x̂(s) (1.74)

for any solution x̂(t) of the homogeneous system (1.67), justifying its name.
One can also show that

Φ(t, s) = X(t)[X(s)]−1

so that we have arrived the following result.

Theorem 1.5 (Solution to General Homogeneous Linear ODE Systems). Let X(t)
and Φ(t, s), ∀t, s ∈ T be the fundamental matrix and state-transition matrix, respec-
tively, corresponding to the matrix-valued functionA(t). Then, a (particular) solution
to the homogeneous linear system (1.67), ẋ(t) = A(t)x(t), with boundary condition
x(0) = x0, is given by

x̂(t) = X(t)[X(0)]−1x0 (1.75)
= Φ(t,0)x0 (1.76)

Note that the theorem above does not offer explicit solutions to a nonautonomous
linear system, since it assumes that one already knows a fundamental set of solutions
to the system.

1.4.2 Nonhomogeneous Systems

Consider the most general form of a linear first-order differential equation:

ẋ(t) = a(t)x(t) + b(t) (1.77)

The term b(t) is called the forcing term of the equation. To derive the explicit
solution for this case, we need to use a slightly different argument compared to the
previous special cases. Consider the integrating factor exp(−R(t)), where again R(t) ≡∫ t

0
a(s)ds. Multiply both sides of (1.77) with the integrating factor to obtain

ẋ(t)exp(−R(t))− a(t)x(t)exp(−R(t)) = b(t)exp(−R(t))
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Note from the definition of R(t) that dR(t)/dt = a(t), so that the left-hand side of the
equation above is the derivative of x(t)exp(−R(t)),

d
dt

[x(t)exp(−R(t))] = b(t)exp(−R(t))

Integrating both sides yields

x(t)exp(−R(t)) =
∫ t

0
b(s)exp(−R(s)) ds+ c

where c is the constant of integration. Finally, multiplying both sides with exp(R(t)),
we obtain the general solution, given in the following lemma.

Lemma 1.3 (Solution to a General Linear First-Order Differential Equation). The
solution to a general linear first-order differential equation

ẋ(t) = a(t)x(t) + b(t)

is given by

x(t) =
[
c+

∫ t

0
b(s)exp(−R(s)) ds

]
exp(R(t)) (1.78)

where R(t) ≡
∫ t

0
a(s)ds and c is a constant of integration pinned down by a boundary

condition.

Finally, let’s consider the most general case of a linear ODE system6

ẋ(t) = A(t)x(t) +B(t) (1.79)

Equation (1.79) is a general nonhomogeneous linear system, whose solution space is

SN = {x(t), t ∈ T , such that ẋ(t) = A(t)x(t) +B(t), ∀t ∈ T } (1.80)

It turns out that SN is an affine space of dimension n, over (parallel to) SH , de-
fined in (1.68). That is, SN is a translation of SH and, moreover, the translation factor
is an arbitrary particular solution xP (t) of (1.79). Thus, even in the nonautonomous
case, the general solution of the nonhomogeneous system is the sum of the general
solution of the corresponding homogeneous system and an arbitrary particular so-
lution of the nonhomogeneous system, that is,

xN (t) = xH (t) + xP (t) (1.81)

6Recall from our discussion in the beginning of the chapter that the fact that an ODE system
is written as a first-order system is without loss of generality, as any higher-order system can be
transformed into a first-order system.
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xH (t) is sometimes called the complementary function of system (1.79).
In the autonomous case, we could find a particularly tractable particular solution

of the nonhomogeneous system, the steady state, that we could then add to the com-
plementary function of the system. Nonautonomous systems like (1.79) in general
do not have steady states, so it can be quite difficult to find a particular solution.
However, our final result states that, once we have a fundamental set of solutions
X(t) for the corresponding homogeneous system, we also have the general solution
to the nonhomogeneous system.

Theorem 1.6 (Solution to General Linear ODE Systems). Let X(t) and Φ(t, s),
∀t, s ∈ T be the fundamental matrix and state-transition matrix, respectively, cor-
responding to the matrix-valued function A(t). Then, a (particular) solution to the
linear system (1.79), ẋ(t) = A(t)x(t) + B(t), with boundary condition x(0) = x0, is
given by

x̂(t) = X(t)[X(0)]−1x0 +
∫ t

0
X(t)[X(s)]−1B(s)ds (1.82)

= Φ(t,0)x0 +
∫ t

0
Φ(t, s)B(s)ds (1.83)

1.4.2.1 Forward Solutions

A solution of the form of Lemma 1.3 and Theorem 1.6 is sometimes called the back-
ward solution of the differential equation or system, since we express the solution
by integrating over past values of the forcing term. Backward solutions are useful
when the system has a natural predetermined initial condition. But they may not be
as useful for economic problems that involve boundary conditions at infinity.

Suppose that we are asked to solve the differential equation

ẋ(t) = a(t)x(t) + b(t) (1.84)

where a(t) > 0 for all t, b(t) satisfies∣∣∣∣∣∫ ∞
0
b(s)exp(−R(s))ds

∣∣∣∣∣ <∞ (1.85)

where R(t) ≡
∫ t

0
a(s)ds, and x(t) satisfies:

1. either a transversality condition

lim
t→∞

g(t)x(t) = K ∈R+ (1.86)

for some function g(t) that satisfies |g(t)| ≥ exp(−R(t))
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2. or the condition that the solution be bounded, which in this (deterministic) case
means that there exists K ∈R+ such that

x(t) ≤ K (1.87)

for all t.

Note that in both cases, lims→∞ [x(s)exp(−R(s))] is finite. In case 1 with |g(t)| =
exp(−R(t)), lims→∞ [x(s)exp(−R(s))] = K . In case 2, this limit is zero.

In this type of problem, the forward solution of the equation is more useful. Recall
from the derivation of Lemma 1.3 that, using the integrating factor exp(−R(t)), where
R(t) ≡

∫ t
0
a(s)ds, the differential equation can be rewritten as

d
dt

[x(t)exp(−R(t))] = b(t)exp(−R(t)) (1.88)

Instead of integrating this equation backwards, as we did earlier, we now inte-
grate this forward∫ ∞

t

{
d
ds

[x(s)exp(−R(s))]
}

ds =
∫ ∞
t
b(s)exp(−R(s))ds (1.89)

which yields

lim
s→∞

[x(s)exp(−R(s))]− x(t)exp(−R(t)) =
∫ ∞
t
b(s)exp(−R(s))ds (1.90)

This can be rewritten as

x(t) = exp(R(t)) lim
s→∞

[x(s)exp(−R(s))]−
∫ ∞
t
b(s)exp(R(t)−R(s))ds (1.91)

Define the fundamental forward solution of (1.84) to be

F(t) ≡ −
∫ ∞
t
b(s)exp(R(t)−R(s))ds (1.92)

Then the (forward) solution to the problem can be expressed as

x(t) = F(t) +K exp(R(t))
x(t) = F(t)

for cases 1 and 2, respectively. Note that expressing the solution to x(t) as in (1.91)
is valid only if the limit and the integral in the expression are well-defined, which
is true if and only if |F(t)| <∞ for all t ∈ T and |lims→∞x(s)exp(−R(s))| <∞, that is,
(the absolute value of) variable x(t) cannot growth too fast.

We see that, for case 1, the forward solution is comprised of two terms, the fun-
damental solution and another term sometimes called the bubble term of the forward
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solution. If we assume that a(t) > 0 for all t, so that R(t) > 0, then the bubble term in-
creases at an exponential rate of R(t), so that x(t) becomes unbounded even though
its fundamental forward solution remains bounded at all times. If we require our
solution to be bounded (case 2), then bubbles are ruled out.

Also note that, when it exists, the limit lims→∞x(s)exp(−R(s)) can also be ex-
pressed using the backward solution of (1.84) (Lemma 1.3) as

lim
s→∞

[x(s)exp(−R(s))] = x(0) +
∫ ∞

0
b(s)exp(−R(s))ds (1.93)

= x(0)−F(0) (1.94)

so that the (forward) solution to (1.84) can also be expressed as

x(t) = F(t) + [x(0)−F(0)]exp(R(t)) (1.95)

Forward solutions will play an important role when we look at expectational dy-
namical systems in Chapter 4.

Theorem 1.7 (Forward Solution to Linear ODE Equations). Consider the linear
equation ẋ(t) = a(t)x(t) + b(t) subject to the conditions

lim
t→∞
|x(t)exp(−R(t))| <∞

and ∣∣∣∣∣∫ ∞
t
b(s)exp(−R(s))ds

∣∣∣∣∣ <∞
for all t ≥ 0, where R(t) ≡

∫ t
0
a(s)ds.

Then, the solution to the equation can be written as

x(t) = F(t) + [x(0)−F(0)]exp(R(t)) (1.96)

where

F(t) = −
∫ ∞
t
b(s)exp(R(t)−R(s))ds (1.97)

is the fundamental forward solution of the equation.

1.4.3 A special class of nonautonomous systems

A special case of nonautonomous linear systems that is relevant for economic appli-
cations and that admits explicit solutions (like autonomous systems do) is

ẋ = Ax(t) +B(t) (1.98)
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That is, matrix A is constant, but the forcing term B(t) is time-varying.
Because matrix A is constant, we can use our diagonalization method for A just

like we did in the autonomous case. Assume A has n distinct, non-zero, real eigen-
values and let P denote the matrix whose columns consist of n linearly indepen-
dent eigenvectors of A. Then, again define z(t) = P −1x(t), as in (1.15). Now, let
E(t) = P −1B(t), so that the transformed system

ż(t) =Dz(t) +E(t) (1.99)

is simply a set of n independent linear equations that we know how to solve from
Lemma 1.3. For example, the equation

żi(t) = λizi(t) +Ei(t) (1.100)

has solution

zi(t) =
[
ci +

∫ t

0
Ei(s)exp(−λis) ds

]
exp(λit) (1.101)

where ci is a constant of integration.
Once vector z(t) has been computed we can simply apply the inverse of the orig-

inal transformation, x(t) = P z(t), to obtain x(t).

1.5 Two Special cases of nonlinear ODEs

Nonlinear ODE systems in general do not admit explicit solutions. However, there
are two special cases that appear in economic applications and that allow us to derive
explicit solutions: separable differential equations and exact differential equations.

First, a differential equation

ẋ(t) = g(x(t), t) (1.102)

is separable if g can be written as

g(x, t) ≡ f (x)h(t) (1.103)

In other words, the part of g that depends on x is separate from the one that
depends on t. Then, we have

dx(t)
f (x(t))

= h(t)dt (1.104)

⇒
∫

1
f (x)

dx =
∫
h(t)dt (1.105)
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For example, suppose that f (x) = 1/x. Then we can obtain the explicit solution for
x(t) as

x2 =
∫
h(t)dt + c (1.106)

⇒ x(t) = ±
√∫

h(t)dt + c (1.107)

Second, a differential equation

ẋ(t) = g(x(t), t) (1.108)

is exact if g can be written as

g(x(t), t) ≡ G1(x(t), t)
G2(x(t), t)

(1.109)

where

G1(x(t), t) ≡ ∂F(x(t), t)
∂t

and G2(x(t), t) ≡ −∂F(x(t), t)
∂x

(1.110)

for some function F(·, ·).
Then, note that we have

ẋ(t)
∂F(x(t), t)

∂x
+
∂F(x(t), t)

∂t
= 0 (1.111)

⇒ d
dt
F(x(t), t) = 0 (1.112)

where d
dt denotes the total derivative of function F(·, ·) with respect to t.

Clearly, we have

F(x(t), t) = c (1.113)

where c is a constant of integration, pinned down by a boundary condition. This
equation implicitly defines the solution to the exact differential equation.

We see that the solution method is quite straightforward, although identifying an
exact differential equation can sometimes be tricky. Consider the following example.

Example 1.1 (Exact Differential Equation). Let’s solve the boundary value problem

ẋ(t) = −
2x(t) logx(t)

t
(1.114)

subject to x(1) = exp(1).
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Although not immediately apparent, this is an exact differential equation since it
can be written as

ẋ(t) = −
2t logx(t)

t2
x(t)

= −
∂(t2 logx(t))

∂t
∂(t2 logx(t))

∂x

(1.115)

Therefore, its general solution is given by

t2 logx(t) = c (1.116)
⇒ x(t) = exp(ct−2) (1.117)

Finally, the boundary condition implies that c = 1, so that the solution to our prob-
lem is

x(t) = exp(t−2) (1.118)

1.6 General Results on Properties of Solutions*

In the previous sections, we discussed methods for obtaining analytical solutions to
certain special cases. When we consider a general nonlinear system of the form

ẋ(t) = g(x(t), t) (1.119)

where g : X ×T → X , we have no hope of obtaining closed-form solutions in general
but at least we want to know whether a solution exists and whether it is unique.
Moreover, we want to know whether, given a function g(·, , ·), we can expect the solu-
tion, expressed as a function of the independent variable (time) as well as parameters
and initial conditions, to possess certain desirable properties, such as continuity and
differentiability with respect to its arguments.

It turns out that the key conditions that function g(·, ·) has to satisfy for many of
these desirable properties is that it is (locally) Lipschitz continuous in the dependent
variable, x(t), and continuous in the independent variable, t.

Definition 1.2 (Lipschitz Continuity). Let X and Y be two normed vector spaces. A
function g : X × T → Y , where T ⊆ R, is Lipschitz continuous in x on E or is said to
satisfy the Lipschitz condition on E, where E = C ×D, C ⊆ X and D ⊆ T , if there exists
a positive real number L <∞ such that

||g(x, t)− g(x′, t)|| ≤ L||x − x′ || (1.120)

for all x,x′ ∈ C.
A function g : X ×T → Y , T ⊆R, is locally Lipschitz continuous in x on E, where

E = C ×D, C ⊆ X and D ⊆ T , if for every point (x0, t0) ∈ E there exists some ε > 0 and
a positive real number L(x0, t0) = L0 <∞ such that Bε(x0, t0) ⊆ E and

||g(x, t)− g(x′, t)|| ≤ L0||x − x′ || (1.121)
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for all (x, t), (x′, t) ∈ Bε(x0, t0) and for all t ∈ D. Here, Bε(x0, t0) denotes a ball of radius
ε centered around point (x, t).

The Lipschitz condition ensures that a function is “sufficiently” bounded (for-
mally, it is a locally bounded function). We have the following relationships between
different concepts of continuity, some of which you have seen in the micro part of
math camp.

Lemma 1.4 (Concepts of Continuity). If a function f : X → Y is Lipschitz continuous
then it is locally Lipschitz continuous and uniformly continuous. If f is locally Lipschitz
continuous then it is continuous. If f is locally Lipschitz continuous on a set E that is
compact then it is Lipschitz continuous on E. If f is continuously differentiable then it is
locally Lipschitz continuous but not necessarily Lipschitz continuous.

We now state a synthesis of key theoretical results on existence and uniqueness
for solutions to ODE systems subject to a boundary condition of the form x(t0) = x0.

Theorem 1.8 (Existence and Uniqueness of Solutions to ODE Boundary Value
Problems). Let X and Y be two normed vector spaces. Consider the ODE system

ẋ(t) = g(x(t), t) (1.122)

where g : X ×T →X , X ⊆R
n and T ⊆R.

(i) Assume that g is locally Lipschitz continuous in x on E = X ×D, where D ⊆ T ,
and continuous in t. Then there exists δ > 0 such that the boundary value
problem defined by (1.122) with x(t0) = x0 ∈ X , t0 ∈ D, has a unique solution
x(t) over the interval [t0 − δ, t0 + δ] ⊂ D.

(ii) Assume that g is Lipschitz continuous in x on E = X×D, whereD ⊆ T , continu-
ous in t, and D is a (bounded or unbounded) open interval. Then the boundary
value problem defined by (1.122) with x(t0) = x0 ∈ X , t0 ∈ D, has a unique
solution x(t) over the entire interval D.

(iii) Assume that X = R
n, that g satisfies the assumptions of part (i), and that a

solution x(t) to the boundary value problem defined by (1.122) with x(t0) =
x0 ∈ X , t0 ∈ D, fails to exist for at least some t ∈ R. Then there exists a time t∗

and a sequence {ti} converging to t∗ such that for each ti ∈ R the solution exists
at ti and ||x(ti)|| →∞. That is, the solution “explodes” to infinity in finite time.

Part (i) of Theorem 1.8 implies, in particular, that the existence of solutions when
g is a continuously differentiable function can be guaranteed locally around the
boundary point since continuously differentiable functions are locally Lipschitz con-
tinuous, in light of Lemma 1.4. However, the stronger result of global existence and
uniqueness requires that g is globally Lipschitz continuous (on the potentially un-
bounded strip X ×D). Many continuously differentiable functions that appear to be
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“well-behaved” may in fact fail to be Lipschitz continuous. As an example consider
the boundary value problem

ẋ(t) = x(t)2 (1.123)

subject to x(0) = b > 0. The solution to this problem has the form

x(t) =
b

1− bt
(1.124)

Because the denominator vanishes for t = 1
b , a solution to the boundary value prob-

lem exists only for t < 1
b . Note that x2, despite being continuously differentiable, is

not Lipschitz continuous on the (unbounded) strip X = R:

|x2 − y2| = |x+ y| · |x − y| (1.125)

and x + y can be arbitrarily large (so there cannot exist a constant L < ∞ such that
x+ y ≤ L for all x and y in R as Definition 1.2 requires).

Part (iii) of Theorem 1.8 implies that the only way for a solution to (1.122), with
g(·, ·) continuously differentiable, to fail to exist is for the solution to “blow up” in
finite time, that is, to diverge to infinity as it approaches a finite point in time. Tech-
nically, one other (rather uninteresting) way for solutions to fail to exist is possible
in the case where the domain X of g is a strict subset of Rn so that a solution becomes
undefined as x(t) reaches the boundary of the domain of definition of g.

The proof of (parts of) Theorem 1.8 uses the Picard method of successive ap-
proximations, an elegant application of the (powerful) contraction mapping theo-
rem, which you will cover in the first part of the macro sequence. In fact, it has
been shown that local existence of solutions for boundary value problems is guaran-
teed when g is merely continuous. However, Lipschitz continuity is indispensable
for ensuring uniqueness. Lastly, note that a limitation of Theorem 1.8 is that it
only addresses boundary value problems of the form x(t0) = x0 for some t0 ∈ R. An
important class of boundary value problems encountered in economic applications
involves a transversality condition as part of its boundary conditions, so that the
results of Theorem 1.8 do not apply directly to these problems.

Finally, the following theorem states that the solution to a boundary value prob-
lem inherits the smoothness properties of function g with respect to the independent
variable (t) and also with respect to parameters, including the parameters defining
the boundary condition of the problem. We will make use of this result in Section
2.4 on comparative dynamics.

Theorem 1.9 (Smoothness of Solutions to ODE systems). Consider the ODE sys-
tem

ẋ(t) = g(x(t), t;α,t0,x0) (1.126)

where g : X × T ×Ω→ X , X ⊆ R
n, T ⊆ R and Ω is an open subset of Rp (the set
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of possible values of the parameters in α as well as the boundary time and boundary
value). Assume that the boundary value problem defined by (1.126) with x(t0) = x0 ∈
X , t0 ∈ D, has a unique solution x(t) on D, which is an open subset of T .

If function g is Ck (k-times continuously differentiable), k ∈ {0∪N}, on X ×D×Ω
then the solution x(t) = x(t;α,t0,x0) of (1.126) is a Ck function on D×Ω.

For a proof of Theorems 1.8 and 1.9 and additional results for existence and
uniqueness under weaker conditions than those stated here, see chapters 2 and 3 of
Walter (1998).



Problem Set 1

1. The Arrow-Pratt measure of relative risk aversion of a twice differentiable util-
ity function u(·) is given by

Ru(c) = −u
′′(c)c
u′(c)

Assume that c > 0 and u′(·) > 0. Solve for the family of utility functions with
a constant coefficient of relative risk aversion (CRRA), Ru(c) = γ > 0. Hints:
Consider the substitution v(c) = u′(c). Take special care of the case γ = 1.

31
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2. (Second-Order ODEs) This exercise asks you to solve two kinds of second-order
differential equations that will be useful in the first quarter of the macro se-
quence.

(a) Derive the general solution to the differential equation

1
2
b2x′′(t) + ax′(t)− ρx(t) = 0

where ρ > 0, by transforming it into a 2 × 2 system with y1(t) = x(t) and
y2(t) = x′(t). Hint: For a quick calculation of the characteristic polynomial,
use Lemma 1.2. Then, use Theorem 1.2. Explain why we do not need to
calculate the eigenvectors of the transformed system.
Note that an alternative way to solve the homogeneous equation of the
first part is the following guess-and-verify method: consider the candi-
date (elementary) solution x(t) = exp(λt); compute the differential equa-
tion at the candidate solution; the resulting equation is a quadratic equa-
tion in λ that coincides with the characteristic equation computed in the
first part.

(b) Derive the general solution to the related nonhomogeneous differential
equation

1
2
b2x′′(t) + ax′(t)− ρx(t) +K = 0

where ρ > 0, and K > 0 is a constant. Hint: Use Theorem 1.3.

(c) Finally, consider the following linear but nonautonomous second-order
differential equation:

1
2
b2t2x′′(t) + atx′(t)− ρx(t) = 0

where ρ > 0.
Recall from the discussion of Theorem 1.5 that we do not have results
for explicit solutions of nonautonomous linear systems. Instead, Theorem
1.5 requires that we already have a fundamental set of solutions, Y (t) =
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y1(t) y2(t)

]
so that the general solution to our system can be writen as

ỹ(t) = Y (t)c. Thus, the guess-and-verify method is our only option in this
case.
Solve the equation by using as a guess the solution x(t) = tγ for some
constant γ .
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Chapter 2

Continuous Dynamical Systems:
Stability Analysis

In this chapter we discuss stability analysis for deterministic ODE systems.

