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Curvature in metabolic scaling
Tom Kolokotrones1, Van Savage2, Eric J. Deeds1 & Walter Fontana1

For more than three-quarters of a century it has been assumed1 that
basal metabolic rate increases as body mass raised to some power p.
However, there is no broad consensus regarding the value of p:
whereas many studies have asserted that p is 3/4 (refs 1–4;
‘Kleiber’s law’), some have argued that it is 2/3 (refs 5–7), and others
have found that it varies depending on factors like environment
and taxonomy6,8–16. Here we show that the relationship between
mass and metabolic rate has convex curvature on a logarithmic
scale, and is therefore not a pure power law, even after accounting
for body temperature. This finding has several consequences. First,
it provides an explanation for the puzzling variability in estimates
of p, settling a long-standing debate. Second, it constitutes a strin-
gent test for theories of metabolic scaling. A widely debated model17

based on vascular system architecture fails this test, and we suggest
modifications that could bring it into compliance with the observed
curvature. Third, it raises the intriguing question of whether the
scaling relation limits body size.

In 1932, Max Kleiber found that basal metabolic rate (B)—the
power produced by a fasting, inactive organism—scales with body
mass (M) across animal species1. Based on 13 data points, Kleiber
concluded that this relationship was well described by a 3/4-power
law:

B 5 B0M3/4 (1)

This apparently simple relationship underlies and constrains an
extensive web of scaling relationships, ranging from growth rates to
lifespans to trophic dynamics18–20.

Since ‘Kleiber’s law’ was first proposed, significant amounts of data
have been collected and analysed4,7,8,13,15, fuelling debate about the
value of the exponent19,21–23, a quantity that is crucial for understand-
ing the physical origins of metabolic scaling. An exponent of 2/3 has
often been suggested5–7,15,24 based on a simple surface-to-volume argu-
ment. In contrast, a 3/4 exponent emerges from a theory proposed by
West, Brown and Enquist based on the properties of optimized
resource distribution networks, such as the cardiovascular system17.
Additionally, some investigators have noted deficiencies in the overall
fit of the power law and suggested that the exponent itself might vary
with factors such as taxonomic group or environment6,8–16.

We show that the widely held assumption of a scale-free power law
is incorrect. In our analysis, we utilize McNab’s recently compiled
data set8 of measurements made reliably under basal conditions
(inactive, thermoneutral, post-absorptive adults). It contains mea-
surements of mean metabolic rate from 637 species of mammals
spanning 6 orders of magnitude, making it one of the largest such
collections yet assembled. To estimate the effect of body temperature
on metabolic rate, we extracted temperature measurements from the
original papers used in McNab’s compilation. The resulting data set
of 447 species spans 5 orders of magnitude in mass (Supplemen-
tary Information) and was used for those fits that take into account
temperature effects. We excluded the orca because its large size
has the potential to disproportionately influence the fit, though we

found that this is not the case (Supplementary Information). We
repeated our analysis using data from Savage4 and Sieg16. Both data
sets give essentially the same results as the analysis presented
below (Supplementary Information). In all regressions, we use units
of grams for mass, watts for basal metabolic rate, and kelvin for
temperature.

On a logarithmic scale, a power law, like equation (1), but with an
arbitrary scaling exponent b1, becomes:

log10B 5 b0 1 b1log10M 1 e (2)

where b0 is the logarithm of B0 in equation (1), and e is the error term.
A fit to equation (2) accounts for a significant amount of the trend,
but poorly describes the data for both small and large mammals
(Fig. 1a, Supplementary Information). This suggests considering a
nonlinear model (on the logarithmic scale). As every analytic func-
tion can be expanded as a power series, the natural next candidate is a
quadratic model:

log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 e (3)

This model results in a visibly better fit for mammals with
M . 50 g (Fig. 1a, Supplementary Information), which is confirmed
by the extremely small P value for b2 of 9.0 3 10210 (Table 1).
Although the quadratic term explains only an additional 0.3%
(96.1% versus 95.8%) of the total variation (7% of the unexplained
variation), its impact is clearly seen in both residual and partial
residual plots (Supplementary Information). The quadratic term is
also necessary to correctly predict the metabolic rate of megafauna
such as the orca and elephant (Fig. 1a). Importantly, the addition of
higher-order terms beyond the quadratic does not significantly
improve the fit (Supplementary Information), suggesting that the
scaling relationship for the mammals in this data set is well approxi-
mated by a quadratic function of log10M.

Despite the improved fit, there is still considerable residual vari-
ation in the data (Supplementary Information). Several studies have
demonstrated that temperature affects metabolic rate7,14,25,26. We
attempt to capture this effect by including a Boltzmann–Arrhenius
factor, that is, B 5 f(M)exp(2E/RT), where R is the gas constant and
T is body temperature in kelvin. When f is a pure power law, equation
(2), this new model fits significantly better, but still poorly describes
the data for small and large mammals (Supplementary Information).
However, when f is given by equation (3), the resulting temperature-
corrected quadratic model:

log10B~b0zb1log10Mzb2(log10M)2z
bT

T
ze ð4Þ

shows dramatically improved fit over the entire range of the data
(Supplementary Information). A plot of the residuals (Supplemen-
tary Information) shows that the fit for mammals of intermediate size
(between 25 g and 10 kg) is extremely good and that the deviation in
the upper tail is small, though still increasing. All of the terms in the
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regression are extremely significant (P , 3 3 1027 or better), sug-
gesting that both the temperature and quadratic terms are important
predictors of metabolic rate. From the value of bT (the coefficient of
the inverse temperature term) obtained from the quadratic fit, we
calculate an effective activation energy of 21.9 6 3.2 kcal mol21 or
0.95 6 0.14 eV (95% confidence intervals). This value is less than
the free energy of the full hydrolysis of ATP to AMP under standard
cellular conditions (26 kcal mol21 or 1.13 eV; ref. 27), indicating that
the model produces a biologically realistic coefficient.

In addition to temperature, previous studies have attempted to
control for other factors that may affect metabolic rate, such as shared
evolutionary history16,28, habitat, climate and food type8. To account
for these potential effects, we analyse the data using phylogenetic
generalized least squares regression29 and by conditioning on catego-
rical variables (Supplementary Information). For both analyses, we
find that the quadratic and temperature terms remain significant, with
some changes in the magnitude of the coefficients (Supplementary
Information). We also find that no single study or group of points is
responsible for the curvature in the data, and that the quadratic and
temperature terms remain significant across a variety of subsets of the
data (Supplementary Information). These results suggest that the
nonlinearity of the relationship between basal metabolic rate and mass
on a logarithmic scale is highly robust.

The local scaling exponent, defined as the derivative of the scal-
ing relationship (equation (4)) with respect to log10M, increases
significantly—from 0.57 to 0.87—over the range of the fitted data
(Fig. 1b). This stands in sharp contrast to the constant exponent of a
pure power law, and indicates that the relationship between meta-
bolic rate and mass is quite different for large and small animals. This
finding explains the long-standing disagreement regarding the value
of the scaling exponent, because assuming a power law at the outset
results in linear fits to curved data. Carrying out such fits yields
scaling exponents similar to the slopes of tangent lines at the mean
of the log10M distribution of the underlying data sets (Supplemen-
tary Information). Indeed, performing linear fits over partial mass
ranges confirms this increasing trend and reveals different regions of
the data that are consistent with either 2/3 or 3/4 (Fig. 2). Using the
values of b1 and b2 from the fit of the full model (equation (4)), we
can predict the scaling exponents obtained in previous studies using
only the first three moments of their log10M distributions (Fig. 2d,
Supplementary Information). In general, we find that data sets with
fewer large mammals7,14 tend to exhibit smaller exponents than ones
weighting large mammals more heavily1,4. Together, these results
indicate that curvature in the data is a major factor underlying the
historical variation in estimates of the scaling exponent (Supplemen-
tary Information).

Our findings have critical implications for theories of metabolic
scaling. The West, Brown and Enquist (WBE) model17 derives equa-
tion (1) as a consequence of the relationship between the volume of a
vascular network (which is proportional to mass) and the number of
capillaries (which is proportional to metabolic rate). However, it
predicts pure 3/4-power scaling only as an asymptotic law in the limit
of infinite body mass. For animals of finite size, the model instead
yields an (implicit) scaling relation that exhibits curvature on a log-
arithmic scale30:

M 5 c0B 1 c1B4/3 (5)

Under the assumptions of West et al., both coefficients in the
extended model (equation (5)) are positive, predicting concave
curvature—not the convex curvature found in the data—and result-
ing in a relatively poor fit (Fig. 3a and Supplementary Information).
This raises the question of whether the theory can be adapted to agree
with the data.

The WBE model posits that evolution resulted in a hierarchical
vascular system that minimizes energy loss in the transport of blood.
This assumption appears as an energy minimization criterion that
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Figure 1 | Curvature in metabolic scaling. a, Linear (red) and quadratic
(blue) fits (not including temperature) of log10B versus log10M. The orca
(green square) and Asian elephant (ref. 4; turquoise square at larger mass)
are not included in the fit, but are predicted well. Differences in the quality of
fit are best seen in terms of the conditional mean of the error, estimated by
the lowess (locally-weighted scatterplot smoothing) fit of the residuals
(Supplementary Information). See Table 1 for the values of the coefficients
obtained from the fit. b, Slope of the quadratic fit (including temperature)
with pointwise 95% confidence intervals (blue). The slope of the power-law
fit (red) and models with fixed 2/3 and 3/4 exponents (black) are included for
comparison. This panel suggests that exponents estimated by assuming a
power law will be highly sensitive to the mass range of the data set used, as
shown in Fig. 2.

Table 1 | Regression coefficients without and with temperature correction

Regression coefficient Estimate Standard error P value

Without temperature correction*
b

0
21.5078 0.0377 ,2 3 10

216

b
1

0.5400 0.0295 ,2 3 10
216

b
2

0.0322 0.0053 8.9560 3 10
210

With temperature correction{
b

0
14.0149 1.1826 ,2 3 10

216

b
1

0.5371 0.0305 ,2 3 10
216

b
2

0.0294 0.0057 2.5680 3 10
27

bT 24,799.0 362.22 ,2 3 10
216

Regression coefficients, standard errors, and P values for quadratic models without and with
temperature correction (for mass in grams, basal metabolic rate in watts, and temperature in
kelvin). The former use the full McNab data set (minus the orca) of 636 species; the latter use a
subset of 447 species for which we obtained temperature data. All coefficients are highly
significant.
* log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 e.
{ log10B 5 b0 1 b1log10M 1 b2(log10M)2 1 bT/T 1 e.
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fixes the vessel geometry (Supplementary Information). In the model,
the vascular system is composed of two parts: large vessels with
pulsatile blood flow and small vessels with smooth blood flow. The
transition between these regions happens abruptly a constant number
of levels from the capillaries. Together, these assumptions yield equa-
tion (5) (Supplementary Information). However, the calculation
neglects physical effects, such as the attenuation of pulses as they
travel away from the heart, which may affect the behaviour of
large vessels and the position and nature of the transition between
vessel types. This suggests several modifications to the model (Sup-
plementary Information).

We first relax the assumptions about vessel geometry (model RG,
‘relaxed geometry’) in the pulsatile regime, resulting in a version of
equation (5) in which the asymptotic exponent is no longer 3/4, but c0

and c1 are still positive, thus failing to produce convex curvature. Next,
we modify the location of the transition between flow regimes. In one
possibility, the transition occurs a constant number of levels from the
heart (model FH, ‘from heart’), rather than from the capillaries. In
another possibility, the transition occurs a constant fraction of levels
from the heart (model PT, ‘proportional transition’). Both modifica-
tions lead to models that predict convex curvature, as detected in the

data (Fig. 3a and b). However, the fit of the FH model is almost as poor
as the original WBE model (Fig. 3a, Supplementary Information). In
contrast, the PT model fits nearly as well as the quadratic model,
suggesting that it merits further investigation. These modifications
demonstrate that the WBE model can, in principle, be brought into
agreement with the observed curvature, while still preserving core
assumptions, such as the primacy of resource distribution networks.
A more detailed energy minimization calculation should help to
determine if these adaptations represent physically realistic cases or
suggest alternative corrections.

The WBE model and its variants necessarily predict an asymptotic
scaling exponent, suggesting that metabolic rate does not limit
animal size without additional assumptions, such as the existence
of a minimal cellular metabolic rate. On the other hand, the quadratic
model with temperature (equation (4)), which provides the best fit to
the data, predicts that the slope of the scaling function increases
without bound (though this apparent behaviour may be due to the
paucity of data for large animals). If this is correct, the metabolic
scaling relationship may directly determine maximum animal size.
This limit might occur at the mass at which the slope equals 1. Beyond
this point, bigger is no longer better, meaning that an x% increase in
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Figure 2 | Scaling exponent depends on mass range. a, Slope estimated by
linear regression within a three log-unit mass range (smaller near the
boundaries). Values on the abscissa denote mean log10M within the range.
When the 95% confidence regions (dashed lines) include the 2/3 or 3/4 lines,
the local slope is consistent with a 2/3 or 3/4 exponent, respectively. These
cases are indicated by the shaded regions (2/3 on the left and 3/4 on the
right). b, Slope estimated by using all data points with M , x. The shaded
region is consistent with 2/3 slope estimates. c, Slope estimated by using all
data points with M . x. The shaded region is consistent with 3/4 slope

estimates. d, Exponents estimated for eight historical data sets using linear
regression (black filled circles): Lovegrove13, Lovegrove14, White10, White28,
Sieg16, McNab8, and Savage4 using species average data (‘Savage4’) and
binned data (‘Savage4 bin’). Exponents predicted using coefficients from
quadratic fits to McNab’s (red), Sieg’s (green), or Savage’s (blue) data and
the first three moments of log10M (Supplementary Information). Thick lines
represent uncorrected 95% confidence intervals. Thin lines are multiplicity
corrected intervals.
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body mass requires a greater than x% increase in metabolic rate. Our
fit suggests that this point occurs around 108 g (100 t): intriguingly,
this is about the size of the blue whale, which is believed to be the
largest animal that has ever lived.
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1 Regression Coefficients for Various Data Sets

In place of standard linear regression, we use generalized estimating equations with an
independent working correlation [1], considering each data point as its own cluster. This method
gives identical coefficient estimates to those found by standard linear regression, but uses a robust
estimator for the variance that attempts to correct for heteroscedasticity. Generally, this method
gives larger estimates for the variance of the coefficients (and thus larger confidence intervals)
than standard linear regression, reflecting the fact that the data contains less information than if
it were homoscedastic. All statistical analysis utilized R [2].

When analyzing the subset of the metabolic data for which temperature measurements are
available, we also report coefficients for (linear and quadratic) fits that do not include the
temperature term (1/T ), for comparison.