2.1 Concepts of Stability

In dynamic macroeconomic models, we are often interested in the behavior of the
economy as t → ∞. If the system underlying the model converges to a particular
point as t→∞, we can think of this point as the long-run equilibrium of the model
and we can then examine the dynamics of the economy’s convergence to this long-
run equilibrium.

Definition 2.1 (Steady sate). A steady state (or stationary state or fixed point or rest
point or equilibrium point) of a system ẋ(t) = g(x(t)), t ∈ T , is a constant solution of
the system. A point x is a steady state if it satisfies ẋ(t) = g(x) = 0, for all t ∈ T , that
is, if x is a zero of g(·).

Note that we have limited attention to autonomous systems, since nonautonomous
systems generically do not have equilibrium points.1

Given the existence of a steady state x, we are often interested in whether or not
it is stable. That is, imagine that the economy is initially at rest at its steady state
and suffers a shock that causes a deviation from the steady state. Will the economy
return to its steady state, remain close to it, or move farther and farther away over
time?

1Since we restrict our attention to autonomous systems, if a system is stable in the sense of any of
the definitions below, then it is uniformly stable in the corresponding sense, that is, the constants δ
and ε in the definitions below are independent of time. Thus, we state the definitions in their uniform
version.

35



36 CHAPTER 2. ODE SYSTEMS: STABILITY ANALYSIS

Definition 2.2 (Stability). Let x be an (isolated) steady state of the system ẋ(t) =
g(x(t)), x(t) ∈ X and t ∈ T . x is a (Lyapunov) stable steady state of the system, if
given any ε > 0, there exists δ = δ(ε) > 0 such that

||x(t0)− x|| < δ for any t0 ∈ T implies that ||x(t)− x|| < ε ∀t ≥ t0
Note that Lyapunov stability is a local definition. The constant δ in the definition

may be arbitrarily small, so that the system must start arbitrarily close to the steady
state in order for it to remain within ε of the steady state forever. An equilibrium
that is not stable is unstable. That is, there exists some ε > 0 and some solution of
the system that, while passing arbitrarily close to the steady state, does not remain
within the ball of radius ε centered at x.

Note that this basic concept of stability does not imply that that the system al-
ways converges to the steady state. It may be simply circling around the steady state
forever without getting any closer to it. In most economic applications, we are in-
terested in a stronger concept of stability, asymptotic stability, which does imply
convergence to the steady state.

Definition 2.3 (Asymptotic Stability). A steady state x of the system ẋ(t) = g(x(t)),
x(t) ∈ X and t ∈ T , is globally asymptotically stable if it is (Lyapunov) stable and,
moreover, if for every t0 ∈ T and x(t0) ∈ X,

||x(t)− x|| → 0 as t→∞

A steady state is locally asymptotically stable if it is (Lyapunov) stable and, more-
over, there exists some δ > 0 such that

||x(t0)− x|| < δ for any t0 ∈ T implies that ||x(t)− x|| → 0 as t→∞

Local asymptotic stability implies that if the system starts at a point arbitrarily
close to the steady state it will converge to the steady state. Global asymptotic sta-
bility implies that, starting from any point in the state space, the system will always
converge to the steady state.

Besides asymptotic stability, there is another (weaker) notion of stability, saddle-
path stability, which is central to many growth models. Saddle-path stability is de-
fined and discussed in Subsection 2.2.2.

Note that for linear systems, which are the focus of the following section, local
asymptotic stability is equivalent to global asymptotic stability. This is not true for
nonlinear systems.

2.2 Stability Analysis in Autonomous Linear Systems

2.2.1 Asymptotic Stability

Consider once again the differential equation
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ẋ(t) = ax(t) + b (2.1)

which has the general solution

x(t) = −b
a

+ cexp(at) (2.2)

It is clear that x(t) will converge to its steady state x = −ba if and only if a < 0.
Given Theorem 1.3, this result is easily generalized to the case of an autonomous
linear system of arbitrary (finite) dimension.

Theorem 2.1 (Asymptotic Stability of Autonomous Linear ODE Systems). Con-
sider the autonomous linear differential equation system

ẋ(t) = Ax(t) +B (2.3)

with initial value x(0) = x0, where x(t) ∈ Rn, A is an n× n matrix, and B is an n× 1
column vector. Suppose that all eigenvalues of A have negative real parts. Let x be the
steady state of the system, given by x = −A−1B. Then, the steady state x is (globally)
asymptotically stable.

2.2.2 Saddle-path Stability

As with most things in life, too much stability is undesirable. In the case of macroe-
conomic models, asymptotic stability in systems with dimension n > 1 is associated
with a multiplicity (nondeterminacy) of equilibria.

Consider the setting of Theorem 2.1 and assume for simplicity that matrix A has
n distinct, nonzero eigenvalues. The case with repeated or complex eigenvalues can
be handled similarly (see the related discussion in Section 1.3.1). If, as in Theorem
2.1, the eigenvalues of A are all negative, so that the system is (globally) asymptot-
ically stable, steady state x is called a sink. If all eigenvalues of A are positive, x is
called a source. In that case the system can be thought of as “completely unstable,”
since all trajectories explode when they start from an initial position other than the
steady state itself.

The interesting case occurs when some of the eigenvalues of A are positive and
some are negative. In this case, the steady state is a saddle point (formal definition
below). A saddle point is a (Lyapunov) unstable equilibrium, since there exist solu-
tion trajectories that, starting arbitrarily close to the steady state, get arbitrarily far
from it as time passes. However, there exists a region of the state space such that
any trajectory that starts in the region (or is found in this region at some point in
time) converges to the steady state and, moreover, remains inside this region while
converging to the steady state.
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Consider the homogeneous system associated with matrix A. This system has
steady state x = 0. Partition the eigenvalues of A, {λi ; i = 1, . . . ,n} into two sets S (for
“stable”) and U (for “unstable”), with i ∈ S if λi < 0 and i ∈ U if λi > 0. We can then
write the general solution of ẋ = Ax as

x(t) =
∑
i∈S

ci exp(λit)vλi +
∑
i∈U

ci exp(λit)vλi (2.4)

where ci are the constants of integration.
Now note that if we set ci = 0 for all i ∈ U , then the solution of the system will

converge to the steady state for any value of the constants ci for i ∈ S. Setting some
constants to zero is equivalent to choosing a subset of the state space. We now show
that this subspace is in fact the linear (vector) subspace of the state space (say, Rn)
that is spanned by the eigenvectors associated with the stable eigenvalues.

Because the n linearly independent eigenvectors of A, v = {vλi , i = 1, . . . ,n}, form
a basis for Rn (the eigenbasis of Rn), any point x0 in the state space can be written as
x0 =

∑n
i=1 bivλi where {bi} are constants not all equal to zero. Also take this vector x0

to be the initial point of the system and note from the general solution (2.4) that

x0 = x(0) =
n∑
i=1

ci exp(λi0)vλi =
n∑
i=1

civλi (2.5)

But then we have x0 − x0 =
∑n
i=1(ci − bi)vλi = 0. The linear independence of the

eigenvectors in v imply that ci = bi for all i = 1, . . . ,n. We conclude that the vector

c =
[
c1 . . . cn

]T
of the constants of integration constitutes the representation of the

system’s initial position under the eigenbasis. That is, the ci ’s correspond to the
coordinates of the system’s initial position in the coordinate system defined by the
eigenbasis v.

Then, the restriction ci = 0 for i ∈U that defines the stable subspace of the system
implies that the stable subspace is simply the subspace spanned by the set of the
stable eigenvectors, vS = {vλi , i ∈ S}. That is,

W S(0) = {x ∈Rn : ∃{βi}i∈S ∈R such that x =
∑
i∈S

βivλi } (2.6)

is the stable subspace of the homogeneous system associated with matrix A (the
argument of W S refers to the steady state of the system, which is 0 for the homoge-
neous system).

Similarly, we define the unstable subspace of the homogeneous system as

WU (0) = {x ∈Rn : ∃{βi}i∈U ∈R such that x =
∑
i∈U

βivλi } (2.7)

Our construction also implies that any trajectory that starts within the stable
subspace will remain inside the stable subspace: if x0 is a linear combination of
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the stable eigenvectors, then x(t) for t ≥ 0 is also a linear combination of the stable
eigenvectors.

Finally, consider once again our nonhomogeneous system ẋ = Ax+B. It is straight-
forward to show that the stable and unstable subspaces of this system,W S(x) and
WU (x), are simply translations of the stable and unstable subspaces for the corre-
sponding homogeneous system going through the non-zero steady state x. That is,
W S(x) and WU (x) are the affine (rather than linear) subspaces of Rn defined by

W S(x) = x+W S(0) and WU (x) = x+WU (0) (2.8)

We now summarize our results.

Definition 2.4 (Saddle-Path Stability). A steady state x of an autonomous linear sys-
tem is called saddle-path stable or a saddle point if the stable and unstable subspaces
W S(x) andWU (x), defined in equations (2.6)-(2.8), each have dimension greater than
0.

Theorem 2.2 (Saddle-Path Stability in Autonomous Linear ODE Systems). Con-
sider the autonomous linear ODE system

ẋ(t) = Ax(t) +B (2.9)

where x(t) ∈ Rn, A is an n × n matrix, and B is an n × 1 column vector. Let x be the
steady state of the system, given by Ax+B = 0. Suppose thatm < n,m > 0 eigenvalues
of A have negative real parts. Then, there exists an m-dimensional subspace W S(x) of
R
n, defined in equations (2.6) and (2.8), such that, starting from any x(0) ∈W S(x),

(2.9) has a unique solution, which satisfies x(t) ∈W S(x) for all t ≥ 0 and x(t)→ x.

In a two-dimensional system with a saddle point, the one-dimensional stable
subspace (which is a line) is also called the saddle path of the system.

Note thatW S(x) andWU (x) are lower-dimensional subspaces, so that a “generic”
point will not be in either region. Of course, since such a point has a non-zero
weight on the unstable eigenvectors, we know that a system starting from such a
point will explode, just like it does if it starts in the unstable subspace. Then, what
is the significance of the unstable subspace (or “anti-saddle path”)? If at some point
in time the system lies in the unstable subspace, the solution will “converge” to the
steady state as t → −∞. In initial value problems of the form we usually consider,
the unstable subspace has no significance.

2.2.3 The Dynamics of Planar Systems

Now consider the special and important case of a 2 × 2, or planar, system. Recall
from Lemma 1.2 that 2× 2 systems satisfy

tr(A) = λ1 +λ2 (2.10)
det(A) = λ1λ2 (2.11)
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where λ1 and λ2 are the eigenvalues, which solve the characteristic quadratic equa-
tion

pA(λ) = λ2 − tr(A)λ+ det(A) = 0 (2.12)

⇒ λ1,2 =
tr(A)±

√
tr(A)2 − 4det(A)

2
(2.13)

These eigenvalues always exist but they may be complex or repeated (that is, λ1 =
λ2). Clearly, the sign of the discriminant ∆ = tr(A)2 − 4det(A) determines whether
they are real (∆ > 0), real repeated (∆ = 0) or complex (∆ < 0).

Just by looking at the determinant and trace of matrix A we can determine the
nature and stability of the system’s steady state. Figure 2.1 is a rich summary of all
the possibilities (including knife-edge cases), plotting three different types of two-
dimensional plots: stability behavior is classified in the (tr(A),det(A)) plane shown
in black; phase diagrams for each distinct case are shown in orange; the eigenvalues
for each case are plotted in the complex plane in blue.

We have the following main cases (omitting edge cases):

1. If det(A) = λ1λ2 < 0, the eigenvalues of the system are real numbers of opposite
signs; hence, we have a saddle point. Note that the slope of the saddle path
(stable subspace), which is a straight line for linear systems, is determined by
the eigenvector associated with the negative (stable) root.

2. If det(A) = λ1λ2 > 0, the roots are either complex numbers or real numbers of
the same sign. In this case, there are two possibilities

(a) If tr(A) = λ1 + λ2 < 0, the two eigenvalues are negative (if real) or have
negative real parts; in either case, the system is stable. The steady state is
a sink.

(b) If tr(A) = λ1 +λ2 > 0, both roots are positive (if real) or have positive real
parts; in both cases the system is unstable. The steady state is a source.

2.3 Stability Analysis in Autonomous Nonlinear Sys-
tems

Many dynamical systems appearing in economic applications are nonlinear, so the
stability results of the previous sections do not directly apply. It turns out, however,
that, if a certain condition holds, stability in a neighborhood of the steady state can
be studied using exactly the same techniques as for linear systems examined in the
previous sections, through a linearization of the nonlinear model around its steady
state. Unfortunately, global and local stability do not coincide for nonlinear models,
so little can be said about the dynamics far from the steady state without analytically
(or, sometimes, graphically) solving the nonlinear model.
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We first analytically consider and prove the one-dimensional case so as to build
intuition for the results.

Lemma 2.1 (Local Stability by Linearization). Consider the differential equation ẋ(t) =
f (x(t)), where f is continuously differentiable. Let x be a steady state of the equation
that satisfies f ′(x) , 0. Then x is locally asymptotically stable if f ′(x) < 0 and is locally
asymptotically unstable if f ′(x) > 0.

Proof. We first write the equation in terms of deviation from the steady state (note
that ˙̃x = ˙(x − x) = ẋ):

˙̃x = f (x+ x̃) (2.14)

Let φ(x̃) be the error committed when we take a first-order Taylor approximation
of f (·) around the steady state, that is,

φ(x̃) = f (x+ x̃)− f ′(x)x̃ (2.15)

and note that φ(0) = 0. Differentiating this equation with respect to the deviation x̃
we get

φ′(x̃) = f ′(x+ x̃)− f ′(x) (2.16)

where φ′(0) = 0.
Note that φ(·) inherits the continuous differentiability of f (·). This implies the

following: Fix some ε > 0 such that ε < |f ′(x)|. Then, by the continuous differentia-
bility of f (·) (that is, by the fact that f ′(·) is continuous), there exists some δ > 0 such
that |φ′(x̂)| = |f ′(x+ x̂)− f ′(x)| < ε for all x̂ such that |x̂| < δ.2

From the fundamental theorem of calculus, we have that

φ(x̃) = φ(0) +
∫ x̃

0
φ′(x̂)dx̂ (2.17)

=
∫ x̃

0
φ′(x̂)dx̂ (2.18)

Then, for all x̃ with |x̃| < δ,

|φ(x̃)| = |
∫ x̃

0
φ′(x̂)dx̂| (2.19)

≤
∫ x̃

0
|φ′(x̂)|dx̂ (2.20)

≤ ε|x̃| (2.21)
< |f ′(x)x̃| (2.22)

2This statement is a direct application of the definition of continuity.
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where the first line follows from (2.18) and the second line follows from Holder’s
inequality. Finally, from (2.14) and (2.15), we have

ẋ = ˙̃x = f ′(x)x̃+φ(x̃) (2.23)

so that (2.22) implies that for small enough deviations, |x̃| < δ, the sign of ẋ is fully
determined by the sign of f ′(x)x̃.

Clearly, in order for steady state x to be asymptotically stable, we want the system
to approach it from both sides. That is, when x < x⇔ x̃ < 0 we need ẋ > 0 and when
x > x ⇔ x̃ > 0 we need ẋ < 0. In other words, we need ẋ and x̃ to have opposite
signs. For small enough deviations, we have just shown that this is equivalent to
f ′(x) < 0. By the same argument, the steady state is locally asymptotically unstable
when f ′(x) > 0.

The proof of Lemma 2.1 makes clear that in order to be able to infer the local
stability properties of the equation from those of its linear approximation we need
f ′(x) , 0. Otherwise, no such information can be inferred. A steady state x with
f ′(x) , 0 is called hyperbolic. Otherwise, it is called nonhyperbolic. The phase dia-
grams for our one-dimensional system in Figures 2.2 and 2.3 illustrate why a steady
state needs to be hyperbolic: the phase line, that is, the graph of f (x), needs to cross
the x-axis transversally in order for the derivative to tell us if the steady state is sta-
ble or not. If the phase line crosses the x-axis at x transversally from above as we
increase x, we know that at least locally steady state x is asymptotically stable.

Now consider the general case of the n×n system

ẋ(t) = G(x(t)) (2.24)

where G(·) is a continuously differentiable mapping.

Definition 2.5 (Hyperbolic Steady State). A steady state x of system (2.24) is hyper-
bolic if the matrix DG(x) does not have eigenvalues with zero real parts.3

Then, as long as x is a hyperbolic steady state, the behavior of x(t) in the neigbor-
hood of this steady state can be approximately by the linear system

ẋ(t) =DG(x)(x(t)− x) (2.25)

We formalize the notion that systems (2.24) and (2.25) behave very “similarly”
through the following definition.

Definition 2.6 (Topological equivalence for Dynamical Systems). Two dynamical
systems F and G are topologically equivalent if there exists a homeomorphism (a con-
tinuous change of coordinates) that maps F trajectories into G trajectories while pre-
serving the sense of direction in time.

The key result of this section is the following.
3Note that this condition is stronger than assuming that DG(x) is invertible (no zero eigenvalues),

since it also precludes situations where DG(x) has purely imaginary eigenvalues. Observe in Figure
2.1 that in this case the trajectories of the linearized system are circles around x.
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Theorem 2.3 (Grobman-Hartman Theorem). Let x be a hyperbolic steady state of
system (2.24), ẋ(t) = G(x(t)), where G : Rn → R

n is a continuously differentiable
mapping. Then, there exists a neighborhood U of x such that (2.24) is topologically
equivalent in U to linear system (2.25),

ẋ(t) =DG(x)(x(t)− x)

A straightforward corollary of this result is the generalization of Lemma 2.1 to
autonomous ODE systems.

Theorem 2.4 (Local Stability of Nonlinear Autonomous ODE Systems). Consider
the autonomous nonlinear ODE system (2.24),

ẋ(t) = G(x(t))

where G : Rn→R
n is a continuously differentiable mapping. Then,

(i) If all eigenvalues of DG(x) have strictly negative real parts, then x is locally
asymptotically stable.

(ii) If at least one eigenvalue of DG(x) has a positive real part, then x is (Lyapunov)
unstable (and thus asymptotically unstable).

(iii) If at least one eigenvalue of DG(x) has a zero real part and all other eigenvalues
have negative real parts, then x may be (Lyapunov) stable, locally asymptoti-
cally stable, or (Lyapunov) unstable.

Finally, as we also discussed in the previous section, in economic applications
featuring multidimensional systems we are usually not interested in case (i) of The-
orem 2.4, since asymptotic stability is associated with a multiplicity of equilibria.
Instead, we are interested in unstable systems that exhibit saddle-path stability. The
next theorem, another corollary of the Grobman-Hartman Theorem, tells us that if
the linear approximation of a nonlinear system around a hyperbolic steady state is
saddle-path stable then, at least locally in a neighborhood of the steady state, the
nonlinear system possesses a stable subspace that is tangent to the (linear) stable
subspace W S(x) of the linearized system. The stable subspace of the nonlinear sys-
tem is called a manifold, that is, a topological space that resembles a Euclidean space
of the same dimension in the sense that each point of a manifold has a neighborhood
that is homeomorphic to the Euclidean space of the same dimension.

Theorem 2.5 (Saddle-Path Stability in Autonomous Nonlinear ODE Systems).
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Consider the nonlinear autonomous ODE system (2.24),

ẋ(t) = G(x(t))

whereG : Rn→R
n is a continuously differentiable mapping. Let x be the steady state

of the system, given by G(x) = 0. Suppose that m < n, m > 0 eigenvalues of DG(x)
have strictly negative real parts and the rest have strictly positive real parts. Then,
there exists an open neighborhood of x∗, B(x) ⊂ R

n, and an m-dimensional manifold
M ⊂ B(x) such that, starting from any x(0) ∈M, (2.24) has a unique solution, which
satisfies x(t) ∈M for all t ≥ 0 and x(t)→ x.

Figure 2.4 shows the phase diagram of a 2 × 2 system, including the manifolds
of the nonlinear systems and the tangent subspaces of the corresponding linearized
system.

Application 2.1 (Saddle-Path Stability in the Neoclassical Growth Model). Consider
the boundary value problem, corresponding to the equilibrium conditions, of the
baseline neoclassical (Ramsey) growth model:

k̇(t) = f (k(t))− δk(t)− c(t) (2.26)

ċ(t) =
1
γ

(f ′(k(t))− δ − ρ)c(t) (2.27)

subject to k(t), c(t) ≥ 0, the initial value condition k(0) = k0 > 0 and the transversality
condition

lim
t→∞

[
k(t)exp

(
−
∫ t

0
(f ′(k(s))− δ) ds

)]
= 0 (2.28)

where parameters satisfy γ,δ,ρ > 0 and δ < 1. We assume that the production func-
tion f (·) satisfies f (0) = 0, f ′(k) > 0, f ′′(k) < 0 for all k > 0 (so it features diminish-
ing marginal returns to capital), and the two Inada conditions, limk→0 f

′(k) =∞ and
limk→∞ f

′(k) = 0.
Here, equation (2.26) specifies the evolution of capital, the stock variable, while

equation (2.27) determines the evolution of consumption, the flow variable. This
combination of an initial value condition and a transversality condition is common
in economic problems involving the behavior of both state and control variables.
At the end of this application, we will show that these two boundary conditions
(together with the admissibility condition k(t), c(t) ≥ 0 for all t ≥ 0) imply that the
system must always be on the saddle path. At time 0 the flow variable, which can
be adjusted freely, will jump to the value that places the system on the saddle path.
That is, (k0, c(k0)) is a point of the (one-dimensional) stable manifold, where we have
denoted by c(k) the value of consumption as a function of the contemporaneous
value of capital.
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We now solve for the linear approximation of the system in order to study its
local stability properties around the steady state, based on Theorem 2.5.