1.1 Data from McNab (2008)

The data set is described in [3]. Since we exclude the orca, 636 of the 637 species are used in all
fits that do not include temperature. However, inclusion of the orca does not disproportionately
influence the fit, as shown in Section 1.1.3. For 447 species, we also extracted temperature
measurements from the original papers. This smaller data set is used for those fits that include
temperature effects. For a phylogenetic generalized least squares (PGLS) analysis of the McNab
data set, see Section 2.2.4.

1.1.1 Without temperature (636 species)

log10(BMR) = β0 + β1 log10(Mass) + 

Estimate Standard Error p-value
β̂0 -1.7092 0.0179 < 2 · 10−16

β̂1 0.7181 0.0076 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 -1.5078 0.0377 < 2 · 10−16

β̂1 0.5400 0.0295 < 2 · 10−16

β̂2 0.0322 0.0053 8.956 · 10−10
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1.1.2 With cubic term (636 species)

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + β3(log10(Mass))3 + 

Estimate Standard Error p-value
β̂0 -1.6144 0.0811 < 2 · 10−16

β̂1 0.6863 0.0985 3.170 · 10−12

β̂2 -0.0250 0.0363 4.922 · 10−1

β̂3 0.0066 0.0041 1.083 · 10−1

1.1.3 With orca (637 species)

log10(BMR) = β0 + β1 log10(Mass) + 

Estimate Standard Error p-value
β̂0 -1.7133 0.0179 < 2 · 10−16

β̂1 0.7201 0.0076 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 -1.5094 0.0355 < 2 · 10−16

β̂1 0.5415 0.0269 < 2 · 10−16

β̂2 0.0319 0.0046 6.278 · 10−12

1.1.4 With temperature (447 species)

log10(BMR) = β0 + β1 log10(Mass) + 

Estimate Standard Error p-value
β̂0 -1.7003 0.0226 < 2 · 10−16

β̂1 0.7057 0.0099 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 -1.5434 0.0467 < 2 · 10−16

β̂1 0.5632 0.0371 < 2 · 10−16

β̂2 0.0269 0.0068 8.470 · 10−5
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log10(BMR) = β0 + β1 log10(Mass) +
β3

T
+ 

Estimate Standard Error p-value
β̂0 13.6265 1.1963 < 2 · 10−16

β̂1 0.6927 0.0085 < 2 · 10−16

β̂3 -4731.87 367.96 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 +
β3

T
+ 

Estimate Standard Error p-value
β̂0 14.0149 1.1826 < 2 · 10−16

β̂1 0.5371 0.0305 < 2 · 10−16

β̂2 0.0294 0.0057 2.568 · 10−7

β̂3 -4798.95 362.22 < 2 · 10−16

1.2 Data from Sieg (2009)

The data set is described in [4]. For a PGLS analysis of the Sieg data set, see Section 2.2.4.

1.2.1 Without temperature (695 species)

log10(BMR) = β0 + β1 log10(Mass) + 

Estimate Standard Error p-value
β̂0 0.5852 0.0187 < 2 · 10−16

β̂1 0.7152 0.0077 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 0.8010 0.0391 < 2 · 10−16

β̂1 0.5262 0.0295 < 2 · 10−16

β̂2 0.0340 0.0050 1.724 · 10−11
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1.2.2 With temperature (535 species)

log10(BMR) = β0 + β1 log10(Mass) + 

Estimate Standard Error p-value
β̂0 0.6291 0.0218 < 2 · 10−16

β̂1 0.6861 0.0092 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 0.7528 0.0488 < 2 · 10−16

β̂1 0.5707 0.0402 < 2 · 10−16

β̂2 0.0226 0.0076 3.104 · 10−3

log10(BMR) = β0 + β1 log10(Mass) +
β3

T
+ 

Estimate Standard Error p-value
β̂0 15.3303 1.0671 < 2 · 10−16

β̂1 0.6741 0.0077 < 2 · 10−16

β̂3 -4540.90 328.52 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 +
β3

T
+ 

Estimate Standard Error p-value
β̂0 15.8313 1.0792 < 2 · 10−16

β̂1 0.5311 0.0304 < 2 · 10−16

β̂2 0.0279 0.0057 8.750 · 10−7

β̂3 -4648.40 331.38 < 2 · 10−16

1.3 Data from Savage (2004)

The data set is described in [5]. We exclude the Asian Elephant from most analyses involving this
data set, leaving 625 species. However, including the elephant leads to very similar results, as
shown in Section 1.3.2.
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1.3.1 Without elephant (625 species)

log10(BMR) = β0 + β1 log10(Mass) + 

Estimate Standard Error p-value
β̂0 -1.6769 0.0192 < 2 · 10−16

β̂1 0.7091 0.0080 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 -1.4789 0.0421 < 2 · 10−16

β̂1 0.5324 0.0323 < 2 · 10−16

β̂2 0.0324 0.0057 1.019 · 10−8

1.3.2 With elephant (626 species)

log10(BMR) = β0 + β1 log10(Mass) + 

Estimate Standard Error p-value
β̂0 -1.6816 0.0193 < 2 · 10−16

β̂1 0.7115 0.0081 < 2 · 10−16

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 -1.4812 0.0393 < 2 · 10−16

β̂1 0.5347 0.0291 < 2 · 10−16

β̂2 0.0320 0.0049 8.014 · 10−11

2 Regression Diagnostics

2.1 Analysis of Residuals

The analysis of residuals plays a major role in analyzing the quality of fit of a regression model.
As noted in the main text, the linear model fits the data quite badly, a fact that is evident from a
plot of the residuals vs. log10(Mass) (Figure 1a). In a correctly specified model, the conditional
mean of the error, estimated by the lowess fit of the residuals [6], is close to zero. The conditional
mean here deviates significantly from zero, indicating that the pure power-law model is incorrect.
Adding a quadratic term significantly improves the fit, but the conditional mean still diverges
substantially from zero (Figure 1b). This suggests that we determine whether the behavior of the
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Figure 1: a: Residuals from the linear fit with lowess line (red). b: Residuals from the quadratic fit with
lowess line (blue). The lowess line for the linear fit (red) is overlaid for comparison. c: Residuals from the
quadratic fit plotted against inverse temperature with lowess line (green). d: Residuals from the full model
(quadratic plus temperature) plotted against inverse temperature with lowess line (green). e: Residuals from
the full model with lowess line (thick blue). Lowess lines for the linear (thin red), quadratic (thin blue), and
linear with temperature (thick red) models are overlaid for comparison. f: Lowess lines from e presented
alone to emphasize differences.

residuals corresponds to other known predictors. Temperature is one potential factor. Indeed,
refitting a quadratic model using the subset of the data with associated temperature information
and plotting the residuals vs. inverse Temperature shows a strong linear trend (Figure 1c).
Adding Temperature (as a 1/T term) to the model shows a dramatic improvement, as can be seen
when plotting the new residuals vs. 1/T (Figure 1d). From the residuals we see that the 1/T
term appears to fully account for the effect of Temperature without the need for higher order
terms. Figure 1e shows the residuals from the full model vs. log10(Mass) and the lowess lines for
the linear and quadratic models with and without temperature. As indicated by the thick blue
lowess line, the full model provides a superior fit to any of the submodels, as discussed in the
main text. Figure 1f emphasizes the difference in fits by focusing on the lowess lines alone. Figure
2 shows partial residual plots (also called residual plus component plots) for the quadratic term.
These plots separate the effect of one term of a regression from the others. Figure 2a shows the
partial residuals for the quadratic term of the quadratic model without temperature
(log10(BMR)− β0 − β1 log10(Mass)). Figure 2b shows the partial residuals for the quadratic
term of the full model (log10(BMR)− β0 − β1 log10(Mass)− β3

T ). These plots show that, with or
without temperature, the curvature captured by the quadratic term occurs over approximately
one order of magnitude. This is significantly less than the four orders of magnitude that are
largely explained by the linear trend, but nevertheless constitutes an important property of the
data.

2.2 Sensitivity Analysis (Robustness of Results)

In this section we check whether our findings are valid in general, or are just artifacts of the data.
We do this by testing for and removing influential points, controlling for a collection of
environmental and physiological factors, and accounting for phylogeny. All data points are from
McNab [3], as in the main text.

2.2.1 Data Sources

If some or all of the data points share an unnoticed commonality, the estimates obtained from the
data could be biased, since the data may not be reflective of mammals in general. One way in
which this could occur would be if the data includes one or more large studies that systematically
differ from the others. Fortunately, this is not the case for McNab’s, Sieg’s, or Savage’s data.
McNab’s data comes from 321 primary sources of which the majority (212) contribute only a
single data point. Only 18 sources contribute more than 5 data points. The largest four studies

9
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Figure 2: Partial residual plots for the quadratic term for models without (a) and with (b) temperature.
These plots remove the effects of the other terms in the model and show the change in BMR that is directly
attributable to the quadratic term. In both cases, the blue line is β2(log10(Mass))2. See text for details.

are authored by McNab and contain 20, 20, 15, and 11 animals. Perhaps not surprisingly,
McNab’s compilation is enriched for measurements taken from his own work. It is important to
note that the data sets from Savage et al. [5] and Sieg et al. [4] are not as strongly enriched for
McNab’s data, but nonetheless yield essentially the same results (Sections 1.2 and 1.3).
Additionally, since McNab has selected the points in his compilation, the other studies included
should be the ones that are most consistent with his methods, potentially removing some
confounding factors. Specifically, McNab has attempted to select only adult, post-absorptive,
resting individuals within their thermoneutral zones, since these criteria are required for
metabolic rate measurements to be basal.

2.2.2 Identifying Influential Points

We next consider whether any points appear to be unduly influential as measured by a collection
of standard diagnostic statistics: DFBETAS, DFFITS, covariance ratio, Cook’s Distance, and the
magnitude of the diagonal entries of the hat matrix. These statistics detect whether a point
influences individual coefficient values, the fit at that point, the covariance matrix, or all
coefficient values or has high leverage, respectively. If any of these quantities suggest that a point
might be influential, we consider it as such. Points so identified are shown in red in Figure 3a.

A total of 59 potentially influential points come from 45 different studies, of which only 8
contribute more than one animal and the largest contributor contains 5. Figure 3a shows that
large animals may have a pronounced influence on the fit, which is to be expected since the effect
of curvature will increase as mass increases. There is a second group of potentially influential
points that seem to be separated from the main concentration of data, primarily at small masses.
A third group is composed of points that simply appear to be isolated from the rest of the data.

In order to determine the effect of these points on the fit, we simply remove them and refit. The
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Figure 3: a: Plot of the data with potentially influential points marked in red. b: Data with potentially
influential points removed and mass range restricted to 2.5 orders of magnitude.

data appears much more uniform with these points removed, yet the fit is largely unchanged. The
quadratic term remains significant, though its magnitude has decreased somewhat, which is not
surprising considering that we have eliminated many of the points that contribute most to the
curvature. To determine how the significance of the quadratic term responds to further reductions
in the data set, we remove points from both ends of the remaining data (.5 orders of magnitude at
a time). Again, we see that the quadratic term remains significant even after reducing the range
of the data to 2.5 orders of magnitude in mass (1.5 to 4). At this point the data appears very
regular with no apparent outliers (Figure 3b), but the magnitude of the quadratic coefficient
begins to fluctuate and its standard error starts to increase. Given that the quadratic term
remains significant despite the removal of influential points and a considerable reduction of the
mass range, we conclude that the significance of the quadratic term is due to an inherent property
of the data rather than a particular set of influential points.

Model: log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Complete McNab data set (636 species), without temperature

Estimate Standard Error p-value
β̂0 -1.5078 0.0377 < 2 · 10−16

β̂1 0.5400 0.0295 < 2 · 10−16

β̂2 0.0322 0.0053 8.956 · 10−10
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Species remaining (577) after removal of influential points

Estimate Standard Error p-value
β̂0 -1.5871 0.0407 < 2 · 10−16

β̂1 0.6051 0.0350 < 2 · 10−16

β̂2 0.0205 0.0070 3.190 · 10−3

Restriction to mass range 1 ≤ log10(Mass) ≤ 4.5

Estimate Standard Error p-value
β̂0 -1.5010 0.0508 < 2 · 10−16

β̂1 0.5402 0.0439 < 2 · 10−16

β̂2 0.0315 0.0088 3.521 · 10−4

Restriction to mass range 1.5 ≤ log10(Mass) ≤ 4

Estimate Standard Error p-value
β̂0 -1.4461 0.1013 < 2 · 10−16

β̂1 0.4980 0.0818 1.149 · 10−9

β̂2 0.0390 0.0157 1.280 · 10−2

We repeat the analysis for the full model (quadratic with temperature). In this case, only 47
points from 37 studies are potentially influential. Of these, only 6 studies are represented more
than once (the largest contribution consists of 5 data points). Proceeding as before, we first
remove the potentially influential points and then incrementally restrict the mass range. The
quadratic and temperature terms remain significant even after the mass range is reduced to 3
orders of magnitude (1 to 4).

Model: log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + β3

T + 

McNab data set with temperature (447 species)

Estimate Standard Error p-value
β̂0 14.0149 1.1826 < 2 · 10−16

β̂1 0.5371 0.0305 < 2 · 10−16

β̂2 0.0294 0.0057 2.568 · 10−7

β̂3 -4798.95 362.22 < 2 · 10−16
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Species remaining (400) after removal of influential points

Estimate Standard Error p-value
β̂0 13.0989 1.1865 < 2 · 10−16

β̂1 0.5858 0.0374 < 2 · 10−16

β̂2 0.0198 0.0077 9.681 · 10−3

β̂3 -4532.04 364.87 < 2 · 10−16

Restriction to mass range 1 ≤ log10(Mass) ≤ 4.5

Estimate Standard Error p-value
β̂0 12.9510 1.1701 < 2 · 10−16

β̂1 0.5377 0.0428 < 2 · 10−16

β̂2 0.0286 0.0086 8.731 · 10−4

β̂3 -4467.64 360.22 < 2 · 10−16

Restriction to mass range 1 ≤ log10(Mass) ≤ 4

Estimate Standard Error p-value
β̂0 12.8797 1.1681 < 2 · 10−16

β̂1 0.5342 0.0455 < 2 · 10−16

β̂2 0.0294 0.0093 1.533 · 10−3

β̂3 -4444.50 358.92 < 2 · 10−16

2.2.3 Controlling for Environmental and Physiological Factors

There are likely to be factors besides temperature that impact metabolic rate. Brian McNab
includes seven environmental and physiological factors in his data set. In order to test whether
the quadratic and temperature terms remain significant, even after accounting for these factors,
we employ conditional regression. This approach estimates the quadratic and temperature terms
for all the data points while allowing the intercept or both the intercept and slope to vary
between groups. Conditional regression requires a likelihood for its definition, so, for this analysis,
we employ standard linear regression, since generalized estimating equations do not, in general,
possess a true likelihood. For each conditioning variable, the first table includes conditioning only
for the intercept while the second table includes the effects of conditioning for both the intercept
and linear slope.