First, the steady state (k∗, c∗) of the system is (implicitly) given by

k̇ = 0⇒ c∗ = f (k∗)− δk∗ (2.29)
ċ = 0⇒ f ′(k∗) = δ+ ρ (2.30)

Now, let c̃ = c − c∗ and k̃ = k − k∗ denote deviations from the steady state. Then,
the first-order approximation of system (2.26)-(2.27) around the steady state is

[ ˙̃k
˙̃c

]
≈

f ′(k∗)− δ −1
c∗f ′′(k∗)

γ
1
γ (f ′(k∗)− δ − ρ)

[k̃c̃
]

(2.31)

Making use of the steady-value relations, the linearized model simplifies to

[ ˙̃k
˙̃c

]
≈

≡A︷          ︸︸          ︷ ρ −1
c∗f ′′(k∗)

γ 0

[k̃c̃
]

(2.32)

Since f ′′(k∗) < 0 and ρ > 0 by assumption, we immediately get that det(A) , 0 and
tr(A) , 0 so that our steady state is indeed hyperbolic (none of its eigenvalues have
zero real part) and we can, therefore apply Theorem 2.5.

From the fact that det(A) = c∗f ′′(k∗)
γ < 0 and our results for planar systems in Sub-

section 2.2.3 we know that this system has two real eigenvalues of opposite signs.
Therefore, we know from Theorem 2.5 that our system is indeed saddle-path stable,
at least in a neighborhood of the steady state.

The characteristic equation is

pA(λ) = λ2 − tr(A)λ+ det(A) = 0 (2.33)

= λ2 − ρλ+
c∗f ′′(k∗)

γ
= 0 (2.34)

hence we can compute the eigenvalues of the linearized system as

λ± =
1
2

ρ ±
√
ρ2 − 4

c∗f ′(k∗)
γ

 (2.35)

The general solution of the linearized system is

[
k(t)
c(t)

]
=

[
k∗

c∗

]
+α1 exp(λ+t)vλ+

+α2 exp(λ−t)vλ− (2.36)

=
[
k∗

c∗

]
+α1 exp(λ+t)

[
1
λ−

]
+α2 exp(λ−t)

[
1
λ+

]
(2.37)
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Finally, let us use the assertion made above (and proved below) that the specified
boundary conditions imply that the particular solution of the boundary value prob-
lem must lie on the saddle path. This means that the coefficient α1 of the explosive
root λ+ must be set to α1 = 0. The other condition, k(0) = k0 then pins down α2:

k0 = k(0) = k∗ +α2 ⇒ α2 = k0 − k∗ (2.38)

Thus, the solution to the linearized version of our boundary value problem is[
k(t)
c(t)

]
=

[
k∗ + (k0 − k∗)exp(λ−t)
c∗ + (k0 − k∗)λ+ exp(λ−t)

]
(2.39)

The solution tells us that, for k(0) close to k∗, the gap between k(t) and k∗ declines

approximately at an exponential rate of λ− = 1
2

(
ρ −

√
ρ2 − 4 c

∗f ′′(k∗)
γ

)
. Consumption at

time 0 is set approximately to

c(0) ≈ c∗ + (k0 − k∗)λ+ (2.40)

= c∗ + (k0 − k∗)
1
2

ρ+

√
ρ2 − 4

c∗f ′′(k∗)
γ

 (2.41)

We now establish the claim we made earlier that the solution to our system under
the given boundary conditions always lies on the (global) saddle path of the system,
depicted in Figure 2.5, the phase diagram of the system.

First, suppose that (k̂(0), ĉ(0)) is above the saddle path. An example is point
(k̂0, ĉ

′
0) in Figure 2.5. In this case, the arrows of motion tell us that the capital stock

would reach k̂t = 0 and in fact would do so finite time,4 while consumption would re-
main strictly positive. This implies that in the next instant after the system reaches
that point on the y-axis capital would turn negative, which violates admissibility,
k(t) ≥ 0 for all t ≥ 0, so that it can not be the solution.

Second, suppose that (k̂(0), ĉ(0)) is below the saddle path, such as point (k̂0, ĉ
′′
0 )

in Figure 2.5. Then, the arrows of motion tells us that capital will converge to k̂∗∗.
We argue that this violates the transversality condition (2.28). First note that this
level of capital is to the right of point k̂gold, which maximizes consumption among
all points on the concave k̇(t) = 0 phase line, so that f ′(k̂gold) = δ. Second, the strict
concavity of f (f ′ strictly decreasing) implies that f ′(k̂∗∗) < f ′(k̂gold) = δ. But then we

4To see this, note that if the system were to converge to the point with zero capital only asymp-
totically, consumption and capital should change along the trajectory at a decelerating pace. In
other words, the second derivatives of consumption and capital with respect to time should be
strictly negative. Differentiating equation (2.27) with respect to time, c̈(t) = (f ′′(k(t))c(t)γ) k̇(t) +
(f ′(k(t))− δ − ρ) ċ(t)/γ , which is strictly positive for small k (use the Inada condition limk→0f

′(k) =∞).
Therefore, the system reaches k̂ = 0 in finite time.
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have

lim
t→∞

{
k̂(t)exp

(
−
∫ t

0

[
f ′(k̂(s))− δ

]
ds

)}
= k̂∗∗ lim

t→∞

{
exp

(
−
∫ t

0

[
f ′(k̂∗∗)− δ

]
ds

)}
(2.42)

> 0

which violates (2.28).
Thus, under the given boundary conditions the existence of a saddle path is

equivalent to the existence of an equilibrium. The assumptions of Theorem 2.5 only
ensure the existence of a saddle path (and thus of an equilibrium) locally, in a po-
tentially very small neighborhood of the steady state. In order to show that an equi-
librium exists for all initial values of capital k(0) > 0, one needs to show that there
exists a saddle path that includes points with all possible capital levels k(0) > 0, that
is, one needs to show that for any k(0) > 0 there exists a consumption level c = c(k(0))
such that (k(0), c(k(0))) is a point on the saddle path. This can be done by analyti-
cally solving the model or, informally, by drawing the (exact) phase diagram for the
model. In Figure 2.5 we see that the direction of arrows suggests the existence of a
saddle-path (labelled ĉ(k̂) in the graph) that includes points with all possible capital
levels k(0) > 0.

We conclude that an equilibrium exists and is unique (since the saddle-path is a
one-dimensional curve) in the neoclassical growth model for all k(0) > 0. �

2.4 Comparative Dynamics in Autonomous Systems*

Related to the idea of linearization of a nonlinear model is the application of com-
parative statics to gauge the response of the model’s solution to small changes in
parameters of the model. Recall from the micro part of math camp that the implicit
function theorem enables us to perform comparative statics in models of the form

g(x;α) = 0 (2.43)

where g(·, ·) is an n-dimensional nonlinear system of model conditions. x is usually a
vector of the endogenous variables of the model, and α a vector of model parameters
the impact of which on the endogenous variables we intend to gauge.

For a summary, suppose we know that x is the solution to (2.43) for a particular
value of α = αold . That is,

g(x;αold) = 0 (2.44)

The inverse function theorem tells us that this solution is locally unique if the
matrix of partial derivatives Dxg(x,αold) is nonsingular, where g(·, ·) is continuously
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differentiable in its arguments. Local uniqueness means that there exists a neigh-
borhood of x in which there are no solutions to (2.43) other than x = x. The implicit
function theorem then tells us that, under the hypothesis that g(·, ·) is continuously
differentiable, D(x,α)g(x,αold) finite, and Dxg(x,αold) nonsignular, there is also a lo-
cally unique, continuously differentiable solution x(α) defined for all α close to αold .
The solution function x(α) is defined implicitly through

g(x(α);α) = 0 (2.45)

for all α and, by totally differentiating (2.45) with respect to α, its derivative at αold
is found to be

Dx(aold) = − [Dxg(x,αold)]−1Dαg(x,αold) (2.46)

In the case of dynamical systems, comparative statics can capture changes in
the steady state values of endogenous variables x in response to small changes in
parameters α. For example, consider an arbitrary nonlinear autonomous system

ẋ(t) = g(x(t),α) (2.47)

where α is a vector of model parameters and g(·, ·) is continuously differentiable.
Because the steady state satisfies g(x,α) = 0, we can apply the above procedure to
obtain the steady state as a function of the parameters, x(α).

Yet, for dynamical systems we are usually interested in more than how the steady
state responds to changes in the structural environment. We want to study compara-
tive dynamics, which refers to the response of the entire equilibrium path of variables
to a change in policy or parameters.

To do this we can follow a similar approach as in the comparative statics case
under the assumption that g(·, ·) is Lipschitz continuous in x on its entire domain
and also twice continuously differentiable in both of its arguments.

According to Theorem 1.8 in Section 1.6, our assumption that g(·, ·) is Lipschitz
continuous in x on its entire domain implies that it has a unique solution, x(t,α),
everywhere. Then, according to Theorem 1.9, the fact that g is twice continuously
differentiable in both x and α implies that the (unique) solution function x(t,α) is
also twice continuously differentiable in its two arguments.

The solution function, x(t,α), is defined through

ẋ(t,α) = g(x(t,α),α) (2.48)

for all α, so that we can again differentiate totally with respect to α to get

Dαẋ(t,α) =Dxg(x(t,α),α)Dαx(t,α) +Dαg(x(t,α),α) (2.49)

Now note that the second partial derivatives of x(t,α) are continuous, since x(t,a)
is twice continuously differentiable, so by Schwarz’ theorem of the symmetry of sec-
ond derivatives, we can reverse the order of differentiation so that

Daẋ(t,a) =DαDtx(t,α)
=DtDαx(t,α)
= ẋα(t,a)
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Thus, we can write (2.49) as

ẋα(t,α) =Dxg(x(t,α),α)xα(t,α) +Dαg(x(t,α),α) (2.50)

Evaluating this equation at α = αold , it becomes a linear differential equation for
xα, the derivative of interest. It is in general a nonautonomous differential equation
since A(t) ≡ Dxg(x(t,αold),αold) and B(t) ≡ Dαg(x(t,αold),αold) are evaluated along
the solution trajectory (under the old parameter values) which is, in general, non-
degenerate across time.

However, there is a special case that can be handled particularly easily because it
turns (2.50) into an autonomous linear differential equation. This is the case where
the system is initially (at t = 0) at the (old) steady state, x. In that case, x(t,αold) = x
for all t ≥ 0, so that

A(t) = A =Dxg(x,αold) (2.51)
B(t) = B =Dαg(x,αold) (2.52)

We can now use Theorem 1.3, which tells us that the general solution of (2.50) is

xα(t) = −[Dxg(x,αold)]−1Dαg(x,αold) +
n∑
j=1

cj exp(λjt)vλj (2.53)

where {λi} are the (distinct) eigenvalues of matrix A and and {vλj } are the corre-
sponding eigenvectors.

First, note from equation (2.46) that the steady state of the law of motion of xα is
precisely the comparative static Dx(aold) of the model, that is, the derivative of the
steady state value with respect to parameters. Thus, the steady state of xα can be
interpreted as the long-run effect of the parameter change (assuming that the steady
state of x is asymptotically stable, so that the system actually converges to the new
steady state).

Next, consider the one-dimensional case. The solution for xα can then be written
as

xα(t) =Dx(αold) + [xα(0)−Dx(αold)]exp(gx(x,αold)t) (2.54)
= xα(0)exp(gx(x,αold)t) +Dx(αold) (1− exp(gx(x,αold)t)) (2.55)

which says that the impact of an (infinitesimal) parameter change on the system
is a weighted average of its impact (immediate) effect, xα(0), and its long-run effect,
Dx(αold). Note that xα(t)→Dx(αold) if and only if the system is stable, gx(x,αold) < 0.

The initial conditions for system (2.50) can be pinned down by economic consid-
erations. If a given variable (a component of x) is predetermined (a stock variable),
such as capital in the neoclassical growth model, then the impact effect, xα(0), will
be zero. If a variable is a free (flow) variable then, depending on the economics of
the problem, it may jump directly to the new steady state, xα(0) =Dx(αold), or jump
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to a different value. For example, if there is a shock (a parameter change) in the
neoclassical growth model that changes the model’s steady state then consumption
will immediately jump to the saddle path (at the old steady state value of capital)
corresponding to the new steady state.

Application 2.2 (Comparative Dynamics in the Solow Model). As in Application
1.1, consider the key equation of the Solow growth model

k̇(t) = sf (k(t))− (n+ δ)k (2.56)

where k(t) is capital (the capital-labor ratio). Note that (2.56) is slightly different
from (1.33) because we have also assumed population growth at the (exponential)
rate n.5 We assume that f (·) is twice continuously differentiable, with f ′(k) > 0 and
f ′′(k) < 0, ∀k ≥ 0.

Our goal is to study the comparative dynamics of the economy with respect to
the savings rate (which is exogenous in the Solow model). We can write (2.56) as

k̇(t) = g(k,s) where g(k,s) ≡ sf (k)− (n+ δ)k(t) (2.57)

and note that g(·, ·) is twice continuously differentiable in its arguments because f (k)
is twice-continuously differentiable, so that that we can apply the comparative dy-
namics methods described earlier in the section. Let k(t, s) denote the solution of
(2.56) expressed as a function of time and the savings rate. We know from Theorem
1.9 that k(·, ·) is twice-continuously differentiable.

The derivative function of interest, ks(t, s), gives us the effect on the entire trajec-
tory of capital of an infinitesimal increase in the savings rate. From the derivation
earlier in the section, ks(t, s) satisfies the following linear differential equation:

k̇s(t, s) = [soldf
′(k(t, sold))− (n+ δ)]ks(t, s) + f (k(t, sold)) (2.58)

To get closed-form results, we will assume that the system is initially at the old
steady state k = k(sold), so that ks is now described by the following autonomous
linear differential equation:

k̇s(t, s) =
[
soldf

′(k)− (n+ δ)
]
ks(t, s) + f (k) (2.59)

We focus on the relevant case where the steady state k is asymptotically stable,
which requires that gk(k,sold) = soldf

′(k) − (n + δ) < 0. Then, we can compute the
solution to (2.58) using Theorem 1.3 as

ks(t, sold) = ks(sold) +
[
ks(0)− ks(sold)

]
exp(σt) (2.60)

= ks(0)exp(σt) + ks(sold)(1− exp(σt)) (2.61)

5Because k(t) is the capital-labor ratio, n enters in exactly the same way as the depreciation rate δ.
Including population growth is not essential for the results of this section.
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where

σ ≡ gk(k,sold) = soldf
′(k)− (n+ δ) < 0 (2.62)

and

ks(sold) = −
gs(k,sold)

gk(k,sold)
(2.63)

= −
f (k)

soldf ′(k)− (n+ δ)
> 0 (2.64)

Note that because capital is a stock variable it cannot “jump”, so that the impact
effect of a change in the savings rate on capital is zero, ks(0) = 0. Therefore, ks(t)

grows over time at a (declining) rate of k̇s
ks

= −σ
exp(−σt)−1 and converges asymptotically

to the value given by the steady-state impact of the savings rate increase.6

The impact of a (discrete) increase in the savings rate from s1 = sold to s2, starting
from the old steady state and giving rise to a transition towards the new steady state,
is illustrated in Figure 2.6. In this figure, k∗1 = k(s1) and, for a small increase in the
saving rate, k(t)− k∗1 = k(t, s2)− k(s1) is approximately equal to ks(t, s1) (s2 − s1). �

6Alternatively, we can say that the gap between the effect at time t, ks(t), and the steady-state effect
declines at a rate of |σ |).
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tr(A)

det(A) det(A) = tr(A)2

4

stable spiral unstable spiral

sink

saddle point

source

deg. sourcedeg. sink

center

Figure 2.1: Stability map for autonomous linear planar ODE systems. Adapted from
source code by Dan Drake (KAIST).
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Figure 2.2: Phase diagram for the nonlinear equation ẋ(t) = f (x(t)). All steady states
are hyperbolic. Source: de la Fuente (2000).

Figure 2.3: Phase diagram for the nonlinear equation ẋ(t) = f (x(t)). Examples of
nonhyperbolic steady states. Source: de la Fuente (2000).
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Figure 2.4: Phase diagram of a nonlinear ODE system with its convergent and diver-
gent manifolds, Nc and Nd , and the corresponding linear subspaces, Ec and Ed , of
the linearized system. Source: Acemoglu (2009).

Figure 2.5: Transitional Dynamics in the neoclassical growth model. Source: Barro
and Sala-i Martin (2004).
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Figure 2.6: Comparative dynamics in the Solow model. The effect of an increase in
the savings rate from s1 to s2, starting from the old steady state k∗1 = k(s1). γk ≡ k̇/k =
s2f (k)/k−(n+δ) denotes the growth rate of k. Source: Barro and Sala-i Martin (2004).
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Chapter 3

Discrete Dynamical Systems:
Difference Equations

In this chapter we move to discrete time, again within a deterministic environment,
and consider difference equations and systems of the form

x(t + 1) = g(x(t), t) (3.1)

One might think that we need a theory distinct from ODE theory to study this
type of systems but, in fact, almost all results from Chapters 1 and 2 apply for dif-
ference systems of the form (3.1) with a few adjustments. Compared to differential
systems, difference systems have certain weaknesses. In particular, graphical anal-
ysis is not as useful or flexible for difference systems; in addition, the continuous
and discrete-time formulations of a given setting may exhibit different global stabil-
ity properties, a possibility that we explore in Application 3.1 in the context of the
Solow growth model. On the other hand, a big advantage of difference systems is
that the existence and uniqueness of solutions to boundary value problems is en-
sured for any arbitrary mapping g in (3.1), while, as we saw in Section 1.6, existence
and uniqueness of solutions is far from a trivial matter for differential equations.

To highlight the differences between difference and differential equations, con-
sider the autonomous linear first-order difference equation

x(t + 1) = ax(t) + b (3.2)

subject to an initial value condition x(0) = x0. To solve this system, we can simply
proceed by induction on t ∈ {0∪N}, so that

x(1) = ax0 + b
x(2) = a2x0 + ab+ b

...

x(t) =

x0 + bt if a = 1
b

1−a + at
(
x0 − b

1−a

)
if a , 1

(3.3)

57
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When comparing (3.3) with the solution to the corresponding differential equa-
tion,

ẋ(t) = ax(t) + b (3.4)

⇒ x(t) = −b
a

+ (x0 +
b
a

)exp(at) (3.5)

we can immediately see that the solutions are similar with two adjustments. First,
the exponential term exp(at) is now replaced by at. Second, the steady state of the
differential equation is −ba whereas that of the difference equation is b

1−a = − b
a−1 . To

see why this is so, simply write (3.2) as ∆x(t) = x(t + 1) − x(t) = (a − 1)x(t) + b and
compare it to (3.4).

Related to the second adjustment, we can see that the criterion for asymptotic
stability, which is associated with a change in x that is declining over time, is now
whether the absolute value of a is less than, equal to, or greater than 1, while it was
whether a is less than, equal to, or greater than 0 in the continuous case.

The fact that stability depends on the absolute value of a is of particular impor-
tance. When we look at systems of difference equations, whose eigenvalues can be
complex numbers, what matters for stability is how the modulus (a generalization of
the concept of absolute value) of the eigenvalue compares to the number 1.

Definition 3.1 (Modulus). The modulus of a complex number c = a + ib, where i =√
−1, is the norm of the vector that represents it in the complex plane. That is,

|c| =
√
a2 + b2 (3.6)

When |c| < 1(> 1), we say that c lies inside (outside) the unit circle.

In what follows, we sometimes refer to systems of difference equations as matrix
difference equations.

Remark 3.1. Autonomous linear matrix difference equations admit the same closed-
form solutions as autonomous linear ODE systems after the adjustment exp(λt){
λt.

Stability properties for linear matrix difference equations and local stability
properties for nonlinear matrix difference equations coincide with their coun-
terparts for ODE systems but under different criteria regarding the stability of
a given eigenvalue: in the case of continuous systems, how the real part of the
eigenvalue compares to number 0; in the case of discrete systems, how the mod-
ulus of the eigenvalue compares to number 1.

We now state the analogs of Theorem 1.3 and Lemma 1.3.
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Theorem 3.1 (Solution to Nonhomogeneous Autonomous Linear Difference Equa-
tions). Suppose n× n matrix A has n distinct eigenvalues λ1, . . . ,λn, all with moduli
not equal to 1. Then the unique solution to

x(t + 1) = Ax(t) +B (3.7)

with initial value x(0) = x0, takes the form

x(t) = x̄+
n∑
j=1

cjλ
t
jvλj (3.8)

where x̄ = −[A − In]−1b is the unique stationary state of the system, vλ1
, . . . , vλn are

the eigenvectors corresponding to the eigenvalues λ1, . . . ,λn and c1, . . . , cn denote the
constants of integration pinned down by the initial value condition.