Model: log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + β3

T + 
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No Conditioning

Estimate Standard Error p-value
β̂0 14.0149 1.0991 < 2 · 10−16

β̂1 0.5371 0.0275 < 2 · 10−16

β̂2 0.0294 0.0051 1.209 · 10−8

β̂3 -4798.95 338.85 < 2 · 10−16

Conditioning on Food Type

Estimate Standard Error p-value
β̂1 0.4891 0.0296 < 2 · 10−16

β̂2 0.0364 0.0053 2.594 · 10−11

β̂3 -3974.54 384.48 < 2 · 10−16

Estimate Standard Error p-value
β̂2 0.0360 0.0079 7.918 · 10−6

β̂3 -3654.50 408.08 < 2 · 10−16

Conditioning on Climate

Estimate Standard Error p-value
β̂1 0.5424 0.0271 < 2 · 10−16

β̂2 0.0289 0.0050 1.524 · 10−8

β̂3 -4349.98 350.00 < 2 · 10−16

Estimate Standard Error p-value
β̂2 0.0294 0.0053 4.483 · 10−8

β̂3 -4319.37 352.67 < 2 · 10−16

Conditioning on Habitat

Estimate Standard Error p-value
β̂1 0.5563 0.0270 < 2 · 10−16

β̂2 0.0245 0.0050 1.582 · 10−6

β̂3 -4757.88 331.65 < 2 · 10−16

Estimate Standard Error p-value
β̂2 0.0225 0.0052 2.081 · 10−5

β̂3 -4743.92 331.96 < 2 · 10−16
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Conditioning on Substrate

Estimate Standard Error p-value
β̂1 0.5549 0.0270 < 2 · 10−16

β̂2 0.0255 0.0049 3.211 · 10−7

β̂3 -4406.43 336.03 < 2 · 10−16

Estimate Standard Error p-value
β̂2 0.0295 0.0053 4.887 · 10−8

β̂3 -4365.08 335.47 < 2 · 10−16

Conditioning on Torpor

Estimate Standard Error p-value
β̂1 0.5050 0.0282 < 2 · 10−16

β̂2 0.0334 0.0051 1.309 · 10−10

β̂3 -4381.96 349.00 < 2 · 10−16

Estimate Standard Error p-value
β̂2 0.0375 0.0057 1.024 · 10−10

β̂3 -4395.69 347.88 < 2 · 10−16

Conditioning on Exclusive Island Residence

Estimate Standard Error p-value
β̂1 0.5350 0.0275 < 2 · 10−16

β̂2 0.0297 0.0050 8.295 · 10−9

β̂3 -4702.22 344.06 < 2 · 10−16

Estimate Standard Error p-value
β̂2 0.0289 0.0051 2.686 · 10−8

β̂3 -4713.43 344.24 < 2 · 10−16

Conditioning on Exclusive Mountain Residence

Estimate Standard Error p-value
β̂1 0.5403 0.0274 < 2 · 10−16

β̂2 0.0290 0.0050 1.569 · 10−8

β̂3 -4728.19 338.12 < 2 · 10−16
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Estimate Standard Error p-value
β̂2 0.0284 0.0050 2.518 · 10−8

β̂3 -4596.52 340.94 < 2 · 10−16

We next allow either the intercept or both the intercept and slope to vary as linear functions of
all categorical variables.

Estimate Standard Error p-value
β̂1 0.5128 0.0288 < 2 · 10−16

β̂2 0.0309 0.0051 2.971 · 10−9

β̂3 -2777.22 381.54 1.839 · 10−12

Estimate Standard Error p-value
β̂2 0.0361 0.0083 1.911 · 10−5

β̂3 -2402.39 429.08 4.374 · 10−8

In all these regressions, the quadratic and temperature terms remain extremely significant. The
quadratic term also remains within the 95% confidence interval from the regression of the full
model. The same cannot be said for the temperature coefficient, which increases significantly
when conditioning on food type to > −4000. In the case of the linear model for the intercept, or
the intercept and slope, the coefficient increases to > −2800. This suggests that part of the effect
of temperature on the regression may be as a surrogate for the influence of environmental or
physiological factors.

2.2.4 Accounting for Phylogenetic Information

Standard linear regression does not account for the fact that data points for different species are
not truly independent, since different animals share environments and resources, as well as
evolutionary history. The previous section considered the effects of the first two factors; here we
attempt to account for the third.

If the covariance structure for the data is known, regression methods can include it in the fitting
process. However, one of the greatest difficulties with trying to account for covariance due to
evolution is selecting this structure. Early attempts to do this assumed that the evolution of
quantitative traits could be modeled as a diffusion process and that the theory of Brownian
motion could be used to define the covariance structure. Such strong assumptions about the
nature of evolution do not always fit the data well. One solution, originally proposed by
Freckleton, Harvey and Pagel [7], is to weaken these assumptions by including an extra
parameter, λ, in the covariance structure, thereby attenuating the correlation between species,
while still modeling the variance for a particular species with pure Brownian motion. λ typically
ranges from 0 to 1, where 0 corresponds to complete independence between points and 1
corresponds to the original diffusion model. The fitting process determines this parameter by
attempting to find the optimal value for the data. Due to its increased flexibility, we use Pagel’s
covariance structure for the following phylogenetic generalized least squares (PGLS) regressions.
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In order to use phylogenetic regression, we had to link McNab’s data to a phylogenetic tree. We
did this by first harmonizing his species names with the third edition of Wilson and Reeder [8].
Since the supertree we used [9] is based on the second edition of Wilson and Reeder we then
matched changed spellings, species, and genus names to that edition. With this done, we
attempted to associate any species that were separated from another species between the second
and third editions with the original species, if this species was not already represented in McNab’s
data. After this procedure, we were able to link all but eight species to the supertree.

For fitting the models, we use REstricted Maximum Likelihood (REML) instead of standard
Maximum Likelihood (ML), since it accounts for the loss of degrees of freedom in the estimation
process. We fit the models using the APE and NLME packages for R [2,10].

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 -1.7964 0.1078 < 2 · 10−16

β̂1 0.6614 0.0290 < 2 · 10−16

β̂2 0.0126 0.0050 1.162 · 10−2

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 +
β3

T
+ 

Estimate Standard Error p-value
β̂0 7.2170 1.3310 9.750 · 10−8

β̂1 0.6054 0.0327 < 2 · 10−16

β̂2 0.0218 0.0058 1.759 · 10−4

β̂3 -2748.12 406.85 4.582 · 10−11

Both the quadratic and temperature terms remain significant using PGLS. Interestingly, while the
magnitude of the quadratic coefficient decreases significantly in the fit without temperature, its
value is much more stable when temperature is included. As in the case of conditioning on
categorical factors (Section 2.2.3), the value of the temperature coefficient increases dramatically,
suggesting that part of the apparent effect of temperature is to act as a surrogate for the role of
shared evolution. However, when conditioning on categorical factors, the magnitude of the
quadratic term increased, while in this case it decreases. The meaning of this is unclear.

We can also allow the intercept to vary as a linear function of the categorical variables within the
PGLS framework. Unfortunately, attempting to also treat the slope in this manner leads to
singularities in the fitting process.

17



18www.nature.com/nature

doi: 10.1038/nature08920 SUPPLEMENTARY INFORMATION

PGLS and categorical variables (intercept variation only)

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂1 0.6261 0.0291 < 2 · 10−16

β̂2 0.0123 0.0048 1.063 · 10−2

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 +
β3

T
+ 

Estimate Standard Error p-value
β̂1 0.5694 0.0348 < 2 · 10−16

β̂2 0.0223 0.0059 1.648 · 10−4

β̂3 -1688.89 430.20 1.023 · 10−4

Interestingly, the inclusion of the categorical variables does not seem to affect the values or
significances of the coefficients, with the exception of the temperature term, which increases
further. This may be an indication that the effect of temperature is partially due to its role as a
surrogate for evolutionary and environmental factors. The relative constancy of the other
coefficients may indicate that the covariance between points in the PGLS model captures much of
the information encoded by the categorical variables (at least when they are only allowed to affect
the intercept).