Lemma 3.1 (Solution to a General (Nonautonomous) Linear First-Order Difference
Equation). The solution to a general (nonautonomous) linear first-order difference equa-
tion

x(t + 1) = a(t)x(t) + b(t)

with initial value x(0) = x0 is given by

x(t) =

x0 +
t−1∑
s=0

(
R̃(s+ 1)

)−1
b(s)

 R̃(t) (3.9)

where R̃(t) ≡
∏t−1
s=0 a(s) and c is a constant of integration pinned down by the initial value

condition.

The solution to nonautonomous linear systems of difference equations is again
very similar, with the state-transition matrix Φ(t, s) now defined by

Φ(t + 1, s) = A(t)Φ(t, s) and (3.10)
Φ(t, t) = In (3.11)

for all t, s ∈ T . In the one-dimensional case of Lemma 3.1, the state transition matrix
reduces to the scalar Φ(t, s) = R̃(t)/R̃(s).

Theorem 3.2 (Solution to General Linear Difference Equations). Let X(t) and
Φ(t, s), ∀t, s ∈ T be the fundamental matrix and state-transition matrix, respectively,
corresponding to the matrix-valued function A(t). Then, a (particular) solution to the
linear system

x(t + 1) = A(t)x(t) +B(t) (3.12)
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with boundary condition x(0) = x0, is given by

x̂(t) = X(t)[X(0)]−1x0 +
t−1∑
s=0

X(t)[X(s+ 1)]−1B(s) (3.13)

= Φ(t,0)x0 +
t−1∑
s=0

Φ(t, s+ 1)B(s) (3.14)

We now discuss stability in discrete systems. Define the hyperbolic state of a
nonlinear system as follows

Definition 3.2 (Hyperbolic Steady State). A steady state x of system

x(t + 1) = G(x(t), t) (3.15)

is hyperbolic if the matrix DG(x) does not have eigenvalues with moduli equal to 1.

Then, with the adjustment noted in Remark 3.1, Theorems 2.1, 2.2, 2.3, 2.4, and
2.5 directly apply to discrete systems.

Finally, note that solutions to initial value problems for any discrete system exist
and are unique. This can be shown almost immediately by induction.

Theorem 3.3 (Existence and Uniqueness of Solutions to Difference Equations).
Consider the matrix difference equation

x(t + 1) = G(x(t), t) (3.16)

where G : Rn ×R→ R
n is an arbitrary mapping. Then, the boundary value problem

given by (3.16) and the boundary condition x(t0) = x0, t0 ∈ Z, has a unique solution
for all t ≥ t0. If, in addition, mappingG is invertible, then the boundary value problem
has a unique solution for all t ∈Z.

Application 3.1 (Global Stability in the Solow Model: Continuous vs. Discrete
Time). Consider the continuous-time and discrete-time versions of the key equation
of the Solow growth model

k̇(t) = sf (k(t))− δk(t) (3.17)
≡ g(k(t)) (3.18)

and

kt+1 = sf (kt) + (1− δ)kt (3.19)
≡ h(kt) (3.20)

respectively, where s,δ ∈ (0,1). The steady state value of capital in both versions is
defined by sf (k) = δk.
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The benchmark Solow model has two main assumptions on the production func-
tion, f (k). First, it is increasing and strictly concave in k with f (0) = 0. Second, it
satisfies the Inada Conditions

lim
k→0

f ′(k) =∞ (3.21)

lim
k→∞

f ′(k) = 0 (3.22)

Figure 3.1: Capital-output graph for the Solow growth model (both continuous and
discrete versions). Source: Acemoglu (2009).

Figure 3.1 illustrates the implications of the concavity of the production function
and the Inada conditions for both continuous-time and discrete-time versions of
the Solow model. The derivative of investment sf (k(t)) with respect to capital k(t)
is large and positive for low values of k and declines monotonically on its entire
domain over k. Graphically, this implies that sf (k) will cross the straight line δk only
once, so that the steady state in both models is unique, and will do so transversally
from above.

Local asymptotic stability for both models follows easily from our previous re-
sults and from the two assumptions. We know from stability theory that local
asymptotic stability requires g ′(k) < 0 in the continuous case and |h′(k)| < 1 in the
discrete case. We just noted that sf (k) crosses δk from above, sf ′(k) < δ, so that local
stability for the continuous case immediately follows. For the discrete case, note that
the strict concavity of f (k) implies

f (k) > f (0) + kf ′(k) (3.23)
= kf ′(k) (3.24)
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so that

h′(k) = sf ′(k) + 1− δ (3.25)

<
sf (k)

k
+ 1− δ (3.26)

= δ+ 1− δ
= 1 (3.27)

using the definition of the steady state. Since h′(k) > 0 for all k, we have that |h′(k)| <
1.

In contrast, global asymptotic stability is a property with respect to which the
discrete-time and continuous-time formulations of (certain versions of) the Solow
model may differ. In the continuous case global asymptotic stability requires g(k) > 0
for all k < k∗ and g(k) < 0 for all k > k∗. It follows immediately that the steady state is
globally asymptotically stable.

In the discrete case global asymptotic stability requires that at the limit as t→∞,∣∣∣kt+1 − k
∣∣∣ < ∣∣∣kt − k∣∣∣ for all possible values of kt > 0. A sufficient condition for global

stability in the discrete version would be |h′(kt)| < 1 for all kt > 0 (not just at the
steady state) as t→∞. To see this, assume |h′(k)| < 1 for all k > 0. Then,

|kt+1 − k| = |h(k)− h(k)|

=

∣∣∣∣∣∣
∫ kt

k
h′(k)dk

∣∣∣∣∣∣
≤

∫ kt

k

∣∣∣h′(k)
∣∣∣ dk

< |kt − k| (3.28)

where the last inequality uses the stated assumption. But this assumption is not true
for our function h(k): h′(k) = sf ′(k) + 1− δ→∞ as k↘ 0.

The discrete-time formulation of the benchmark Solow model, (3.19), does turn
out to be globally asymptotically stable, but the argument requires a more direct
line of attack. Suppose that kt ∈ (0, k). Then

kt+1 − k = h(kt)− h(k) (3.29)

= −
∫ k

kt

h′(k)dk (3.30)

< 0

since h′(k) > 1 − δ > 0 for all k, which implies that kt+1 ∈ (kt, k∗) and, by induction
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over t, that the level of capital at any time after t is bounded above by k. Moreover,

kt+1 − kt
kt

= s
f (kt)
kt
− δ (3.31)

> s
f (k)

k
− δ (3.32)

= 0 (3.33)

where the second line uses the concavity of f (which implies that f (k)/k is decreasing
with k) and the last line uses the definition of the steady state value. Therefore,
capital is monotonically approaching its steady-state level.

We have shown that {kt} is a monotonically increasing sequence bounded above
by k. Since k is the unique steady state, k must be the least upper bound of {kt}. By
the monotone convergence theorem, it follows that {kt} → k from below. An identical
argument proves that {kt} → k from above. Convergence towards the steady state in
the discrete model is illustrated in Figure 3.2.

The fact that global asymptotic stability in the benchmark version of the discrete-
time Solow model does not immediately follow from the usual assumptions of con-
cavity of f (k) and the Inada conditions illustrates that discrete systems may have dif-
ferent global stability properties from their continuous-time counterparts. Indeed,
it can be shown, for example, that in a version of the Solow model with population
growth and where the (exogenous) savings rate is a deterministic function of the
level of capital, cycles between two capital levels are possible, so that the model’s
steady state cannot be globally stable.1 Such cycles are clearly impossible in the
continuous-time counterpart of this model.2 To the extent that such cycles are inter-
preted as pathological results (and not as desirable features of the model), one can
argue that the continuous-time formulation of the model is superior.

�

3.1 The Dynamics of Planar Systems

We end with some tips on stability analysis for linear (linearized) planar systems,
just as we did in Section 2.2.3 for continuous planar systems. We will make use of
them in Application 4.2.

Consider system (3.7). Recall that

tr(A) = λ1 +λ2 (3.34)
det(A) = λ1λ2 (3.35)

1See exersise 2.21 in Acemoglu (2009).
2To see this, suppose that such a cycle among different capital levels existed. Because the level of

capital must be a continuous function of time, there would exist a value of capital that the system
crossed both while going up and while going down. This would imply that f has both a positive and
a negative derivative at that level of capital, a contradiction.
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Figure 3.2: Convergence towards the steady state in the discrete-time version of the
Solow growth model. Source: Acemoglu (2009).

where λ1 and λ2 are the eigenvalues, which solve the characteristic quadratic equa-
tion

pA(λ) = λ2 − tr(A)λ+ det(A) = 0 (3.36)

⇒ λ1,2 =
tr(A)±

√
tr(A)2 − 4det(A)

2
(3.37)

We want to derive the conditions on the trace and determinant of matrix A under
which the eigenvalues of the matrix lie inside the unit circle, that is, they both have
modulus less than 1.

First, suppose that λ1 and λ2 are real. Then, clearly we must have

|det(A)| = |λ1||λ2| < 1 (3.38)

Now, suppose they are both complex (complex eigenvalues always come in pairs
since A has real entries), of the form a+ ib, a− ib. Then,

det(A) = λ1λ2 = a2 + b2 = |λ1|2 = |λ2|2 (3.39)

Therefore, we know that, in all cases, |det(A)| < 1. Second, note that the charac-
teristic polynomial can be written as

pA(λ) = (λ−λ1)(λ−λ2) (3.40)
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Suppose for a moment that the eigenvalues are real and note that it must be the
case that

pA(1) > 0 and (3.41)
pA(−1) > 0 (3.42)

since we require that both eigenvalues are on the same side of both 1 and -1 (in
the real line). It can be shown that these inequalities must also hold for the case
of complex eigenvalues. Also note from (3.36) that pA(1) = 1 − tr(A) + det(A) and
pA(−1) = 1 + tr(A) + det(A). We have thus derived the following result: 3

Lemma 3.2. A 2×2 matrix A has both of its eigenvalues inside the unit circle if and only
if all three of the following conditions hold:

• det(A) < 1

• pA(1) > 0⇔ det(A) > tr(A)− 1

• pA(−1) > 0⇔ det(A) > −tr(A)− 1

The result is illustrated in Figure 3.3, which draws the lines pA(1) = 0 and pA(−1) =
0 in trace-determinant space, together with the horizontal line corresponding to
det(A) = 1. Matrices with trace-determinant “coordinates” in the shaded area have
both of their eigenvalues inside the unit circle.

The important case of saddle-path stable 2 × 2 systems can also be handled us-
ing Lemma 3.2. A discrete planar system is saddle-path stable if matrix A (equal to
DG(x) in the nonlinear case) has one eigenvalue inside the unit circle and one eigen-
value outside the unit circle. To show this is the case for a matrix without explicitly
solving for its eigenvalues, one can show that both A and its inverse fail at least one
of the three conditions in Lemma 3.2.

3Note that det(A) > −1 is reduntant given the conditions pA(1) > 0 and pA(−1) > 0, as we can
immediately see in figure 3.3.
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Figure 3.3: Stability map for discrete planar systems, drawn in trace (τ) - determi-
nant (∆) space. Matrices in the shaded area have both of their eigenvalues inside the
unit circle. Adapted from: Diekman and Kuznetsov (2011).



Problem Set 2

1. Consider the linear system (1.45)-(1.46) studied in Application 1.2 and repro-
duced here:

ẋ(t) = −π(t)− r
π̇(t) = ρπ(t)−κx(t)

In the axes provided below, draw the phase diagram of the model. That is,
draw the phase lines in (π,x) space (these are the same as in Figure 1.1) and
the stable and unstable subspaces of the system (since the system is linear these
are straight lines). Which of the two is the saddle path of the system? You may
use the parametrization ρ = κ = −r = 0.05.

π

x

67
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2. (Local Stability for Q-theory) Consider the ODE system

K̇(t) = C′−1 (q(t)− 1)−γK(t)
q̇(t) = (r +γ)q(t)−π(K)

where r,γ > 0, π′(·) < 0, and C(·) is a strictly increasing and strictly convex
function, C′(·) > 0 and C′′(·) > 0 (with C(0) = C′(0) = 0). Note that C′−1(·)
denotes the inverse function of function C′(·).

(i) Show that the system is locally saddle-path stable around its steady state.

(ii) Show that the saddle path of the system is downward sloping in a neigh-
borhood of the steady state.
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3. This exercise is intended to offer some insight into the link between autonomous
differential and difference equations stated in Remark 3.1, namely, why they
have elementary solutions of the form exp(λt) and λt, respectively.

We will derive the solution to the (simplest possible) differential equation ẋ(t) =
λx(t), subject to x(0) = x0, where λ ∈ R. Suppose we do not know integration,
so we cannot immediately compute the solution as x(t) = x0 exp(λt). Instead,
we will guess that the solution x(t) is a power series, that is, it can be written in
the form

x(t) =
∞∑
n=0

ant
n

for a sequence of coefficients {an} ∈R∞.

(i) Substitute the guess (3.43) into ẋ = λx and transform the differential equa-
tion into a difference equation in the coefficients {an} (that is, with n as the
independent variable). Hint: Use the fact that if

∑∞
0 Cnt

n = 0 must hold
for all t, for some sequence of coefficients {Cn} then it must be that Cn = 0,
for all n ∈ {0∪N}.

(ii) Solve the difference equation by induction, for given a0.
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(iii) Substitute the solution for {an} from part (ii) into the guess, (3.43). Use
the initial condition x(0) = x0.

(iv) Finally use the fact that the natural exponential function exp(t) is defined
as

exp(t) ≡
∞∑
n=0

tn

n!

to conclude that x(t) = x0 exp(λt).
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4. Consider the T th-order difference equation

xt+T + aT−1xt+T−1 + aT−2xt+T−2 + . . .+ a0xt = 0

for all t ∈ {0∪N}, , where T ∈N, subject to the initial condition[
xT−1 xT−2 · · · x0

]T
= y0

for some T -dimensional column vector y0.

(i) Transform (3.43) into a first-order system of differential equations of the
form y(t + 1) = Ay(t), where A is a T × T matrix.

(ii) Assume that A has no repeated eigenvalues. Show that the general solu-
tion to (3.43) is x(t) =

∑T
i=1 ciλ

t
i . Show that the eigenvector vλi correspond-

ing to the ith eigenvalue of matrix A, λi , can be expressed as

vλi =


λT−1
i
λT−2
i
...
λi
1


(iii) Let c =

[
c1 c2 . . . cT

]T
. Express c in terms of y0.
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Chapter 4

Discrete Dynamical Systems:
Expectational Difference Equations

Until now, we have only discussed solutions to deterministic models. We now intro-
duce uncertainty to difference systems to study an important class of linear systems1

associated with a class of economic models called dynamic stochastic general equilib-
rium (DSGE) or rational expectations equilibrium models. These stochastic linear
discrete-time systems are sometimes called linear expectational difference equations.

4.1 The One-Dimensional Case

Our goal is to solve a system of the general form

Et[x(t + 1)] = Ax(t) +Bu(t) (4.1)

where x(t) is a n-dimensional vector of endogenous variables, u(t) is a k-dimensional
vector of, possibly stochastic, exogenous variables (or shocks), A is an n × n matrix,
and B is an n× k matrix. Et[·] denotes the expectational operator with respect to all
available information up to and including time t. Expectations are called “rational”
because they are assumed to be “consistent” with the equilibrium of the model in
the sense that agents’ perceived probability distribution over economic outcomes
coincides with the probability distribution implied by the model.

To build intuition, we begin with the one-dimensional case. Consider the system

Et[xt+1] = axt +ut (4.2)

where a ∈ R and where xt+1 is nonpredetermined at time t, that is it is nondegenerate
with respect to information available up to and including time t.

1Introducing uncertainty in continuous time requires techniques from stochastic calculus, which
will be covered in the first quarter of the macro sequence.

73
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Let us first try to solve this solution “backwards,” as we have done for determin-
istic difference equations in the previous section, given an arbitrary initial condition,
x−1 = xinit.

One may be tempted to recursively derive the solution to (4.2) as

x0 = axinit +u−1
...

xt = axt−1 +ut−1

However, this is only one of many (uncountably infinite) solutions. The set of
solutions is described by

xt = axt−1 +ut−1 + vt (4.3)

for t ≥ 0, where {vt}∞t=1, the sequence of expectational errors, is an arbitrary stochas-
tic process that satisfies Etvt+1 = 0 for all t. Therefore, in contrast to deterministic
difference equations, we have no hope of attaining a unique solution to an expecta-
tional difference equation subject only to an initial condition. However, for reasons
explained in Section 4.2, we are usually interested only in bounded solutions of ex-
pectational difference systems. That is, we are interested in the following boundary
value problem: given the realization of the disturbances us for s = −1, . . . , t, solve for
the value(s) of xt such that

Et[xt+1] = axt +ut subject to x−1 = xinit
and

∣∣∣∣Et [xt+j]∣∣∣∣ < K ∈R ∀j ≥ 0 (4.4)

where the exogenous sequence {ut}∞t=0 is bounded,
∣∣∣∣Et [ut+j]∣∣∣∣ <M ∈R for all j ≥ 0.2

We ask under which condition on the parameter a the solution for {xt}∞t=0 in prob-
lem (4.4) is unique. As we also saw in Section 1.4.2.1 on forward solutions of dif-
ferential equations, the forward solution will be more useful for problems like (4.4)
involving conditions at infinity. We can solve (4.2) forward noting that

(4.2) ⇒ Et+jxt+j+1 = axt+j +ut+j (4.5)
⇒ Et[Et+jxt+j+1] = aEtxt+j +Etut+j (4.6)
⇒ Etxt+j+1 = aEtxt+j +Etut+j (4.7)

2More formally, we define a random variable y = {yt}∞t=0 to be bounded if the norm of yt is finite
(almost surely) for all t. yt can be thought of as a (measurable) function of the history of states of
nature, st , that is, yt = y(st), and y is an infinite sequence of such measurable functions. Under the
L∞ topology the norm of y, ||y||∞, is the least upper upper bound such that |yt | is below this bound
everywhere except at states of measure zero, for all t. Boundedness implies that Etyt+j is finite for all
j ≥ 0.
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where the last line follows from the Law of Iterated Expectations. Then, (4.2) implies

xt = a−1
Et[xt+1]− a−1ut (4.8)

(4.7)
= a−1

[
a−1

Etxt+2 − a−1
Etut+1

]
− a−1ut (4.9)

...

= a−kEtxt+k −
k−1∑
j=0

a−(j+1)
Et[ut+j] (4.10)

Provided

lim
k→∞
|a−kEtxt+k | <∞ (4.11)

and

lim
k→∞

∣∣∣∣∣∣∣∣
∞∑
j=0

a−(j+1)
Et

[
ut+j

]∣∣∣∣∣∣∣∣ <∞ (4.12)

we can write the forward solution to (4.2) as

xt = lim
k→∞

a−kEtxt+k −
∞∑
j=0

a−(j+1)
Et[ut+j] (4.13)

Just as in the continuous-time case of Section 1.4.2.1, the second term on the right
hand side of (4.13) is sometimes referred to as the fundamental solution of (4.2) and
the first term as the bubble term.

Now consider three cases based on the absolute value (modulus) of constant a.
First assume |a| > 1. Then, for a bounded {xt}, we have

lim
k→∞

a−kEtxt+k = 0 (4.14)

so that the limit in (4.12) exists and thus xt must satisfy (4.13). This pins down a
unique bounded sequence {xt}, equal to the fundamental solution of (4.4),

xt = −
∞∑
j=0

a−(j+1)
Et[ut+j] (4.15)

Now assume |a| < 1. Clearly, the limit limk→∞ a
−k
Etxt+k is not finite, so that (4.13)

does not help us pin down a unique bounded solution. Instead, all solutions defined
by (4.3) for a bounded sequence {vt} satisfying Etvt+1 = 0, ∀t, are bounded solutions.
That is, if |a| < 1, we have an infinity of bounded solutions.

What happens if |a| = 1? From (4.3) ,we can see that not all solutions of that form
need be bounded even if both {ut} and {vt} are bounded. However, it can be shown
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that, if (4.3) has any bounded solution, then it must have an uncountably infinite
number of them. For example, suppose that

Ut ≡
∞∑
j=0

Etut+j (4.16)

is finite for all t .
Then, a bounded solution

xt =Ut + (xt−1 −Ut−1) + vt (4.17)

exists for arbitrary {vt} satisfying Etvt+1 = 0 and∣∣∣∣∣∣∣
∞∑
t=1

vt

∣∣∣∣∣∣∣ <∞ (4.18)

If follows that a unique bounded solution cannot exist when |a| = 1.

Theorem 4.1. The expectational difference equation

Et[xt+1] = axt +ut (4.19)

where {ut} is bounded, has a unique bounded solution if and only if |a| > 1. In this
case, the solution is

xt = −
∞∑
j=0

a−(j+1)
Et[ut+j] (4.20)

for all t ≥ 0.

For a concrete example, suppose that {ut}∞t=0 is a martingale difference sequence,
that is Et

[
ut+j

]
= 0 for all j ≥ 1. Then, with |a| > 1, if {xt}∞t=0 is to be bounded, we must

have Et [xt+1] = 0. If not, for example if Et [xt+1] = c , 0 then
∣∣∣∣Et [xt+j]∣∣∣∣ =

∣∣∣aj−1c
∣∣∣→∞

as j→∞. Therefore, with |a| > 1, the bounded solution to {xt}∞t=0 is unique and given
by Et [xt+1] = 0⇒ xt = −ut/a for all t ≥ 0.

In contrast, if |a| < 1, Et [xt+1] can be any number c ∈ R because this would imply∣∣∣∣Et [xt+j]∣∣∣∣ =
∣∣∣aj−1c

∣∣∣ <∞. Then, for each c ∈R, xt = 1
ac−

1
aut is a valid bounded solution

to problem (4.4).
Recall from the previous chapter that deterministic (autonomous) difference equa-

tions of the form (4.19) with |a| > 1 were associated with unstable steady states.
The idea of inherent instability giving rise to equilibrium determinacy (uniqueness)
is central to the workings of rational-expectations models. We discuss this idea in
the context of monetary policy determinacy in Application 4.2.
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4.2 Equilibrium Determinacy

In this section we discuss two important reasons why we are interested in unique
bounded solutions of models of the form (4.1). The first reason is that in many
rational expectations equilibrium models the existence of equilibrium requires that
certain transversality conditions are satisfied. These conditions preclude explosive
paths for variables that affects agents’ utility. Therefore, insofar as we are looking
at rational-expectations equilibria of such a model, we are necessarily looking at
bounded solutions to the equilibrium conditions. Effectively, agents coordinate their
expectations of the equilibrium paths of endogenous variables by ruling out any
future paths of the variables that would be explosive and thus not consistent with
equilibrium.

Then, uniqueness of the bounded solution translates directly into uniqueness of
the rational expectations equilibrium. The latter is desirable for obvious reasons,
since it implies that models have sharp, and thus testable, predictions. Models with
a multiplicity of equilibria emphasize the self-fulfilling nature of expectations, and
usually interpret negative economic outcomes as the result of expectational coordi-
nation failures. That is, agents at some point in time choose, for some unmodeled
reason, to form their expectations according to the “bad” equilibrium, thus bringing
about this “bad” equilibrium (and, in this sense, expectations are self-fulfilling). A
caveat is that transversality conditions do not necessarily preclude explosive paths
for all endogenous variables but only for real endogenous variables, since only the
latter affect agents’ utility. This caveat is particularly relevant for a monetary econ-
omy at the “Woodfordian” cashless limit and is discussed further in Application 4.2.

The second reason, which is distinct conceptually from the first, applies to non-
linear models. An equilibrium is locally determinate if it is the unique equilibrium
such that the endogenous variables remain within some neighborhood of their steady-
state values for all t. It turns out that an infinite-dimensional nonlinear model is
locally determinate for sufficiently small disturbances and hence (log)linearization
around the steady state and related comparative dynamics exercises are justified
only if there exists a unique bounded solution to the linearized counterpart of the
model for any exogenous processes (disturbances) that are also bounded. Since most
microfounded macroeconomic models are nonlinear in their exact form, making
sure that we are justified in looking at their tractable (log)linear approximations of
the form (4.1) is crucial. Subsection 4.2.1 presents a formal discussion of this point.

4.2.1 Local Determinacy and (Log)linearization*

Consider a nonlinear model of the general form

Φ(x;u) ≡ {Etφ(xt,xt+1;ut)}Tt=0 = 0 ∈RT (4.21)

subject to x−1 = xinit, where we assume that xt and ut are both n-dimensional ran-
dom variables, for some n ∈N (this is without loss of generality). xt is the vector of
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endogenous variables and ut is the vector of exogenous processes (shocks) or model
parameters.3 We assume that φ is also n-dimensional and continuously differen-
tiable with respect to its arguments on its entire domain. Denote the equilibrium
around which we wish to linearize the model (perform comparative dynamics) by
x∗. In principle, x∗ can be any equilibrium satisfying (4.21) but usually we are in-
terested in the (deterministic) steady state equilibrium, that is, the equilibrium that
satisfies, xt = x ∈ R

n for all t when ut = 0 for all t (in all states of the world) and
x−1 = xinit = x,4

Φ(x∗;0) ≡ {φ(x,x;0)}Tt=0 = 0 ∈RT (4.22)

where x∗ is T -dimensional copy of vector x.
Whether T <∞ or T =∞, we can interpret Φ as a mapping from the sequences

{xt} and {ut} to the sequence {φt} of values of function φ in period t. Similarly, we
can interpret the derivative DxΦ(x∗;0) as the linear operator that maps perturbations
{x̂t} ≡ {xt − x} to perturbations {φ̂t} ≡ {φt − 0}. That is,

DxΦ(x∗;0)[{x̂t}] = {φ̂t}
= {φ1x̂t +φ2Etx̂t+1} (4.23)

where φ1 and φ2 are the derivatives of function φ with respect to its first two argu-
ments, evaluated at xt = xt+1 = x and ut = 0 for all t ≥ −1.

Definition 4.1 (Toplinear Isomorphism). A linear map L is a toplinear isomorphism
if it is continuous and has an inverse that is also a continuous linear map.

We now state the generalized versions of the inverse function and implicit func-
tion theorems that apply to the class of models of the form (4.21).

Theorem 4.2 (Inverse Mapping Theorem for REE models). Consider a Rational
Expectations Equilibrium (REE) model of the form (4.21), where φ is a Ck (k-times
continuously differentiable) function, k ∈N.

If DxΦ(x∗;0) is a toplinear isomorphism then the steady-state equilibrium x∗, de-
fined by (4.22), is locally determinate. That is, there exist neighborhoods X and X ′
of x∗ in the space of bounded sequences such that Φ is a one-to-one mapping from X to
X ′ with a Ck inverse mapping. Therefore, x∗ is the locally unique solution to (4.22)
in the sense that there is no other equilibrium (for u = 0) such that xt remains within
some neighborhood of x for all t.

3In the latter case, simply replace ut = u for all t.
4That is, a steady state equilibrium associated with steady state x ∈Rn is defined to be an equilib-

rium such that, if the system starts at the steady state, xinit = x, then, in the absence of disturbances
(and of expectations of disturbances in the future), it remains in the steady state forever, xt = x for all
t ≥ 1. Also see Remark 6.1 in Chapter 6.
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Theorem 4.3 (Implicit Mapping Theorem for REE models). Consider a Rational
Expectations Equilibrium (REE) model of the form (4.21), where φ is a Ck (k-times
continuously differentiable) function, k ∈N.

If DxΦ(x∗;0) is a toplinear isomorphism then there exist neighborhoods X of x∗

and U of u = 0 in the space of bounded sequences and a unique Ck map f : U → X
such that f (0) = x∗ and Φ(f (u),u) = 0 for all u ∈ U . Thus, equilibrium at u ∈ U
is locally determinate. In other words, for any sequence u = {ut} of disturbances
that are sufficiently close to ut = 0 for all t there exists a locally unique rational
expectations equilibrium x, that is, it is the unique equilibrium such that xt remains
within some neighborhood of x for all t.

Since f is a Ck map, k ≥ 1, the (first-order) approximation to x = f (u) given by

f (u) ≈ x∗ +Df (0)[u] (4.24)

where

Df (0) = −[DxΦ(x;0)]−1DuΦ(x;0) (4.25)

is accurate up to an error term of order O(||u||2).a

aThe norm is with respect to the L∞ topology, see footnote 2.

Theorems 4.2 and 4.3 tell us that if the derivative of map Φ possesses a certain
property (it is a toplinear isomorphism) then the (exact) rational-expectations equi-
librium is locally determinate both when disturbances are completely absent and
when disturbances (changes in u) are “small.” Thus, the (log)linear model defined
by the (log)linearized versions of the equilibrium conditions in Φ is a good approxi-
mation for such small disturbances.

How are the cases T < ∞ and T = ∞ different? Theorems 4.2 and 4.3 apply
to both cases, but the requirements for a linear map (in our case DxΦ(x∗;0)) to be
invertible are more stringent if our problem is infinite-dimensional. If our map Φ

has finite dimension, which would be the case if both T <∞ and there was a finite
number of states of the world, then a linear map is a toplinear isomorphism if and
only if it is nonsingular, that is, the determinant of the matrix DxΦ(x∗;0) has no
eigenvalues equal to zero. In our framework, this is the case almost by construction,
since function φ in (4.21) represents a system of n equations in n unknowns (and
we assume no equations are redundant). In the latter case, an inverse exists and the
map and its inverse are continuous since they are linear (see Definition 4.1).

However, for an infinite-dimensional map, linearity alone does not imply conti-
nuity. It can be shown that a linear map is continuous if and only if the map and
its inverse map are bounded, that is, they map an arbitrary bounded sequence into
a sequence that is also bounded. In our case (see equation (4.23)), we first need that
for any sequence of perturbations in x such that ||{x̂t}|| <∞ we must have ||{φ̂t}|| <∞,
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where, as before,

φ̂t ≡ φ1x̂t +φ2Etx̂t+1 ∀t ≥ −1 (4.26)

This condition holds since we have assumed that φ is continuously differentiable
so that its partial derivatives are finite. More importantly, we also need that map
DxΦ(x∗;0) has a bounded inverse map,which requires that the sequence of equations

{φ̂t} = {φ1x̂t +φ2Etx̂t+1} (4.27)

with {x̂t} as its unknowns, has a unique and bounded solution {x̂t} for any bounded
sequence {φ̂t}.5

This is far from a trivial requirement. Take the one-dimensional case, where
xt,φ ∈R. We can write (4.27) as

Etx̂t+1 = −
φ1

φ2
x̂t +

1
φ2
φ̂t (4.28)

From Theorem 4.1 we know that (4.28) has a unique bounded solution if and
only if ∣∣∣∣∣φ1

φ2

∣∣∣∣∣ > 1 (4.29)

We conclude that REE models consisting of a single equilibrium equation per
period and a single endogenous variable are locally determinate and admit a valid
loglinear approximation if and only if (4.29) holds. The condition for the multidi-
mensional case follows directly from the results of the next section, reinterpreting
the linear model as the (log)linearization of the nonlinear model (4.21) around its
steady state. In particular, assuming that all variables in vector xt are nonpredeter-
mined at time t (just as we assumed for the one-dimensional case (4.2)), the con-
dition is that matrix [φ2]−1φ1 has all of its eigenvalues outside the unit circle, the
natural generalization of (4.29). The more relevant case where some variables are
predetermined is discussed in the next section.

Finally, consider a rational-expectations model of the general form

Φ(x;u) ≡ {Etφ(xt−1,xt,xt+1;ut)}∞t=0 = 0 (4.30)

where xt,φ ∈Rn, the steady state of which is similarly defined by

Φ(x∗;0) ≡ {φ(x,x,x;0)}∞t=0 = 0 (4.31)

5Note that the linearized model is defined by φ1x̂t +φ2x̂t+1 +φ3ut = 0, where φ3 is defined analo-
gously to φ1 and φ2 as the derivative of function φ with respect to its third argument, ut , evaluated
at xt = xt+1 = x and ut = 0 for all t ≥ −1. Therefore, φ̂t = −φ3ut and the sequence of perturbations {φ̂t}
corresponds to a multiple of the sequence of exogenous disturbances {ut}.
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where all variables in vector xt are assumed to be nonpredetermined at time t. The
invertibility condition for the linearized model

{φ̂t} = {φ1x̂t−1 +φ2x̂t +φ3Etx̂t+1} (4.32)

turns out to be that the (characteristic) equation

det[φ3λ
2 +φ2λ+φ1] = 0 (4.33)

has exactly n roots strictly inside the unit circle and n roots strictly outside the unit
circle. An exercise in Problem Set 3 asks you to derive the above condition for n = 1
using the Blanchard and Kahn (1980) method discussed in the next section.

An important caveat is that the results above only refer to local determinacy of
the (nonlinear) equilibrium, not to global determinacy, that is whether the model has
only one possible solution for {xt}, whether bounded or unbounded. If transversality
conditions do not preclude explosive paths for all variables (including nominal vari-
ables, in particular), then equilibrium may not be unique even though it is locally
so.

4.3 The Blanchard-Kahn solution method

Consider the general system (4.1),

Etxt+1 = Axt +But (4.34)

Given the results of Chapter 3 and Theorem 4.1, one can easily see that, if all
variables in the vector xt are nonpredetermined at time t, system (4.34) has a unique
bounded solution if and only if all eigenvalues of matrix A lie outside the unit circle
(that is, they have moduli greater than 1).

However, consider a special case of system (4.34) that is more common in eco-
nomic applications, as in Blanchard and Kahn (1980):[

x1,t+1
Etx2,t+1

]
= A

[
x1,t
x2,t

]
+But (4.35)

subject to x1,−1 = xinit, where x1,t is an n× 1 vector of variables predetermined at time
t, x2,t is an m × 1 vector of variables that are nonpredetermined at time t, and ut is a
k×1 vector of exogenous variables (which can be deterministic or stochastic). A and
B are constant (n+m)×(n+m) and (n+m)×k matrices, respectively. We assume that A
has n+m distinct eigenvalues, n eigenvalues inside the unit circle andm eigenvalues
outside the unit circle. Note that we must have n +m = n +m. We seek a unique
bounded solution, {xt}, given that {ut} is a bounded sequence.6

6Blanchard and Kahn (1980) in fact prove the validity of their method for a more general class
of exogenous sequences and corresponding admissible solution sequences, namely, sequences whose
expectations grow slower than exponentially. They are able to do so because all we need for the
forward solution to be unique is that the multidimensional analog of equation (4.14) holds.
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Recall our discussion in Chapters 1 and 3 on the method of eigenvalue decompo-
sition, which underlies the solution methods for autonomous differential and differ-
ence systems. In particular, Theorem 1.1 implies that A can be diagonalized as7

A = PDP −1 (4.36)

whereD is the diagonal matrix with the eigenvalues on the diagonal in increasing or-
der according to their moduli and P is a matrix with the corresponding eigenvectors
as its columns. Let P11 denote the top-left n×n submatrix of P .

We summarize the key result of Blanchard and Kahn (1980) in the following
theorem.

Theorem 4.4 (The Blanchard and Kahn (1980) Method). Consider the linear ex-
pectational difference equation system (4.35), subject to x1,−1 = xinit. Assume that
matrix P11, the top-left n×n submatrix of P in (4.36) is of full rank.

Let m denote the dimension of the vector of nonpredetermined variables at t, x2,t,
and let m denote the number of eigenvalues of A strictly outside the unit circle.

If m =m there exists a unique bounded solution to (4.35).
If m >m there exists no bounded solution.
If m <m there exists an infinity of bounded solutions.

The proof of the result, which also describes the algorithm for obtaining the
unique bounded solution when m = m, is given in the next subsection. The intu-
ition behind the derivation can be stated as follows. The key to the existence of a
bounded solution is that the system is not “too explosive” in the sense that it has suf-
ficiently many stable eigenvalues (i.e. n ≥ n⇒ m ≤ m). The key to the uniqueness of
the bounded solution is that nonpredetermined variables are only forward-looking,
in the sense that they depend on the past only indirectly through the effect of the
past on the currently predetermined variables; this is ensured by the existence of
sufficiently many unstable eigenvalues of the system (i.e. m ≥m).

Remark 4.1. In many models and textbooks, system (4.34) is written as

xt = SEtxt+1 + T ut (4.37)

where S = A−1 and T = −A−1B.
In this case, we use the fact from matrix algebra that, if λi is an eigenvalue of

matrix A, then 1
λi

is an eigenvalue of its inverse matrix, A−1 = S. Therefore, all
of our results on the existence and uniqueness of bounded solutions go through
but with the opposite sign. That is, the stable eigenvalues of S are those that

7In the case of a matrix with repeated eigenvalues a similar procedure is possible, where D now
has the Jordan form. See subsection 1.3.1.
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lie outside the unit circle and its unstable eigenvalues are those inside the unit
circle.

Remark 4.2 (System Reduction). The assumption in Theorem that matrix P11 is
of full rank (i.e. invertible when m = m) requires that one applies the prelimi-
nary step of “system reduction” to the model before applying the Blanchard and
Kahn (1980) method, writing the model in terms of a subset of variables that
are uniquely determined. However, system reduction may not be possible or
straightforward for all models. Moreover, some models take the form

MEtxt+1 = Axt +But (4.38)

where the lead matrixM is not invertible, so that the model cannot be cast in the
form (4.35) amenable to the Blanchard and Kahn (1980) method. For recently
devised solution methods to systems of linear expectational difference equations
that do not require invertibility of P11 and M, and also possess a number of
practical advantages compared to Blanchard and Kahn (1980), see Klein (2000);
King and Watson (2002); Sims (2002) and Uhlig (1999).

A related solution method for linear rational-expectations models, the method of
undetermined coefficients, is discussed in Application 4.1 in the context of the lin-
earized neoclassical growth model.

4.3.1 Proof of Theorem 4.4*

Consider the representation of system (4.35) corresponding to the eigenbasis,[
Etz1,t+1
Etz2,t+1

]
=

[
Λ1 0
0 Λ2

][
z1,t
z2,t

]
+Cut (4.39)

where [
z1,t
z2,t

]
= P −1

[
x1,t
x2,t

]
(4.40)

C = P −1B (4.41)

= P −1
[
B1
B2

]
(4.42)

and Λ1 and Λ2 are n×n and m×m diagonal matrices with the eigenvalues of A that
are inside and outside the unit circle, respectively, on their diagonal. Also let

P ≡
[
P11 P12
P21 P22

]
(4.43)
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and

P −1 ≡Q =
[
Q11 Q12
Q21 Q22

]
(4.44)

The transformation (4.39) effectively “decouples” the system into two subsys-
tems, one of which is “fully stable” (with dimension n) and the other “fully explo-
sive” (with dimension m).

Let us first consider the explosive subsystem of (4.39):

Etz2,t+1 = Λ2z2,t + (Q21B1 +Q22B2)ut (4.45)

Because a bounded solution for xt requires a bounded solution for (every component
of) zt, the solution of the explosive subsystem must be bounded as well. Thus, pro-
ceeding exactly as we did for the unidimensional case (4.2) with |a| > 1, we can write
the unique bounded solution of (4.45) as

z2,t = −
∞∑
j=0

Λ
−(j+1)
2 (Q21B1 +Q22B2)Etut+j (4.46)

for all t ≥ −1.
Now consider the “fully stable” subsystem

Etz1,t+1 = Λ1z1,t + (Q11B1 +Q12B2)ut (4.47)

Just like its unidimensional counterpart (4.2) with |a| < 1, this system has an un-
countable infinity of bounded solutions. Our hope is that the model implies enough
restrictions on {z1,t} so as to pin down a unique solution for this subsystem as well.
Moreover, we want the model to imply just enough restrictions, otherwise no bounded
solution will exist.

We have two sets of restrictions on {z1,t}. First, the initial condition x1,−1 = xinit
on the predetermined variables at time −1 implies restrictions on {z1,−1},

xinit = P11z1,−1 + P12z2,−1 (4.48)

where z2,−1 is already pinned down from (4.46).
Second, we use the fact that {x1,t+1} is a sequence of variables predetermined at

time t, so that we have the following restrictions on the relationship between {z1,t}
and {z2,t}.

0 = x1,t+1 −Etx1,t+1 (4.49)
= P11(z1,t+1 −Etz1,t+1) + P12(z2,t+1 −Etz2,t+1) (4.50)

With these two sets of restrictions in hand, we are ready to consider the three
possible cases: m =m, m >m, and m <m.
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Throughout, we will assume that P11 is of full rank, rank(P11) = min(n,n). This
essentially requires the preliminary step of “system reduction” before applying the
Blanchard and Kahn (1980) method, discussed in Remark 4.2.

Consider the case m = m, that is, we have as many explosive eigenvalues as we
have nonpredetermined variables. Then, P11 is an n×n matrix, which, together with
the assumption that it is of full rank, implies that it is invertible. Thus, the entire
sequence {z1,t} is uniquely pinned down as follows: first, z2,−1 is pinned down from
(4.46); second, z1,−1 is pinned down from (4.48) since P11 is invertible; third, Etz1,0
is pinned down from (4.47); fourth, z1,0 is pinned down from (4.50) again because
P11 is invertible. Thus, proceeding recursively with respect to t, we have proved
that {z1,t} is uniquely determined. It is also bounded by construction, since {z2,t} is
bounded. We conclude from (4.40) that the original system has a unique bounded
solution.

What happens in the case m > m? As soon as we reach the second step in the
recursion described above we note that (4.48) imposes more than n restrictions on
the n-dimensional vector z1,−1. Similarly, system (4.50), evaluated at t = −1, is also
overdetermined. Therefore, the system generically has no bounded solution.

What happens when m < m? Note that both systems of linear restrictions (4.48)
and (4.50), evaluated at t = −1, are underdetermined. In this case, we cannot rule
out any of the infinitely many bounded solutions of (4.47). Therefore, our original
system also has an infinity of bounded solutions.

Application 4.1 (Solution to the Loglinearized Stochastic Neoclassical Growth Model).
Consider a stochastic version of the neoclassical growth model:

kt+1 = f (kt, zt) + (1− δ)kt − ct (4.51)
u′(ct) = Etβ [fk(kt+1, zt+1) + (1− δ)]u′(ct+1) (4.52)

lnzt+1 = ρ lnzt + εt+1 (4.53)

where β,ρ < 1 and δ ≤ 1, subject to the initial conditions k0 = kinit > 0 and z0 = zinit,
and the transversality condition

lim
t→∞

E

{
βt [fk(kt, zt) + (1− δ)]u′(ct)kt |z0 = zinit

}
= 0 (4.54)

We assume the usual parametric forms:

u(ct) =
c

1−γ
t

1−γ
(4.55)

f (kt, zt) = ztk
α
t (4.56)

where γ > 0 and α ∈ (0,1), that is, CRRA utility and Cobb-Douglas production tech-
nology. For simplicity, we also assume that capital depreciates fully every period,
δ = 1.
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We are looking for a unique bounded solution to the loglinearized versions of
the equilibrium conditions around the model’s steady state. The loglinear approxi-
mation to (4.51)-(4.52) (see application 6.1 for its derivation) under our parametric
assumptions is given by

k̂t+1 =
y

k

[
ẑt +αk̂t

]
− c
k
ĉt (4.57)

Et ĉt+1 = ĉt +
1
γ

[
Et ẑt+1 − (1−α)k̂t+1

]
(4.58)

Et ẑt+1 = ρẑt (4.59)

where x denotes the steady state value of a variable x and x̂t ≡ lnxt − lnx denotes the
relative (percentage) deviation of variable x from its steady state value.