Finally, we repeated our PGLS analysis on data from Sieg et al. [4], using the same supertree as
above [9]. 685 and 529 data points were used for PGLS without and with temperature,
respectively. As one can see from the tables below, Sieg’s data yields similar results to McNab’s.

PGLS for the data from Sieg (2009)

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 + 

Estimate Standard Error p-value
β̂0 0.5577 0.1135 1.121 · 10−6

β̂1 0.6171 0.0320 < 2 · 10−16

β̂2 0.0199 0.0054 2.314 · 10−4

log10(BMR) = β0 + β1 log10(Mass) + β2(log10(Mass))2 +
β3

T
+ 

Estimate Standard Error p-value
β̂0 10.2386 1.3540 1.787 · 10−13

β̂1 0.5879 0.0353 < 2 · 10−16

β̂2 0.0211 0.0065 1.279 · 10−3

β̂3 -2955.96 414.37 3.260 · 10−12
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3 Linear Regression and the Slope of a Quadratic Function

3.1 Derivation

We show that a (misspecified) linear regression of a quadratic function estimates its tangent at
the mean of the data.

Let Y = α0 + α1X + α2X
2 +  be a correctly specified model for a data set (X,Y ), such that the

errors, , satisfy E(|X) = 0 (i.e. their conditional mean is 0). Note that the  terms in the
derivation below correspond to the errors of the quadratic model, and not the errors for the linear
model. If we consider fitting a linear model E(Y |X) = β0 + β1X for (X,Y ), the estimated slope
of the linear regression β̂1 will be given by:

β̂1 =


i (Yi − Y )(Xi −X)
i (Xi −X)2

=


i (α0 + α1Xi + α2X
2
i + i − (α0 + α1X + α2X2))(Xi −X)

i (Xi −X)2

=


i (α1(Xi −X) + α2(X2
i −X2) + i)(Xi −X)

i (Xi −X)2

=


i (α1(Xi −X)2 + α2(X2
i −X2)(Xi −X) + i(Xi −X))

i (Xi −X)2

= α1


i (Xi −X)2
i (Xi −X)2

+ α2


i (X

2
i −X2)(Xi −X)
i (Xi −X)2

+


i i(Xi −X)
i (Xi −X)2

= α1 + α2


i (X

2
i −X2)Xi

i (Xi −X)2
+


i i(Xi −X)
i (Xi −X)2

(1)

The second term can be further simplified:

α2


i (X

2
i −X2)Xi

i (Xi −X)2
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i (X

3
i −X2Xi)

i (Xi −X)2
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i (X

3
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3
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i )
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2))
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+ 2α2X
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3)
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Equation (1) thus becomes:

β̂1 = α1 + 2α2X + α2


i (Xi −X)3
i (Xi −X)2

+


i i(Xi −X)
i (Xi −X)2

,

or

β̂1 − (α1 + 2α2X) = α2


i (Xi −X)3
i (Xi −X)2

+


i i(Xi −X)
i (Xi −X)2

. (2)

Let M ≥ sup |Xi −X|. Then:

|


i

(Xi −X)3| ≤


i

|Xi −X|3 ≤


i

M |Xi −X|2 =M


i

(Xi −X)2 (3)

Taking the expectation of equation (2) conditional on X and using (3) yields:

|E(β̂1|X)− (α1 + 2α2X)| = |E(β̂1 − (α1 + 2α2X)|X)|

≤
α2


i (Xi −X)3
i (Xi −X)2

+


i E(i(Xi −X)|X)
i (Xi −X)2

 ≤ |α2|



i (Xi −X)3
i (Xi −X)2

+



i E(i(Xi −X)|X)
i (Xi −X)2



≤ |α2|


iM(Xi −X)2
i (Xi −X)2

+



i E(i|X)(Xi −X)
i (Xi −X)2

 = |α2|M


i (Xi −X)2
i (Xi −X)2

+



i E(i|X)(Xi −X)
i (Xi −X)2



= |α2|M +



i 0(Xi −X)
i (Xi −X)2

 = |α2|M

Thus,
|E(β̂1|X)− (α1 + 2α2X)| ≤ |α2|M (4)

The absolute difference between the conditional expectation of β̂1 given X and the tangent of the
quadratic curve at the mean of the data is thus less than or equal to |α2|M . This means that, as
M gets larger (i.e., as the maximum difference between the Xi’s and the mean of X increases), β̂1

will, in general, become a less accurate estimate for the slope of the tangent. The larger the range
of the Xi’s, the more sensitive the results become to the distribution of the data.

Under independent homoscedastic errors (for heteroscedastic  with variance bounded by σ2 the
following result will be an upper bound) we obtain:

Var(β̂1|X) = Var

α1 + 2α2X + α2


i (Xi −X)3
i (Xi −X)2

+


i i(Xi −X)
i (Xi −X)2

|X
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i i(Xi −X)
i (Xi −X)2

|X

=


i,j Cov(i(Xi −X), j(Xj −X)|X)

�
i (Xi −X)2

2
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i,j (Xi −X)(Xj −X)Cov(i, j |X)�

i (Xi −X)2
2 =


i,j (Xi −X)(Xj −X)σ2δi,j�

i (Xi −X)2
2

=
σ2


i (Xi −X)2�

i (Xi −X)2
2
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Therefore:

Var(β̂1|X) =
σ2


i (Xi −X)2

(5)

Together, equations (4) and (5) imply that β̂1 is a reasonable estimator of the slope of the
quadratic function at the mean of the data, α1 + 2α2X, and that this estimate can be made
arbitrarily accurate by choosing a sufficiently small region (resulting in a small M) and sufficiently
large n. Also note that


i (Xi −X)3 is a measure of the asymmetry of the sample and therefore,

for symmetrically distributed X, the estimator may still be accurate, even over large regions.

3.2 Estimated and Predicted Exponents

Using the formulae derived above, we can attempt to predict the exponents that would be
estimated for various data sets by using simple linear regression (as is frequently done). Taking
the expectation of equation (2) conditional on X gives:

E(β̂1|X) = α1 + 2α2X + α2


i (Xi −X)3
i (Xi −X)2

. (6)

Using equation (6) we predict the exponents for seven well known data sets: Lovegrove
(2000) [11], Lovegrove (2003) [12], White (2006) [13], White (2009) [14], Sieg (2009) [4], McNab
(2008) [3] and Savage (2004) [5] (using both species average data and binned data).

We compare these predictions to the exponents that would be estimated by simply applying a
standard linear fit (in log-log space) to each data set. (Note that these estimates may not match
the actual results reported in a particular paper, since the investigators may have used more
complex methods.) The estimated exponents are shown in Figure 4a. Indeed, the exponents
appear to increase with log10(Mass), as predicted by equation (6). Figure 4a indicates that this
trend is not perfectly linear, presumably because some data sets have a skewed log10 (Mass)
distribution. We therefore include the last term of equation (6) when calculating our predictions.
Since we do not have true values for α1 and α2, we estimate them by fitting a quadratic model to
McNab’s, Sieg’s, or Savage’s data. Panels C and D of Figure 4 show that our predicted exponents
using (6) are reasonably close to the estimated exponents, regardless of the data set we use when
fitting the quadratic model. In all cases, the predicted exponents fall within the 95% multiplicity
corrected confidence intervals of the estimated exponents, and in all but two cases (both using
McNab’s data), they fall within the uncorrected confidence intervals. Since both the estimated
and predicted exponents are random variables, it is the confidence interval for the difference
between the two exponents that matters. Figure 4b shows that, for all data sets considered, this
difference is always included within the uncorrected 95% confidence interval, meaning that our
predictions are consistent with the data, even without correcting for multiplicity.