In order to use the Blanchard and Kahn (1980) method we need to cast the model
into the form given by (4.35). After some algebra we find

[
k̂t+1

Et ĉt+1

]
=

≡A︷                    ︸︸                    ︷ α y
k

− c
k

−α(1−α)
γk

1 + (1−α)c
γk


[
k̂t
ĉt

]
+

≡B︷      ︸︸      ︷
y

k
ρk−(1−α)y

γk

 ẑt (4.60)

where expectations of the exogenous process (the technology shock) evolve accord-
ing to Et ẑt+1 = ρẑt. 8

We know from Theorem 4.4 that the system has a unique and bounded solution
if and only if matrix A has one eigenvalue strictly inside the unit circle and one
eigenvalue strictly outside the unit circle. It can be shown that this is the case for
all allowed values of the parameters α, β, and γ . To solve for the system in this
case, we can follow the procedure outlined in subsection 4.3.1: transform the sys-
tem into its representation in terms of its eigenbasis, and solve recursively for the
transformed and the original variables. As these steps involve only tedious algebraic
manipulations, we do not cover them here.

We now discuss a popular alternative (but related) method to solve system (4.60)
called the method of undetermined coefficients. Note that existence of a bounded so-
lution by definition requires that capital remains bounded (in the sense of footnote
2). Also recall from the Blanchard and Kahn (1980) approach that uniqueness of the
bounded solution requires that variables not predetermined at time t (in our case,
consumption) are purely forward-looking in the sense that they depend on the past
only indirectly through the current values of the predetermined variables. This mo-
tivates us to conjecture that equilibrium consumption is a function only of current

8Note that in this model the requirement of system reduction discussed in Remark 4.2 implies
that one should not include investment and output in addition to the two main variables, consump-
tion and capital, as the solutions of the former are directly pinned down from the solutions to the
sequences of the two main variables.
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variables, ct = g(kt, zt). Function g is known as the equilibrium policy function for
consumption.

Furthermore, given the linearity of system (4.60) it is natural to conjecture that
function g is linear so that

ct = ackkt + aczzt (4.61)

for some coefficients ack and acz. Also note that once we know {ct} we also know
{kt+1} from (4.60) and the initial conditions. This implies that the policy function for
kt+1 depends only on kt and zt as well. By the same logic as above, we also conjecture
that it is a linear function of these two variables,

kt+1 = akkkt + akzzt (4.62)

for some coefficients akk and akz.
Coefficients ack, acz, akk, and akz are “undetermined.” After plugging in our con-

jecture to (4.60) for a given t, we will end up with a system of the form[
b11 b12
b21 b22

][
k̂t
ẑt

]
= 0 (4.63)

where bij are (possibly nonlinear) functions of the coefficients ack, acz, akk, and akz.
At this point, we note that, if our conjecture is correct, the system above must

hold for all possible values of k̂t and ẑt. Therefore, each bij must be zero. We thus
obtain a (nonlinear) system of 4 algebraic equations in 4 unknowns (the coefficients
ack, acz, akk, and akz).

It will turn out that one of the resulting equations will be quadratic in akk, which
has two roots. We must pick the root with absolute value less than 1, since we are
looking for a bounded solution, as discussed above.

For a formal description and application of the method of undetermined coeffi-
cients to more complex problems, see Uhlig (1999). �

Application 4.2 (Equilibrium Determinacy and Monetary Policy*). Consider the
loglinearized New Keynesian model in discrete time:

Etỹt+1 = ỹt + σ−1 (it −Etπt+1 − rnt ) (4.64)
Etπt+1 = β−1 [πt −κỹt] (4.65)

Here, the two endogenous variables are the output gap, ỹt, and inflation, πt. The
system is affected by exogenous shocks to the natural interest rate, {rnt }, which we
assume to be a bounded sequence, and by an “exogenous” (with respect to private
agents) sequence {it} of the value of the nominal interest rate every period, which
the monetary authority is assumed to control. We know (from the economics of
the problem) that the output gap and inflation are not predetermined at a given time
period.
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First, assume that the monetary authority simply sets the nominal interest rate
per period, so that it = i∗t , where i∗t is some target for the monetary authority. We will
not be concerned with what the optimal target is. In order to see whether our system
has a unique bounded solution, so that the rational-expectations equilibrium of the
New Keynesian model is locally unique, let us write (4.64)-(4.65) in matrix form:

[
Etỹt+1
Etπt+1

]
=

≡A︷           ︸︸           ︷
1
β

[
β + κ

σ − 1
σ

−κ 1

][
ỹt
πt

]
+

1
σ

[
1 −1
0 0

][
i∗t
rnt

]
(4.66)

From Theorem 4.4, we know that since we have n = 0 and m = 2, a unique
bounded solution exists if we have m = 2, that is, if both eigenvalues of A are strictly
outside the unit circle. It turns out, however, that one of the eigenvalues of A lies in-
side the unit circle,9 1 =m <m, and we have an infinity of bounded solutions, so that
equilibrium is indeterminate even locally. This is the “classical” determinacy prob-
lem associated with monetary policy, first observed by Sargent and Wallace (1975).

Instead, consider a monetary policy rule, often called the Taylor rule, of the form

it = i∗t +φππt (4.67)

We want to see if such a rule helps us achieve determinacy. In terms of the math-
ematics, are there values of φπ such that both eigenvalues of matrix A are outside
the unit circle?

Our system now becomes

[
Etỹt+1
Etπt+1

]
=

≡B︷               ︸︸               ︷
1
β

[
β + κ

σ
βφπ−1
σ

−κ 1

][
ỹt
πt

]
+

1
σ

[
1 −1
0 0

][
i∗t
rnt

]
(4.68)

where the only difference of matrix B from matrix A is the inclusion of a term in φπ
on the top-right element of B.

We want to know which values, if any, of φπ correspond to A having both of its
eigenvalues outside of the unit circle. As is clear from Figure 3.3, it turns out to be
much easier to derive the region where both eigenvalues are inside the unit circle. To
use this shortcut, we can make use of Remark 4.1 and look at the inverse of matrix
B,

B−1 =
1

σ +κφπ

[
σ 1− βφπ
σκ κ+ βσ

]
(4.69)

with

tr(A) =
σ +κ+ βσ
σ +κφπ

(4.70)

det(A) =
βσ

σ +κφπ
(4.71)

9This can be seen as a special case of the derivation below with φπ = 0.
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and use the three necessary and sufficient conditions in Lemma 3.2. We get the three
corresponding restrictions

φπ > −
σ (1− β)

κ
(4.72)

φπ > 1 (4.73)
βσ > −κ(1 +φπ)− σ (2 + β) (4.74)

Since κ, σ , and β are positive, the third condition places no restrictions, while the
first restriction is implied by the second. We conclude that the equilibrium is locally
unique (around the deterministic steady state) if and only if

φπ > 1 (4.75)

In the simplest version of the New Keynesian model studied here the steady-state
(and optimal) value of inflation is zero. Then, the determinacy rule (4.75) says that
monetary policy must promise to “more than” offset any deviation of inflation from
its optimal value of zero via a change in the nominal interest rate.

Importantly, this response will not be observed on the equilibrium path. It is an
off-equilibrium response or “threat” that is present only to rule out other (bounded)
equilibria. An implication of this is that, in principle, we cannot identify empirically
the Taylor rule coefficient, φπ.

This fact contrasts sharply with the predictions of “old Keynesian” models with
backward-looking (and “non-microfoundable”) equations of the form

[
yt
πt

]
= C

[
yt−1
πt−1

]
+D

[
i∗t
ut

]
(4.76)

Note that expectational terms are absent. This is a linear difference system of the
kind that we studied in Chapter 3.10 When monetary policy follows the same Taylor
rule, (4.67), it is usually the case that an “active” monetary policy, φπ > 1, is asso-
ciated with a matrix C with eigenvalues inside the unit circle. This implies that the
system follows stable dynamics in equilibrium (see Remark 3.1). For example, if i∗t
and ut are constant over time, the system will converge asymptotically to its steady
state.

Therefore, φπ > 1 in (4.76) ensures stable dynamics in equilibrium. There is no
issue of indeterminacy since there is a unique (global) equilibrium path, as we know
from Theorem 3.3. In contrast, in New Keynesian models unstable dynamics off the
equilibrium path ensure local determinacy.

Let us finally return to the loglinearized New Keynesian model (4.64)-(4.65) and
briefly discuss global determinacy (uniqueness) of equilibrium in the exact (nonlin-
ear) model. Consistent with our discussion in section 4.2, an “active” Taylor rule and

10The presence of potentially stochastic exogenous variables, i∗t or ut , does not affect this conclusion.
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the associated unstable eigenvalues of the system only ensure local determinacy, that
is, uniqueness of the bounded solutions. As discussed in section 4.2, transversality
conditions usually rule out explosive equilibrium paths for real variables, but this
is not the case for nominal variables at the benchmark New Keynesian economy (an
economy at the “cashless” limit).

New Keynesian economists have offered a number of responses. First, Woodford
(2003) suggests a behavioral equilibrium selection criterion, motivated by the fact
that large expectational adjustments, such as those associated with explosive paths,
are implausible. A second, more direct response is to assume that the government
pairs a monetary policy based on an active Taylor rule with other types of monetary
or fiscal policies that ensure that equilibrium is impossible under explosive inflation
or deflation.11 Again, all of these policies serve to rule out other equilibria, and the
government will never need to actually implement them in equilibrium.12 �

11For example, the government could lower taxes so much during a low-inflation (deflation) state
that the real value of public debt explodes, so that the consumers’ transversality condition cannot be
satisfied.

12For more on equilibrium determinacy in the New Keynesian model, see Woodford (2003),
Cochrane (2011), and references therein.



Problem Set 3

1. (Second-Order Expectational Difference Equation) Consider the second-order
expectational difference equation

a1xt−1 + a2xt + a3Etxt+1 = ut

subject to the initial condition x−1 = xinit, where xt,ut ∈R and {ut} is a bounded
exogenous process. You are asked to derive the condition on the coefficients a1,
a2, and a3 under which equation (4.77) has a unique bounded solution.

(i) Transform the equation into a first-order system

Etyt+1 = Ayt +But

where yt ≡
[
xt
xt−1

]
.

(ii) Compute the characteristic polynomial of matrix A, pA(λ).

(iii) How many elements of vector yt are predetermined at time t? What con-
ditions does the Blanchard-Kahn method (Theorem 4.4) impose on the
roots of pλ(A) in order for the system to have a unique bounded solution?
(You do not need to solve explicitly for the restrictions in terms of the
coefficients.)
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2. (Stochastic Lagrange Multipliers) Consider the monetary policy problem

min
{xt ,πt}∞t=0

1
2
E0

∞∑
t=0

βt(π2
t + axx

2
t ) (4.77)

for given π−1 and x−1, subject to the sequence of constraints

πt = βEtπt+1 +κxt +ut (4.78)

for all t ≥ 0, where {ut} is an exogenous stochastic process. The exact realization
of ut is not revealed until time t. The optimal policies x∗t and π∗t are allowed to
depend on the history of the exogenous process up to time t.

(i) State the Lagrangian for this problem.

(ii) State the first-order conditions for xt and πt.

(iii) It can be shown that the policies defined by the first-order conditions sat-
isfy certain conditions (including a transversality condition) ensuring that
they are indeed the optimal policies x∗t and π∗t . Combine the first-order
conditions to eliminate the Lagrange multipliers and derive a relationship
between the optimal policies of the form

x∗t = cp̂(t) (4.79)

where p̂(t) ≡ π∗0 +π∗1 + . . .+π∗t and c is a function of the parameters of the
problem. What is c?
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Chapter 5

Dynamic Optimization: Optimal
Control Theory

5.1 The Lagrange Method in Discrete Time

Recall the method of Lagrange multipliers from the micro part of math camp. As a
first example, consider a version of the Kuhn-Tucker theorem for finite-dimensional
problems with equality constraints:

max
x∈RK

f (x) (5.1)

subject to

g(x) = 0 (5.2)

where f : RK → R
N , g : RK → R

M , for some K,N,M ∈N, and f and g are differen-
tiable.

The Kuhn-Tucker theorem tells us that if there exists an interior solution to this
problem and provided a certain regularity condition is satisfied (the constraint qual-
ification condition) we can convert the problem into an unconstrained optimization
problem by constructing the Lagrangian function

L(x,λ) = f (x) +λ · g(x) (5.3)

where λ ∈ RM are the Lagrange multipliers. The first-order conditions of this un-
constrained problem are

Dxf (x∗) +λ∗ ·Dxg(x∗) = 0 (5.4)
g(x∗) = 0 (5.5)

where the second line is the first-order condition with respect to the additional set
of variables of the unconstrained problem, the vector of Lagrange multipliers.
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The saddle-point and Kuhn-Tucker theorems provide necessary and sufficient
conditions for a wide range of constrained optimization problems. Importantly,
the Lagrange multipliers have an intuitive and useful interpretation as the shadow
value of relaxing their respective constraints. The Lagrange multiplier method is
extremely powerful; it has its foundations in duality theory and has generalized
counterparts that provide existence and uniqueness results for problems where the
argument with respect to which the maximization or minimization takes place is an
infinite-dimensional vector or even a function.1

In this chapter we study dynamic optimization problems. Consider the following
general formulation of an infinite-horizon, deterministic optimization problem:

max
{xt ,yt}∞t=0

W ({xt}, {yt}) =
∞∑
t=0

f (t,xt, yt) (5.6)

such that

xt+1 = g (t,xt, yt) ∀t ≥ 0 (5.7)

where xt ∈ X ⊆ R, yt ∈ Y ⊆ R, and given the boundary conditions x0 = xinit and
lim→∞ btxt ≥ x ∈R.

Assuming that appropriate regularity conditions are satisfied, we can construct
the Lagrangian function of this problem:

max
{xt ,yt}∞t=0

min
{λt}∞t=0

L ({xt}, {yt}, {λt})

=
∞∑
t=0

f (t,xt, yt) +
∞∑
t=0

λt (g (t,xt, yt)− xt+1) (5.8)

where xt ∈ X ⊆ R, yt ∈ Y ⊆ R, λt ∈ R, and given the boundary conditions x0 = xinit
and lim→∞ btxt ≥ x ∈R.

Note that we have turned our constrained optimization problem into a formally
unconstrained one. The Lagrange multipliers λt are not arbitrary but take the values
that ensure that the constraint xt+1 = g (t,xt, yt) is satisfied for all t ≥ 0. In the original
formulation the constraint on the law of motion of xt captures the intertemporal

1As one would expect, there are also limitations when it comes to infinite-dimensional problems.
A well-known issue is related to the fact that in optimization problems involving an infinite num-
ber of commodities (time periods), the corresponding sequence of Lagrange multipliers may not be
bounded, that is, it may “place all of its weight at infinity.” The most important example of this is-
sue in economics is the literature on the existence of equilibrium in infinite-dimensional economies
(see chapter 15 of Stokey and Lucas (1989) for an excellent exposition). In that case, the question is
essentially whether the Lagrange multipliers of the social planner’s problem can function as market-
clearing equilibrium prices. Care should be taken to prove the existence of a bounded sequence of
multipliers that has the usual inner-product representation. In the case of infinite-horizon problems
this is usually accomplished by assuming that the future is sufficiently discounted, which ensures
that an appropriate transversality condition is satisfied.
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tradeoffs that the agent faces; in the Lagrangian formulation it is the law of motion
of the Lagrange multipliers that captures these dynamic tradeoffs.

The first-order conditions to problem 5.8 are2

wrt yt : fy (t,xt, yt) +λtgy (t,xt, yt) = 0 ∀ t ≥ 0 (5.9)

wrt xt : fx (t,xt, yt) +λtgx (t,xt, yt)−λt−1 = 0 ∀ t ≥ 1 (5.10)
fx (0,x0, y0) +λ0gx (0,x0, y0) = 0 t = 0 (5.11)

wrt λt : xt+1 = g (t,xt, yt) ∀ t ≥ 0 (5.12)

For reasons that will become clear in the next section, it is useful to reformulate
the Lagrangian in term of a function H as follows:

max
{xt ,yt}∞t=0

min
{λt}∞t=0

L ({xt}, {yt}, {λt})

=
∞∑
t=0

f (t,xt, yt) +
∞∑
t=0

λt (g (t,xt, yt)− xt+1)

=
∞∑
t=0

[f (t,xt, yt) +λt (g (t,xt, yt)− xt+1)]

=
∞∑
t=0

[f (t,xt, yt) +λt (g (t,xt, yt)− xt)−λt (xt+1 − xt)]

=
∞∑
t=0

[H(t,xt, yt,λt)−λt (xt+1 − xt)] (5.13)

where

H(t,xt, yt,λt) ≡ f (t,xt, yt) +λt (g (t,xt, yt)− xt) (5.14)

The first order conditions can be restated in terms of function H as

wrt yt : Hy(t,xt, yt,λt) = 0 ∀ t ≥ 0 (5.15)

wrt xt : λt −λt−1 = −Hx(t,xt, yt,λt) ∀ t ≥ 1 (5.16)
λ0 = −Hx(0,x0, y0,λ0) t = 0 (5.17)

wrt λt : xt+1 = g (t,xt, yt) ∀ t ≥ 0 (5.18)

5.2 The Optimal Control Problem

Our main focus in this chapter is a continuous-time optimization problem called the
optimal control problem. The dynamic constraint in this problem takes the form of a
differential equation. The problem is:

2In fact, as in every infinite-horizon optimization problem, there exists a fourth optimality condi-
tion, the transversality condition, restricting the behavior of the optimal policy as t→∞. See section
5.3 for a discussion of this condition.
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max
[x(t),y(t)]∞t=0

W (x(t), y(t)) ≡
∫ ∞

0
f (t,x(t), y(t))dt (5.19)

subject to the constraints

ẋ(t) = g(t,x(t), y(t)) (5.20)

and

x(t) ∈ X (5.21)
y(t) ∈ Y (5.22)

for all t ≥ 0,3 where X ⊂ R and Y ⊂ R are nonempty and convex, and given the
boundary conditions

x(0) = x0 ∈R (5.23)
lim
t→∞

b(t)x(t) ≥ x1 ∈R (5.24)

where b : R+→ R+, limt→∞ b(t) exists and is finite. Moreover, f and g are continu-
ously differentiable functions of x, y and t.

Function x(t) is called the state variable and y(t) the control variable of problem
(5.19)-(5.24). Also note that (5.24) is a feasibility (in certain settings, no-Ponzi) con-
dition, not a transversality condition.

An admissible policy pair (x(t), y(t)) is defined to be a pair satisfying all conditions
(5.20)-(5.24).4 A solution (x̂(t), ŷ(t)) is defined to be a pair of functions of t such that

W (x̂(·), ŷ(·)) ≥W (x(·), y(·)) (5.25)

for any other admissible pair (x(·), y(cdot)).
The Maximum Principle states that if problem (5.19)-(5.24) has an interior solu-

tion, that is, if x̂(t) ∈ IntX and ŷ(t) ∈ IntY , then one can reformulate problem (5.19)-
(5.24) as the “unconstrained” problem 5

max
[y(t)]∞t=0

∫ ∞
0
H(t, x̂(t), y(t),λ(t))dt (5.26)

where

H(t,x(t), y(t),λ(t)) ≡ f (t,x(t), y(t)) +λ(t)g(t,x(t), y(t)) (5.27)

3Formally, y(t) must be a Lebesgue measurable function and x(t) an absolutely continuous func-
tion.

4This includes the requirements on y(t) and x(t) outlined in footnote 3.
5Note that in (5.26) we maximize only with respect to [y(t)]∞t=0; the Hamiltonian is evaluated at the

optimal policy for the state variable, [x̂(t)]∞t=0, and at the process [λ(t)]∞t=0 associated with the optimal
policy.
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for a continuously differentiable function λ(t) satisfying certain conditions.
We have effectively transformed our original dynamic problem into a sequence of

static problems, since (5.26) implies that, at each t, ŷ(t) maximizes the Hamiltonian
at time t:

H(t, x̂(t), ŷ(t),λ(t)) ≥H(t, x̂(t), y(t),λ(t)) (5.28)

It also follows that ŷ(t) satisfies the usual first-order condition since we have as-
sumed an interior solution:

Hy(t, x̂(t), ŷ(t),λ(t)) = 0 (5.29)

⇔ fy(t, x̂(t), ŷ(t)) +λ(t)gy(t, x̂(t), ŷ(t)) = 0 (5.30)

Function H is called the Hamiltonian of problem (5.19)-(5.24), and function λ is
called the costate variable associated with the solution pair (x̂(t), ŷ(t)). We will see
that the dynamic tradeoffs inherent in the original problem are now captured by the
dynamics of the costate variable.