We conclude that the quadratic model not only fits the data better than the linear model, but
seems to be able to predict the exponent that is observed in a given study, using only information
about the first three moments of the log10 (Mass) distribution. Although these predictions are
quite good, and are consistent with the data, they are not perfect, and appear to be biased
upwards. This is likely because, as we have shown, the quadratic model does not completely
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Figure 4: a: Exponents estimated for various data sets using simple linear regression. b: Exponents of the
data sets mentioned in the text were predicted using equation (6) with α1 and α2 estimated by the coefficients
obtained from quadratic fits to McNab’s, Sieg’s, or Savage’s data. The panel shows the 95% uncorrected
confidence intervals for the differences between the predicted exponents and exponents estimated using linear
regression. All differences fall within the 95% confidence intervals. The displayed confidence intervals are
computed using McNab’s data, but are almost identical for Sieg’s or Savage’s data. c: Estimated and
predicted exponents vs. log10 (Mass). Thick lines represent uncorrected 95% confidence intervals. Thin
lines are multiplicity corrected intervals. In this panel, only five of eight data sets are included (Lovegrove
(2000 and 2003), Savage (unbinned and binned), and McNab (2008)), since the masses of the other three
data sets are very similar to some of those plotted and are therefore obscured. d: As in c, but estimated
and predicted exponents are now organized by data set. (This panel also appears in the main text as Figure
2d.)
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explain BMR. Temperature is also an important predictor that must be included, and there will
certainly be additional factors that influence BMR, like those considered by McNab. Despite this,
the simple quadratic model predicts scaling exponents remarkably well. Much of the variance in
observed exponents obtained in previous large-scale studies can therefore be attributed to the
curvature in the data (which is captured by the coefficient of the quadratic term). As seen in
equation (6), due to differences in body mass distributions between studies, the nonlinearity in
the true scaling relationship can result in divergent estimates of “the scaling exponent.”

4 Extending the West-Brown-Enquist model

For many symbolic computations we utilized Mathematica [15].

4.1 The finite-size WBE model

We provide a brief summary of the derivation of the West-Brown-Enquist (WBE) model [16,17]
to provide context for the modifications detailed in Section 4.2. These new models result in
several functions that we fit in the main text, in order to identify WBE variants that can produce
the convex dependence on body mass observed in the data. A full explanation of the model’s
assumptions and its derivation can be found in [17].

The central assumption of WBE is that the basal metabolic rate of an organism, B, is determined
by the structure of the network it uses to distribute resources throughout its body. In the case of
mammals, this network is the arterial vascular system, which the model assumes to be a
hierarchical tree beginning with a single vessel at level 0 (the aorta). At each level, the vessels
branch into n symmetric daughter vessels of identical radius and length. This process continues
until the network reaches the capillaries, which are assumed to have the same size (radius and
length) across species. To service every part of the organism, the network is assumed to be space
filling. This means that, at each branch point, the sum of the cubed lengths of the daughter
vessels will be equal to the cubed length of the parent vessel: for the branching of a vessel k levels
from the aorta, l3k =

n
i=0 l

3
k+1,i = nl3k+1 (where i indexes daughter vessels and the second

equality holds because the daughter vessels have identical lengths). Defining γ as the ratio of the
length of a daughter vessel to its parent, gives γ ≡ lk+1/lk = n−1/3. Given the length of the aorta
(l0), we can calculate the length of the vessels at level k as lk = l0(l1/l0)(l2/l1) . . . (lk/lk−1) = l0γ

k.

The WBE model also assumes that vascular networks have evolved to minimize energy loss as
blood flows through the network. Combining this assumption with the space filling constraint
allows one to calculate how the radii of daughter vessels are related to the radii of parent vessels.
The energy minimization calculation is quite involved and is discussed in detail elsewhere [17],
but we provide a brief sketch. In order to simplify the calculation, WBE separates the network
into two regions. The first region includes vessels near the heart, where blood flow is pulsatile due
to the action of the heart. The second region includes small vessels near the capillaries, where
blood flow is smooth (i.e. Poiseuille) and dominated by viscous forces. In the WBE model, the
pulse is not damped in the large vessels, but instead abruptly ceases at level k̄, where the flow
becomes smooth.
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Under these assumptions, energy loss in large vessels is minimized by eliminating the reflection of
waves at branch points, which occurs if the impedance to flow in the parent vessel is exactly equal
to the total impedance of the daughter vessels. This “impedance matching” leads to the
constraint that r2k =

n
i=0 r

2
k+1,i = nr2k+1, so that β< ≡ rk+1/rk = n−1/2 for k ≤ k̄. For small

vessels, energy loss is minimized by minimizing the viscous drag of the fluid against the vessel
walls. Combined with other assumptions, this yields the constraint r3k =

n
i=0 r

3
k+1,i = nr3k+1,

which is known as Murray’s Law [18–20]. Therefore, β> ≡ rk+1/rk = n−1/3 for k > k̄. Using the
assumption that capillary radius is constant across species, these ratios can be used to directly
compute the radius of any vessel in the network.

Using the ratios defined above we can determine the volume of a vascular network, which is
equivalent to the volume of blood in the body (i.e. Vb, neglecting a factor of 2 that would arise
from including the blood in the venous system). To do so, we calculate the volume of vessels at
each level k (each of which is considered to be a cylinder, with Vk = πr2klk), multiply this volume
by the number of vessels at that level, and sum over all levels k while respecting the transition
between β< and β> at k̄. For an organism with N total levels of vasculature, this yields:

Vb = NcVc


(nγβ2

>)
k̄−N

k̄
k=0

(nγβ2
<)

k−k̄ +
N

k=k̄+1

(nγβ2
>)

k−N


 (7)

where Nc is the number of capillaries in the network and Vc is the volume of a capillary. From the
relationships above, we obtain nγβ2

< = nn−1/3n−1 = n−1/3 and nγβ2
> = nn−1/3n−2/3 = 1.

Substituting these results into equation (7), we obtain:

Vb = NcVc




k̄
k=0

(n−1/3)(k−k̄) +
N

k=k̄+1

1


 = NcVc


n(k̄+1)/3 − 1
n1/3 − 1

+ (N − k̄)


(8)

Evaluating equation (8) depends on the definition of k̄. In WBE, the transition between the two
regimes occurs at a constant radius, rtrans [16]. Since WBE assumes that the radius and length of
capillaries do not vary significantly across organisms of different sizes, this transition must occur a
constant number of levels before the capillaries. In this case, we can define a new constant,
N̄ ≡ N − k̄, that does not depend on the size of the organism in question. Noting that Nc = nN ,
we have:

Vb = NcVc


n(N−N̄+1)/3 − 1

n1/3 − 1
+ N̄


= NcVc


N

1/3
c n(1−N̄)/3 − 1

n1/3 − 1
+ N̄



= NcVc


N̄ − 1

n1/3 − 1


+

n(1−N̄)/3

n1/3 − 1
N1/3

c


(9)

The final set of assumptions in the model is that the metabolic rate of an organism is
proportional to its number of capillaries (i.e. B = cBNC) and that body mass is proportional to
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blood volume (M = cMVb). This yields:

M =
cM

cB
BVc


N̄ − 1

n1/3 − 1


+

n(1−N̄)/3

n1/3 − 1


B

cB

1/3


=

cMVc

cB


N̄ − 1

n1/3 − 1


B +


cMVc

c
4/3
B

n(1−N̄)/3

n1/3 − 1


B4/3

= c0B + c1B
4/3 (10)

where c0 and c1 represent the two constant terms multiplying B and B4/3, respectively. Equation
(10) is equation (5) of the main text. In the limit of infinite B (or, equivalently, the limit of
infinite mass), equation (10) reduces to the pure power-law relationship B = (M/c1)3/4, i.e.
3/4-power scaling.