Observe the similarities between problem (5.19)-(5.24) and the discrete-time prob-
lem (5.6)-(5.7) of the previous section. The first-order condition with respect to the
control variable, (5.29), coincides with condition (5.15) with the discrete-time prob-
lem. It is therefore clear that the formulation of discrete-time problems in terms
of the Lagrangian and the formulation of optimal control problems in terms of the
Hamiltonian are profoundly related to each other.6

5.3 Necessary and Sufficient Conditions for Optimal-
ity

Let us define the value function of problem (5.19)-(5.24) as

V (t0,x0) = sup
[x(t),y(t)]∞t=0

∫ ∞
t0

f (t,x(t), y(t))dt (5.31)

subject to x(t0) = x0, (5.20)-(5.22), and (5.24).
That is, the value function V (t0,x(t0)) gives the optimal value of the dynamic op-

timization problem starting at time t0 with state variable x(t0).7 We focus on cases
where the value function is finite (otherwise, the problem is economically uninter-
esting).

6In fact, the type of problem considered in this chapter, and in economics more generally, is re-
ferred to as the “Lagrange problem” in optimal control theory.

7This value function is the link between optimal control theory and continuous-time dynaming
programming theory, which you will study in the first quarter of the macro sequence. The so-called
Hamilton-Jacobi-Bellman (HJB) equation can be proved as a direct corollary of the Maximum Princi-
ple, Theorem 5.1.
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We are now ready to formally state the Maximum Principle, providing necessary
conditions for an interior solution to problem (5.19)-(5.24).

Theorem 5.1 (Pontryagin’s Maximum Principle). Suppose that problem (5.19)-
(5.24) has a piecewise continuous interior solution (x̂(t), ŷ(t)) ∈ IntX×Y . LetH(t,x,y,λ)
be as defined in (5.27). Then, given (x̂(t), ŷ(t)), the Hamiltonian H(t,x,y,λ) satisfies
the Maximum Principle

H(t, x̂(t), ŷ(t),λ(t)) ≥H(t, x̂(t), y(t),λ(t)) (5.32)

for all y(t) ∈ Y and for all t ∈R+.
Moreover, for all t ∈ R+ for which ŷ(t) is continuous, the following necessary

conditions are satisfied:

Hy(t, x̂(t), ŷ(t),λ(t)) = 0 (5.33)

λ̇(t) = −Hx(t, x̂(t), ŷ(t),λ(t)) (5.34)
ẋ(t) =Hλ(t, x̂(t), ŷ(t),λ(t)) (5.35)

with x̂(0) = x0 and limt→∞ b(t)x̂(t) ≥ x1.
Additionally, suppose that the value function V (t, x̂(t)) is differentiable in x and t

for t sufficiently large, and that limt→∞∂V (t, x̂(t))/∂t = 0. Then, the pair (x̂(t), ŷ(t))
also satisfies the transversality condition

lim
t→∞

H(t, x̂(t), ŷ(t),λ(t)) = 0 (5.36)

First-order conditions (5.33)- (5.35) are the analogous conditions to (5.15)- (5.18)
for the discrete-time problem. Once again, note that the costate variable, λ(t), ap-
pearing in the Maximum Principle equation (5.32) and in the necessary conditions
(5.33)-(5.36) is associated with the particular solution pair (x̂(t), ŷ(t)), as can be seen
from the specification of its law of motion in necessary condition (5.34).

The intuition for necessary conditions (5.33) and (5.35) should be straightfoward,
as it is exactly analogous to the first-order conditions (5.4) and (5.5). Condition
(5.33) is the first-order condition of the “unconstrained” problem (5.26). Condition
(5.35) is simply a restatement of the constraint ẋ = g(·) =Hλ.

For further insight on equation (5.33) note that, just as for the Lagrange multi-
pliers of a finite-dimensional problem, it can be shown that

λ(t) =
∂V (t, x̂(t))

∂x
(5.37)

so the costate variable measures the effect of a marginal increase in x on the optimal
value of the problem. In other words, λ(t) can be interpreted as the shadow value
of “relaxing” the constraint (5.20) by increasing the value of x(t) at time t. We can,
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therefore, think of the state variable x(t) as a “stock” variable and of the control
variable y(t) as a “flow” variable.8

Note that the second term in the Hamiltonian λ(t)g(t,x(t), y(t)) equals λ(t)ẋ(t);
this is the shadow value of a marginal increase in x times a marginal increase in
x. So, the Maximum Principle (equations (5.32) and (5.33)) can be interpreted as
saying that the original maximization problem is equivalent to maximizing the in-
stantaneous (flow) return f (t,x(t), y(t)) plus the value of the change in the stock of
the state variable at each instant.

Let us now turn to equation (5.34). This necessary condition specifying the law
of motion of the costate variable is unique to the optimal control problem (it has no
counterpart in the finite-dimensional Lagrange problem). It states

λ̇(t) = −fx(t, x̂(t), ŷ(t))−λ(t)gx(t, x̂(t), ŷ(t)) (5.38)

Since λ(t) is the value of a (marginal) unit of the stock of the state variable, λ̇(t) can
be interpreted as the appreciation in this value. A marginal increase in x affects the
current flow return plus the value of the change in the stock by the total amount
Hx, but it also affects the valuation of a unit of the stock by the amount λ̇(t). Then,
optimality requires that, at the optimal policy, the instantaneous gain of increasing
the stock at time t, Hx, should equal the loss in the value of a marginal unit of the
stock over the next instant, −λ̇(t); otherwise, it would be possible to pick a different
x(t) (through an appropriate change in the control policy) and increase the value of
the problem.9

The transversality condition is a necessary condition for an optimal policy to ex-
ist.10 We want our problems to have a finite maximum attainable value (so that they
are economically meaningful) and the transversality condition is then a consequence
of the finiteness of the value function. As we saw in Application 2.1, in the neoclas-
sical growth model the transversality condition implies that the (unique) optimal
policy must lie on the saddle path at all times.

In the context of competitive equilibria, the transversality condition should be
thought of as a necessary condition for the existence of equilibrium, since the latter
requires the existence of an optimal policy to every agent’s optimization problem.
Although it can be thought of as an equilibrium condition, it is important to un-
derstand that it is not related to feasibility. Another terminal value (limiting value)

8In fact, this interpretation will be quite literal in Application 5.1.
9Imagine that at time t you have a stock x̂(t) and you consider whether to purchase an additional

quantity dx of the stock. You will have to pay λ(t)dx to buy the stock at time t; you will gain Hxdxdt
from using the stock over the next instant dt; and you will also be left with this additional stock
at t + dt, at which time it will be worth λ(t + dt)dx. You will decide not to purchase the additional
amount of stock (i.e. you are at an optimum at x̂(t)) if your net gain, (Hxdt +λ(t + dt)−λ(t))dx =(
Hx + λ̇(t)

)
dxdt, is equal to zero.

10Note that condition limt→∞∂V (t, x̂(t))/∂t = 0 in the statement of Theorem 5.1 is a fairly weak
assumption, as it is satisfied for all economically interesting problems. It is only slightly stronger
than assuming that limt→∞V (t, x̂(t)) is finite.
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condition, in our case condition (5.24), should be imposed to restrict the set of ad-
missible policies to those that are economically feasible. In the context of compet-
itive equilibria, the feasibility constraint usually takes the form of a no-Ponzi (or
natural debt limit) condition.

We now discuss the special version of problem (5.19)-(5.24) that is most common
in economic applications: exponentially-discounted infinite-horizon problems, of the
form

max
[x(t),y(t)]∞t=0

W (x(t), y(t)) ≡
∫ ∞

0
exp(−ρt)f (x(t), y(t))dt (5.39)

subject to the same constraints and boundary conditions (5.20)-(5.24).11

The Hamiltonian in this case is:

H(t,x(t), y(t),λ(t)) = exp(−ρt)f (x(t), y(t)) +λ(t)g(t,x(t), y(t)) (5.40)
= exp(−ρt) [f (x(t), y(t)) +µ(t)g(t,x(t), y(t))] (5.41)

where

µ(t) ≡ exp(ρt)λ(t) (5.42)

It is, therefore, convenient to work with the current value Hamiltonian, defined as

Ĥ(t,x(t), y(t),µ(t)) = [f (x(t), y(t)) +µ(t)g(t,x(t), y(t))] (5.43)

Theorem 5.2 (Maximum Principle for Exponentially Discounted Problems). Sup-
pose that the problem defined by (5.39) subject to (5.20)-(5.24) has a piecewise con-
tinuous interior solution (x̂(t), ŷ(t)) ∈ IntX (t)×Y (t).

Suppose that the value function V (t, x̂(t)) is differentiable in x and t for t suffi-
ciently large, that V (t, x̂(t)) exists and is finite for all t, and that limt→∞∂V (t, x̂(t))/∂t =
0.

Let Ĥ(t,x,y,µ) be as defined in (5.43). Then, given (x̂(t), ŷ(t)), the current-value
Hamiltonian Ĥ(t,x,y,µ) satisfies the Maximum Principle

Ĥ(t, x̂(t), ŷ(t),µ(t)) ≥ Ĥ(t, x̂(t), y(t),µ(t)) (5.44)

for all y(t) ∈ Y and for all t ∈R.
Moreover, for all t ∈ R+ for which ŷ(t) is continuous, the following necessary

conditions are satisfied:

Ĥy(t, x̂(t), ŷ(t),µ(t)) = 0 (5.45)

µ̇(t)− ρµ(t) = −Ĥx(t, x̂(t), ŷ(t),µ(t)) (5.46)
ẋ(t) = Ĥµ(t, x̂(t), ŷ(t),µ(t)) (5.47)

11For this type of problems, we can allow the codomain of x and y to vary over time, that is, we can
replace (5.21) and (5.22) with x(t) ∈ X (t) and x(t) ∈ Y (t).
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with x̂(0) = x0 and limt→∞ b(t)x̂(t) ≥ x1.
Also, the following transversality condition holds

lim
t→∞

{
exp(−ρt)Ĥ(t, x̂(t), ŷ(t),µ(t))

}
= 0 (5.48)

Note that condition (5.46) is simply a reformulation of condition (5.34), since

λ̇(t) =
d[exp(−ρt)µ(t)]

dt
(5.49)

= exp(−ρt) [µ̇(t)− ρµ(t)] (5.50)
= −exp(−ρt)Ĥx(t, x̂(t), ŷ(t),µ(t)) (5.51)
= −Hx(t, x̂(t), ŷ(t),λ(t)) (5.52)

where the third line is condition (5.34) and the fourth line follows from the defini-
tion of the current-value Hamiltonian.12

Remark 5.1 (Transversality Conditions). The necessary transversality condition
(5.48),

lim
t→∞

{
exp(−ρt)Ĥ(t, x̂(t), ŷ(t),µ(t))

}
= 0

is usually hard to check.
A stronger transversality condition that implies (5.48) and is usually satisfied

in economic applications is

lim
t→∞

[exp(−ρt)µ(t)x̂(t)] = 0 (5.53)

To see that (5.53) implies (5.48), note that

V (t, x̂(t)) =
∫ ∞
t

exp(−ρs)f (x̂(s), ŷ(s))ds (5.54)

Since Theorem 5.2 assumes that limt→∞V (t, x̂(t)) exists and finite, it must be that

lim
t→∞

exp(−ρt)f (x̂(t), ŷ(t)) = 0 (5.55)

Thus, (5.48) is equivalent to

lim
t→∞

{
exp(−ρt)Ĥ(t, x̂(t), ŷ(t),µ(t))

}
= 0 (5.56)

⇔ lim
t→∞

{
exp(−ρt)µ(t)g(t, x̂(t), ŷ(t))

}
= 0 (5.57)

⇔ lim
t→∞

{
exp(−ρt)µ(t) ˙̂x(t)

}
= 0 (5.58)

12The intuition of footnote 9 still goes through with the adjustment that the current value of the
stock at time t+dt, µ(t+dt)dx, must be discounted through multiplication with 1−ρdt to be expressed
in time-t present value terms.
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where the second line follows from the definition of the (current-value) Hamiltonian,
(5.43), and the third line follows from (5.20).

Now note that (5.53) can be written as

lim
t→∞

[
exp(−ρt)µ(t)

∫ t

0

˙̂x(s)ds
]

= 0 (5.59)

since x̂(t) = x̂(0) +
∫ t

0
˙̂x(s)ds (from the fundamental theorem of calculus), which im-

plies (5.58).
A limitation of the Maximum Principle, as stated in Theorems 5.1 and 5.2, is that

the conditions it provides are neither necessary nor sufficient for a solution in general.
On the one hand, the solution to an optimal control problem may not be interior
or piecewise continuous, so that (5.45)-(5.48) need not apply in this case. On the
other hand, a pair satisfying (5.45)-(5.48) may be only a local, rather than global,
optimum (or no optimum of any kind in some cases) and thus not a solution to
the optimal control problem. The following theorem is, therefore, a key theoretical
result, as it provides sufficient conditions for a candidate policy to be a (unique)
global optimum.

Theorem 5.3 (Sufficient Optimality Conditions for Discounted Problems). Con-
sider the problem defined by (5.39) subject to (5.20)-(5.24). Define the current-value
Hamiltonian Ĥ(t,x,y,µ) as in (5.43). Suppose that some admissible ŷ(t) and the cor-
responding path of state variable x̂(t) satisfy the necessary conditions (5.45)-(5.48).
Define the maximized Hamiltonian

M(t,x,µ) ≡ max
y(t)∈Y (t)

Ĥ(t,x,y,µ) (5.60)

Suppose that

(i) the value function V (t, x̂(t)) exists and is finite for all t.

(ii) for any admissible pair (x(t), y(t)),

lim
t→∞

{
exp(−ρt)µ(t)x(t)

}
≥ 0 (5.61)

where µ(t) is the costate variable corresponding to the candidate optimal path
(x̂(t), ŷ(t)).

(iii) X (t) is convex for all t

(iv) and M(t,x,µ) is concave in x ∈ X (t) for all t when evaluated at the costate
variable µ(t) corresponding to the candidate optimal path (x̂(t), ŷ(t)).

Then, the pair (x̂(t), ŷ(t)) achieves the global maximum of (5.39).
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Moreover, if M(t,x,µ) is strictly concave in x, (x̂(t), ŷ(t)) is the unique solution to
(5.39).a

aIt can also be shown that, if the assumptions of this theorem hold with M(t,x,µ) strictly
concave in x and Y (t) = Y is compact, then ŷ(t) must be a continuous function of t on R+.

As in finite-dimensional constrained optimization, the key assumption for con-
ditions (5.45)-(5.48) to also be sufficient for (x̂(t), ŷ(t)) to be the (unique) solution is
that the problem is (strictly) concave, assumption (iv). Also note that proving con-
dition (i), the finiteness of the value function, is typically quite complicated; we will
simply assume that it is the case in the examples that we will discuss.

Remark 5.2 (Solution Strategy). In light of Theorems 5.2, 5.3 and the preceding
remark, the following strategy can be applied to most optimal control problems
in economics to prove existence (and uniqueness) of an optimal policy:

1. Use the necessary conditions (5.45)-(5.47) and the easy-to-check transver-
sality condition (5.53) to locate a candidate interior solution (x̂(t), ŷ(t)).

2. Verify the (strict) concavity condition of Theorem 5.3 and check that

lim
t→∞

{
exp(−ρt)µ(t)x(t)

}
≥ 0 (5.62)

holds for all admissible pairs (x(t), y(t)), where µ(t) is the costate variable
associated with our candidate policy. This is usually a direct implication
of the boundary (feasibility, no-Ponzi) condition (5.24).

Application 5.1 (Hotelling Rule for nonrenewable resources). We now study an ex-
ample of an optimal control problem that is quite instructive, as it clearly (and quite
literally) illustrates the “stock-flow” intuition for optimal control problems that we
discussed above.

We want to solve for the optimal time path of consuming a nonrenewable re-
source. Suppose that the social planner has access to a nonrenewable resource of
mass 1. Denote the stock of the resource at time t by x(t). The instantaneous utility
of consuming a flow of resources y(t) is u(y), and the planner discounts the future
exponentially at rate ρ > 0, so that he solves

max
[x(t),y(t)]∞t=0

∫ ∞
0

exp(−ρt)u(y(t))dt (5.63)

subject to the constraints

ẋ(t) = −y(t) (5.64)
x(t) ∈ [0,1] ∀ t ≥ 0 (5.65)
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and given the boundary conditions

x(0) = 1 (5.66)
lim
t→∞

x(t) ≥ 0 (5.67)

where u : R+ → R is strictly increasing, continuously differentiable, and strictly
concave. Note that the feasibility (no-Ponzi) condition (5.67) is obviously implied
by constraint (5.65), but we explicitly include it to illustrate how our example maps
to the formulation of the general problem, (5.39) subject to (5.20)-(5.24). The con-
straint (5.64) captures the fact that the nonrenewable resource becomes depleted as
more of it is consumed.

Let us now follow the steps outlined in Remark 5.2 to solve this problem.
First, set up the Hamiltonian:

Ĥ(x(t), y(t),µ(t)) = u(y(t))−µ(t)y(t) (5.68)

We look for a candidate optimal solution satisfying (5.45)-(5.47):

u′(ŷ(t)) = µ(t) (5.69)
ρµ(t)− µ̇(t) = 0 (5.70)

˙̂x(t) = −ŷ(t) (5.71)

Note that the second FOC, (5.70), follows since neither the payoff function (5.63)
nor the constraint (5.64) depend on x, so that Ĥx is zero. In fact, (5.70) yields the
Hotelling rule for the exploitation of exhaustible resources:

µ̇(t)
µ(t)

= ρ (5.72)

The rule states that the shadow current value of a nonrenewable resource (the value
of having an extra marginal unit of the resource “today”) must grow at the same rate
as the discount rate. From section 1.3.1 we know that the solution to this simple
differential equation is

µ(t) = µ(0)exp(ρt) (5.73)

FOC (5.69) then implies that our candidate control function is

ŷ(t) = u′−1[µ(0)exp(ρt)] (5.74)

Since function u(·) is strictly concave, its derivative u′(·) is strictly decreasing, which
in turn implies that the derivative of the inverse u′

−1
[·] is also strictly decreasing.

Therefore, (5.74) implies that the amount of the resource consumed is monotoni-
cally decreasing over time. This is intuitive: due to discounting, there is preference
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for early consumption; on the other hand, the entire resource is not consumed im-
mediately, as there is also a preference for a smooth consumption path over time
(since u(·) is strictly concave).

Now solving for x̂(t):

ẋ(t) = −u′
−1

[µ(0)exp(ρt)] (5.75)

Using the initial value condition x(0) = 1 to pin down the constant of integration,
out candidate state function is

x̂(t) = 1−
∫ t

0
u′
−1

[µ(0)exp(ρt)]ds (5.76)

To complete the description of the candidate policy (x̂(t), ŷ(t)) and the corre-
sponding costate variable µ(t), all we need is to pin down µ(0). We use the “easy-to-
check” transversality condition (5.53):

lim
t→∞

[exp(−ρt)µ(t)x̂(t)] = 0 (5.77)

⇒ lim
t→∞

[exp(−ρt)µ(0)exp(ρt)x̂(t)] = 0 (5.78)

⇒ lim
t→∞

[µ(0)x̂(t)] = 0 (5.79)

⇒ lim
t→∞

x̂(t) = 0 (5.80)

Therefore, in light of (5.76), µ(0) must be chosen so that (5.80) is satisfied:∫ ∞
0
u′
−1

[µ(0)exp(ρt)]ds = 1 (5.81)

We now move to the second step in Remark 5.2. We need to verify conditions (ii)-
(iv) of Theorem 5.3 to show that the candidate policy pair (x̂t, ŷt) identified above is
in fact the solution to our problem.

After plugging in for the candidate costate variable, condition (ii) becomes

lim
t→∞

x(t) ≥ 0 (5.82)

which is precisely the boundary constraint (5.67).
X (t) = [0,1] is convex, so assumption (iii) holds.
Finally, the key condition (iv) is trivially satisfied in our case since

M(x,µ) = u
(
u′−1(µ)

)
−µu′−1(µ) (5.83)

is independent of x and thus weakly concave in x.
Therefore, by Theorem 5.3, our candidate solution is indeed a solution to our

problem. Note that, since M(x,µ) is not strictly concave in x, we cannot invoke The-
orem 5.3 to prove that our identified policy is the unique solution (although it turns
out that this is indeed the case). �
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Application 5.2 (Solution to the Neoclassical Growth Model). We have already dis-
cussed aspects of the neoclassical (Ramsey) growth model in Applications 2.1 and
4.1, taking the key equations of the model as given. We have finally developed the
tools to derive these key equations for the deterministic, continuous-time version of
the model.

In the baseline continuous-time version of the model without population growth
and without technological progress, the social planner solves the following problem

max
[k(t),c(t)]∞t=0

∫ ∞
0

exp(−ρt)u(c(t))dt (5.84)

subject to

k̇(t) = f (k(t))− δk(t)− c(t) (5.85)
k(t) ≥ 0 (5.86)
c(t) ≥ 0 (5.87)

and given the initial condition k(0) = k0 > 0.
We assume that the utility function u(c), u : R+→R,13 is strictly increasing, con-

tinuously differentiable, strictly concave and satisfies limc→0u
′(c) =∞. The produc-

tion function f (k), f : R+ → R+, is strictly increasing, continuously differentiable,
strictly concave and satisfies the Inada conditions (3.21) and (3.22). Capital k(t) is
the state (stock) variable and c(t) is the control (flow) variable.

We again follow the steps outlined in Remark 5.2 to solve this problem. The
(current-value) Hamiltonian is:

Ĥ(k,c,µ) = u(c(t)) +µ(t) [f (k(t))− δk(t)− c(t)] (5.88)

Note that since the constraint function in (5.85) does not depend directly on time,
the current-value Hamiltonian also does not depend directly on time.

We once again look for a candidate optimal solution satisfying (5.45)-(5.47):

Ĥc(k̂(t), ĉ(t),µ(t)) = u′(ĉ(t))−µ(t) = 0 (5.89)

Ĥk(k̂(t), ĉ(t),µ(t)) = µ(t)
[
f ′(k̂(t))− δ

]
= ρµ(t)− µ̇(t) (5.90)

Ĥµ(x̂(t), ŷ(t),µ(t)) = f (k̂(t))− δk̂(t)− ĉ(t) = ˙̂k(t) (5.91)

We wish to substitute out the costate variable in the law of motion of the candi-
date consumption policy. Since the first-order conditions hold for all t ≥ 0, we can
differentiate the first FOC, (5.89), with respect to time:

µ̇(t) = u̇′(ĉ(t)) (5.92)
= u′′(ĉ(t))ĉ′(t) (5.93)

13When u(c) = logc we exclude zero from the domain of u, that is, u : R+\{0} →R.
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Combining the first two first-order conditions,

−u′′(ĉ(t))ĉ′(t) = µ(t)
[
f ′(k̂(t))− δ − ρ

]
(5.94)

⇒−u
′′(ĉ(t))ĉ′(t)
u′(ĉ(t))

= f ′(k̂(t))− δ − ρ (5.95)

⇒−u
′′(ĉ(t))ĉ(t)
u′(ĉ(t))

ĉ′(t)
ĉ(t)

= f ′(k̂(t))− δ − ρ (5.96)

Denoting by Ru(c) ≡ −u
′′(c)c
u′(c) the coefficient of relative risk aversion of function

u evaluated at point c,14 we obtain the equilibrium law of motion of consumption,
known as the Euler equation,

ĉ′(t)
ĉ(t)

=
1

Ru(ĉ(t))

[
f ′(k̂(t))− δ − ρ

]
(5.97)

This condition fully pins down the consumption path given some ĉ(0) that we need
to specify,

ĉ(t) = ĉ(0)exp
(∫ t

0

f ′(k̂(s))− δ − ρ
Ru(ĉ(s))

)
ds (5.98)

We can also integrate the second FOC, (5.90), to get an expression for our costate
variable at time t,

µ(t) = µ(0)exp
(
−
∫ t

0

[
f ′(k̂(s))− δ − ρ

]
ds

)
(5.99)

= u′(ĉ(0))exp
(
−
∫ t

0

[
f ′(k̂(s))− δ − ρ

]
ds

)
(5.100)

where the second line follows by evaluating the first FOC, (5.89), at t = 0.
Since we already have the law of motion for capital, (5.85) and k(0) = k0 > 0

is given, all that remains in order to complete our construction of the candidate
optimal policy and the associated costate variable is to pin down the initial value of
the control variable, ĉ(0). To do this, we will use the “easy-to-check” transversality
condition (5.53),

lim
t→∞

{
exp(−ρt)µ(t)k̂(t)

}
= 0 (5.101)

⇒ lim
t→∞

{
exp(−ρt)u′(ĉ(0))exp

(
−
∫ t

0

[
f ′(k̂(s))− δ − ρ

]
ds

)
k̂(t)

}
= 0 (5.102)

Since u′(ĉ(0)) > 0, this yields the second boundary condition for our dynamical sys-
tem

lim
t→∞

{
k̂(t)exp

(
−
∫ t

0

[
f ′(k̂(s))− δ

]
ds

)}
= 0 (5.103)

14Recall question 1 in Problem Set 1. In the benchmark case where our utility has the CRRA form,
Ru(c) = γ > 0 for all c.
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We showed in Application 2.1 that this transversality condition pins down ĉ(0) since
it implies that the solution lies on the saddle path of the system, as depicted in Figure
2.5. That is, at time 0 the system jumps to the (unique) value ĉ(0) such that (k0, ĉ(0))
lies on the saddle path.

In summary, our candidate solution is described by the laws of motion (5.85)
for capital, (5.97) for consumption, and (5.93) for the associated costate variable,
together with the two boundary conditions, k(0) = k0 > 0 and (5.103).

We now move to showing that our necessary conditions are also sufficient for
identifying the unique solution to our problem, by using Theorem 5.3. Our value
function V (t, x̂(t)) can be shown to be finite for all t, and X = [0,∞] is convex. More-
over, since µ(t) = u′(c(t)) > 0 and k(t) ≥ 0, (5.86), it immediately follows that any
admissible path must satisfy

lim
t→∞

{
exp(−ρt)µ(t)k(t)

}
≥ 0 (5.104)

since all terms in this expression are non-negative.
Finally, we turn to the crucial condition, condition (iv). Note that the current

value Hamiltonian, given by (5.88), is jointly strictly concave in the pair (k(t), c(t))
since µ(t) = u′(c(t)) > 0 and both u and f are strictly concave. A useful fact is that,
when the Hamiltonian Ĥ(t,x,y,µ) is jointly strictly concave in the state-control pair
(x(t), y(t)), the maximized Hamiltonian, M(t,x,µ), is also strictly concave in x. To
see this fact in our case, note from the definition of the maximized Hamiltonian (at
arbitrary k but under the µ(t) of the candidate policy) that

M(k,µ) ≡ max
c∈[0,∞]

Ĥ(k,c,µ) (5.105)

= Ĥ(k, c̃,µ) (5.106)

where c̃ must satisfy

Ĥc(k, c̃,µ) = 0 (5.107)

since the Hamiltonian is strictly concave in c, so that a control c̃ is its (global) maxi-
mizer if and only if the usual first-order condition holds.15

Now, (5.107) implies that

u′ (c̃(t)) = µ(t) (5.108)

so that

M(k(t),µ(t)) = u
(
u′−1(µ(t))

)
+µ(t)

[
f (k(t))− δk(t)−u′−1(µ(t))

]
(5.109)

is strictly concave in k(t), holding µ fixed (at the strictly positive value corresponding
to our candidate optimal policy).

We have thus proved that our candidate policy function is the unique solution to
our problem. �

15Note that (5.107) is not exactly the same equation as FOC (5.89) for our candidate optimal policy,
since (5.107) is evaluated at an arbitrary k(t).



Chapter 6

Perturbation Methods*

6.1 Loglinearization Methods

In section 4.2 we discussed the theory behind linear and loglinear approximations
of discrete-time rational expectations models, deriving the conditions under which
such approximations are valid. In section 4.3 we also discussed how to solve linear
expectations models and, therefore, how to solve the linear or nonloglinear approx-
imations of rational expectations equilibrium models. In this section, we study the
missing step: how to derive the loglinear (or linear) approximation to a non-linear
model.

Remark 6.1 (Concepts of Steady State). There are three distinct definitions of
steady state equilibrium.a

First, a deterministic steady state, defined in Section 4.2, coincides with the
steady state of the deterministic version of the economy. The corresponding
steady state equilibrium is sometimes referred to as the perfect foresight equilib-
rium. That is, not only are shocks (exogenous disturbances) absent but this is
also common knowledge among agents a priori. This is the steady state around
which most loglinearizations as well as higher-order approximations (see next
section) of models take place.

Second, a stochastic steady state is the distribution to which economic vari-
ables converge in the long-run (that is, the ergodic distribution) in the stochastic
version of the economy. This is not a single vector (such as x in (4.22)) but a
distribution over vectors.

Finally, a risky steady state, as defined, for example, in Coeurdacier, Rey, and
Winant (2011), is the point where agents choose to stay at a given date if they
expect future shocks and if the realization of shocks is 0 at this date. Note that if
shocks have a continuous distribution agents assign zero probability to the risky
steady state being realized in the next period.
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We will only consider approximations around the deterministic steady state.
aNote that there is some ambiguity in the literature about the meaning of these terms.

Consider the nonlinear model

Φ(x;u) ≡ {Etφ(xt,xt+1;ut)}Tt=0 = 0 ∈RT (6.1)

whose (deterministic) steady state x and corresponding steady state equilibrium x∗

are given by1

Φ(x∗;1) ≡ {φ(x,x;1)}Tt=0 = 0 ∈RT (6.2)

Linearization of φ around the steady state involve a simple first-order approxi-
mation around x = x:

Etφ(xt,xt+1,ut) ≈ Et [φ(x,x,1) +φ1(xt − x) +φ2(xt+1 − x) +φ3(ut − 1)] (6.3)
= φ1(xt − x) +φ2Et(xt+1 − x) +φ3(ut − 1) (6.4)

where φi is the derivative of function φ with respect to its ith set of arguments, all
evaluated at their steady state values (x,x,1).

Alternatively, we can loglinearize the model around the steady state. That is, we
rewrite xt = exp(lnxt), reinterpret the function as having lnx, rather than x, as its
argument and take a first-order Taylor approximation around lnx:

Etφ(xt,xt+1,ut) ≈ Et

[
φ(x,x,1) +φ1e

lnx(lnxt − lnx) +φ2e
lnx(lnxt+1 − lnx) +φ3 lnut

]
(6.5)

= φ1xx̂t +φ2xEtx̂t+1 +φ3ût (6.6)

where

x̂t ≡ lnxt − lnx (6.7)

is called the log-deviation of variable xt (from its steady state value).
In general we have

f (xt) ≈ f (x) + f ′(x)xx̂t (6.8)

and

lnf (xt) ≈ lnf (x) +
f ′(x)x
f (x)

x̂t (6.9)

Loglinearization is used more often than linearization because loglinearized equa-
tions are easier to interpret. First, note that x̂t represents the relative (percentage)
deviation of xt from the steady state, a measure of deviation that is independent of
the unit of measurement. Second, in loglinear equations, such as (6.9), the coefficient
of x̂t,

f ′(x)x
f (x) , can be interpreted as the elasticity of f (xt) with respect to xt.

1Here we have normalized the state-state value of ut to 1 (rather than 0 as we did in section 4.2.1).



6.1. LOGLINEARIZATION METHODS 113

Remark 6.2 (Loglinearization Strategy). To loglinearize a given equilibrium equa-
tion, follow these steps:

1. Check if the equation fits exactly into one of two common special cases (or
if it is a combination of both). If yes, you are done.

• The equation is of the form xt = aybt z
c
t , where a, b, and c are constants.

In this case, the equation can be loglinearized exactly as x̂t = bŷt + cẑt
• The equation is of the form xt = yt + zt. In this case, the loglinear

approximation is xx̂t ≈ yŷt + zẑ.

2. Before taking any approximations, write all variables as xt = xex̂t (this is an
identity) and try to group as many variables together as possible; log both
sides of the equation.

3. If applicable, pass the log through the expectation (certainty equivalence
for loglinearized models). The relation becomes an approximation due to
Jensen’s inequality.

4. If needed, take a first-order approximation of each (logged) side of the
equation with respect to the log-deviations (around 0), using

lnf (xt) = lnf (xex̂t ) ≈ lnf (x) +
f ′(x)x
f (x)

x̂t (6.10)

Let’s go through some examples.
First, consider

yt = kt + ct (6.11)

This falls under the second case of step 1, so we have

ŷt ≈
k
y
k̂t +

c
y
ĉt (6.12)

A second example:

1
1− lt

=
1− b
b

wt
ct

(6.13)

This does not fall under either case in step 1, so we proceed with step 2,

1

1− lel̂t
=

(1− b)weŵt

bceĉt
(6.14)

− ln(1− lel̂t ) = ln
(

(1− b)w
bc

)
+ ŵt − ĉt (6.15)
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Making use of the steady state relation

1

1− l
=

1− b
b

w
c

(6.16)

we simplify this to

ln
(

1− l
1− lel̂t

)
= ŵt − ĉt (6.17)

Note that, up to this point, the relation remains exact. We now take a first-order
approximation of the left-hand side (step 4) to get our loglinearized equation:

l

1− l
l̂t ≈ ŵt − ĉt (6.18)

Application 6.1 (Loglinearization of the Stochastic Neoclassical Growth Model).
Consider the neoclassical growth model introduced in Application 4.1, described
by the equations

kt+1 = ztk
α
t + (1− δ)kt − ct (6.19)

c
−γ
t = Etβ

[
azt+1k

α−1
t+1 + (1− δ)

]
c
−γ
t+1 (6.20)

lnzt+1 = ρ lnzt + εt+1 (6.21)

Note from (6.21) that z = 1.
We first loglinearize (6.19), noting that it is a combination of the two special cases

of step 1 in Remark 6.2.

kk̂t+1 ≈ y
[
ẑt +αk̂t

]
+ (1− δ)kk̂t − cĉt (6.22)

where y = zk
α

= k
α

.
Now consider the Euler Equation, (6.20). Let

Rt+1 ≡ azt+1k
α−1
t+1 + (1− δ) (6.23)

Applying step 2 we can write (6.20) as

1 = βREt
[
eR̂t+1−γ(ct+1−ct)

]
(6.24)

We use the steady state relation 1 = βR and we log both sides to get

0 = lnEt

[
eR̂t+1−γ(ct+1−ct)

]
(6.25)

We now pass the log through the expectation (certainty equivalence holds for
loglinearized models) to get the approximation:

0 ≈ Et

[
R̂t+1 −γ(ct+1 − ct)

]
(6.26)

⇒ Etct+1 ≈ ct +
1
γ
EtR̂t+1 (6.27)
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Finally, we loglinearize (6.23) using step 1 as

RR̂t+1 ≈ ak
α−1 (

ẑt+1 + (α − 1)k̂t+1

)
+ (1− δ) · 0 (6.28)

to get the loglinearized counterpart of (6.20) as

Et ĉt+1 ≈ ĉt +
1
γ

αk
α−1

ak
α−1

+ (1− δ)

[
Et ẑt+1 + (α − 1)k̂t+1

]
(6.29)

Note that for δ = 1 (6.20) simplifies to (4.58).
Finally, the (exact) loglinearization to (6.21) is

Et ẑt+1 = ρẑt (6.30)

�

6.2 Nonlinear Perturbation Methods

First-order approximations, such as the loglinearization method that we discussed
in the previous section, abstract from aspects of the exact model that may be crucial.
For example, we saw that we could ignore Jensen’s inequality when taking the loglin-
ear approximation of a given equation. For models that focus on the time-variability
of risk or risk aversion, a first-order approximation would not be useful. Fernández-
Villaverde and Rubio-Ramírez (2005) also emphasize the importance of preserving
model nonlinearities when conducting likelihood-based analysis. In optimal policy
problems involving second-order approximations to the objective (welfare) func-
tion, the decision rules must also be approximated to second order in order for the
approach to be valid. These are just some examples of reasons why first-order ap-
proximations of nonlinear models may not be sufficient. In this section we briefly
sketch the idea behind an important class of nonlinear approximation techniques,
higher-order perturbation methods, that is in fact quite related to the issues we dis-
cussed in Chapter 4 and the preceding section.

To give some structure to the discussion, consider a nonlinear model of the form

Φ(x;u) ≡ {Etφ(xt,xt+1;ut)}∞t=0 = 0 (6.31)

Denote by st the state variables of the model. These include all of the exogenous vari-
ables in ut as well as the subset of endogenous variables in xt that are predetermined
at time t. Denote by ct the control variables of the model.

Assume that model (6.31) has exact solutions of the form

ct = c(st) (6.32)
st = f (st−1,ut) (6.33)
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c(st) is called the policy function and describes the agents’ actions given the state
the economy is in, and f (st−1,ut) describes the evolution of the state variables of the
economy.

In Chapter 4 as well as the previous section we saw how to approximate (6.31)
by a (log) linear model of the form

AEtxt+1 = Bxt +Cut (6.34)

This approximation implies, in particular, that the control variables contained in x
are approximated by linear functions of the state variables (recall Application 4.1).

Instead, assume that we wish to derive a more accurate numerical approximation
of the policy function, c(st). Perturbation methods build on the very same founda-
tions as first-order approximation approaches, which we discussed in Section 4.2. To
illustrate the basic idea, consider the simple case of a one-dimensional control vari-
able c and a one-dimensional exogenous shock ut, the only state variable, following

ut+1 = ρut + σεt+1 (6.35)

where εt+1 is iid with zero mean.
Note that the implicit mapping theorem, Theorem 4.3, under the very same con-

ditions discussed in Section 4.2 allows us to reformulate (6.31) as

{Etφ(ct(ut,σ ),ut(ut−1,σ ),σ )} = 0 (6.36)

and also tells us that ifφ is k-times continuously differentiable in its arguments, then
the implicitly defined function ct(ut,σ ) is k-times continuously differentiable as well.
Then, assuming k ≥ 2 we can obtain a second-order approximation to c(ut,σ ) around
the deterministic steady state, characterized by σ = 0 and ut = 0, for all t .

In practical terms, we proceed as follows. Let

G(ut,σ ) ≡ Etφ(ct(ut,σ ),ut(ut−1,σ ),σ ) = 0 (6.37)

Using the implicit function theorem, we have

Gu(0,0) = 0 (6.38)
Gσ (0,0) = 0 (6.39)

and also, totally differentiating the two expressions above (and again evaluating at
the deterministic steady state),

Guu(0,0) = 0 (6.40)
Guσ (0,0) = 0 (6.41)
Gσσ (0,0) = 0 (6.42)

We can then employ a method of undetermined coefficients (recall Application 4.1)
to identify the first and second derivatives of the policy function c(ut,σ ) evaluated at
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the steady state. Then, the second-order approximation to the policy function would
be given by

c(ut,σ ) = c(0,0) + cu(0,0)ut + cσ (0,0)σ (6.43)

+
1
2
cuu(0,0)u2

t + cuσ (0,0)utσ +
1
2
cσσ (0,0)σ2 (6.44)

In fact, Schmitt-Grohé and Uribe (2004) show that in a class of models of which
our simple example is a special case, we have cσ (0,0) = cuσ (0,0) = 0, so that the
procedure described can be further simplified taking this finding into account.

In principle, there is no reason why we should stop at the second order. We
could once again totally differentiate equations (6.40)-(6.42) in order to arrive at a
third-order approximation around the steady state. However, the curse of dimen-
sionality quickly kicks in, so that approximations of higher than third order are too
computationally demanding to be worth pursuing in practice.

There are two other main classes of nonlinear approximation techniques: pro-
jection methods, and iteration techniques. The latter are used quite frequently in
macroeconomic applications and build directly on the theory of dynamic program-
ming that you will study during the first quarter of the macro sequence.
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Main Sources

The following is a list of the major sources for the material in each chapter:

Chapter 1 The exposition of solution methods to ODE systems mainly draws on chap-
ters 9 and 10 in de la Fuente (2000) and chapter 2 and Appendix B in Ace-
moglu (2009). Section 1.2 is based on Lang (1987). Application 1.2 is based on
Werning (2012). Section 1.6 draws on Walter (1998), Luenberger (1979), and
Edwards and Penney (2008).

Chapter 2 The exposition of results on stability of ODE systems mainly draws on chapters
9 and 10 in de la Fuente (2000) and chapter 7 and Appendix B in Acemoglu
(2009). Applications 2.1 and 2.2 are based on chapter 8 in Acemoglu (2009)
and chapter 9 in de la Fuente (2000), respectively.

Chapter 3 The exposition of results on difference systems mainly draws on chapters 9 and
10 in de la Fuente (2000) and Appendix B in Acemoglu (2009). Application 3.1
is based on chapter 2 in Acemoglu (2009).

Chapter 4 Sections 4.1 and 4.2 are based on Appendix A in Woodford (2003). Section
4.3 is based on Blanchard and Kahn (1980) and chapter 4 in DeJong and Dave
(2011). Application 4.2 draws on chapter 2 in Woodford (2003).

Chapter 5 The exposition of optimal control theory draws extensively on chapter 7 in
Acemoglu (2009). Applications 5.1 and 5.2 are based on chapters 7 and 8 in
Acemoglu (2009).

Chapter 6 Section 6.2 mainly draws on chapter 5 in DeJong and Dave (2011).
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eigenbasis, 6
Euclidean basis, 4
invertible, 5
nonsingular, 5
similar, 5
standard basis, 4
trace, 7

Maximum Principle, 98, 100, 102

New Keynesian model, 12
dynamic IS equation, 12
Phillips curve, 12
Zero Lower Bound, 12

nonpredetermined variable, 73, 87
nullcline, 16

optimal control problem
costate variable, 99
control variable, 98
Hamiltonian, 99
state variable, 98

optimal control theory
admissible pair, 98
admissible policy, 98
Maximum Principle, 98, 100, 102
value function, 99

particular solution, 19
perfect foresight equilibrium, 111
perturbation methods, 115
phase diagram, 16
phase line, 16, 42
policy function, 87, 116

power series, 69
predetermined variable, 81

rational expectations equilibrium
(REE), 73

rational expectations equilibrium
(REE)), 77

REE, 73
rest point, 35

saddle path, 39
saddle point, 39
saddle-path stability, 39
sink, 37
source, 37
stability, 36

global asymptotic, 36
local asymptotic, 36
Lyapunov, 36
uniform, 35

state space, 16
state transition matrix, 19
state variable, 115
stationary state, 35
steady state, 17, 35

deterministic, 111
hyperbolic, 42, 45, 60
risky, 111
stochastic, 111

steady state equilibrium, 78

Taylor rule, 88
topological equivalence, 42
transversality condition, 3, 22, 44, 77,

101, 103

undetermined coefficients method, 86

value function, 99
vector space, 4

scalar field, 4
basis of, 4
dimension, 4
span of, 4
subspace, 4
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