The proportionality constants relating M to Vb and B to Nc are unknown, making c0 and c1 free
parameters. Given n ≥ 2 and that VC , cB and cM are all positive, it is clear that c1 > 0.
Equation (10) implies that c0 > 0 if and only if N̄ > 1

n1/3−1 . The value of N̄ can be estimated by
using known parameters of the vascular system (such as the viscosity of the blood, the size of the
capillaries, etc.) to calculate rtrans. For n = 2 (which is reasonable for the mammalian
vasculature), one obtains N̄ ≈ 24 [16,17]. This is consistent with measurements of actual vessels
in mammals, in which N̄ is at least 7 [20]. Thus, for the WBE model as originally formulated, we
have the additional constraint that c0 > 0.

Since equation (10) is a quartic function in B1/3 (i.e. M = c0(B1/3)3 + c1(B1/3)4), we can invert
it to find a function f such that B = f(M, c0, c1). We use standard non-linear least squares fitting
procedures to fit this function to our data and estimate c0 and c1 under the constraint that both
constants are positive. Given this restriction on the values of c0 and c1, it is clear that equation
(10) has negative (concave) curvature, which is exactly the opposite of the positive (convex)
curvature observed in the data. It is therefore not surprising that the constrained non-linear fit
results in ĉ0 = 0, producing a pure power law with a fixed exponent of 3/4. This fit is displayed in
Figure 3a in the main text (labeled “WBE”) and is considerably worse than a standard power-law
fit with a free exponent (Figure 1a).

4.2 Modifications to WBE

The energy minimization calculation in WBE is quite involved and ignores a number of physical
effects that could influence network geometry. Perhaps most prominent among these effects is the
attenuation of pulse waves as blood travels away from the heart. In WBE, the wave number and
angular frequency of blood pulses is constant from level 0 to level k̄. At exactly that level, the
blood flow abruptly changes from pulsatile to perfectly smooth. Such a sudden transition seems
unphysical. Although one could, in principle, include attenuation effects to produce a more
realistic model, such calculations are far beyond the scope of this work. We can, however, explore
how relaxing various WBE constraints that are directly related to the energy minimization
calculation (particularly in large vessels) might influence the overall scaling function obtained
from equation (7).
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4.2.1 Generic scale-free ratio of large-vessel radii (RG)

We first consider a simple case in which we set β< = n−r, preserving the scale-free ratio of β<

without specifying the exact relationship between the radii of parent and daughter vessels in the
large-vessel regime. Given that Murray’s law has been observed empirically [18–20], it is
reasonable to assume nγβ> = 1. Following the derivation that led to equation (8), but using this
modified β<, we obtain:

M =
cM

cB
BVc


N̄ − 1

nq − 1


+

n(1−N̄)q

nq − 1


B

cB

q


=

cMVc

cB


N̄ − 1

nq − 1


B +


cMVc

cq+1
B

n(1−N̄)q

nq − 1


Bq+1

= c0B + c1B
q+1 (11)

where q = 2r − 2/3 is a new free parameter. If we have c0 > 0 and c1 > 0, the curvature of
equation (11) is again concave, opposite to the curvature observed in the data. Since the above
equation cannot be analytically inverted for arbitrary values of q, we determine its inverse using
standard numerical root-finding techniques. The numerical inverse is then used to perform a
non-linear fit of equation (11) to the data, providing us with estimates of c0, c1 and q. As in the
case of the original WBE model, the mismatch in curvature between the model and the data
forces ĉ0 = 0, reducing equation (11) to a standard power-law fit. We conclude that simply
relaxing the radius scaling relationship for large vessels does not result in a model that is
consistent with the empirical data.

4.2.2 Flow-mode transition close to the capillaries

As mentioned previously, one aspect of the WBE model that appears to be worth exploring is the
level at which the transition from pulsatile to smooth flow occurs. If it is sufficiently close to the
capillaries (i.e. if N̄ is sufficiently small), c0 will become negative, resulting in a model with
curvature equivalent to that observed in the data. As one might expect, performing fits for
equations (10) or (11) without the constraint that c0 ≥ 0 results in negative estimates for this
parameter. In the case of equation (11) the fit appears to be remarkably good and is superior to a
pure power law, though it is not quite as good as the fit of the quadratic model discussed in the
main text. (This fit is identical to the optimal fit of the Proportional Transition Model, seen in
the main text, so Figure 3 may be used for comparison.) In order for c0 to be negative, however,
we must have N̄ < 1

nq−1 . Using the estimated value for q obtained from this fit, and a branching
ratio of n = 2, implies that N̄ ≤ 6 for this to be true. However, physiological measurements
indicate that N̄ is at least 7 [20], suggesting that this small-N̄ scenario may not represent a
biologically realistic case, no matter how well it fits the empirical data.
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4.2.3 Flow-mode transition a constant number of levels from the heart (FH)

Here we consider the possibility that k̄ might be constant: that is, the transition occurs a
constant number of levels away from the aorta, rather than a constant number of levels from the
capillaries. In this case, the first term in equation (7) becomes a constant, yielding:

Vb = NcVc


n(k̄+1)q − 1
nq − 1

− k̄ +N


(12)

Since Nc = nN , and therefore N = logNc

logn , we have:

Vb = NcVc


n(k̄+1)q − 1
nq − 1

− k̄ +
logNc

logn


(13)

Using B = cBNc, M = cMVb, as before, results in:

M =
cM
cB

BVc


n(k̄+1)q − 1
nq − 1

− k̄ +
log B

cB

logn



=
cMVc

cB


n(k̄+1)q − 1
nq − 1

− k̄ − log cB
logn


+
logB
logn


B

=


cMVc

cB


n(k̄+1)q − 1
nq − 1

− k̄ − log cB
logn


B +


cMVc

cB logn


B logB

= c0B + c1B logB (14)

where c0 and c1 are again free parameters in the model. In this scenario, it is clear that c1 > 0,
while the sign of c0 will vary depending on the values of k̄ and cB, neither of which can be
estimated independently at this time. Equation (14) can be inverted analytically to yield:

B =M


c1W


ec0/c1M

c1

−1
(15)

where the function W is the inverse of xex and is known as the Lambert W function or the
product log. In the limit of small mass, equation (15) has a slope of 0. The value of the slope
increases up to a value of 1 in the limit of infinite mass (where the smooth-flow regime
dominates). The FH model thus displays convex curvature, matching that of the data. Non-linear
fits of this model, however, do not appear to fit the data well (Figure 3a). It is interesting to note
that, despite the large difference in asymptotic exponents (1 for FH and 3/4 for the original WBE
model [17]), both the FH and WBE models seem to fit the data similarly poorly (Figure 3a).

4.2.4 Flow-mode transition proportional to organism size (PT)

Finally, we consider a model in which the transition point in the network is some function of N
(the number of total levels in the network hierarchy), with the simplest case being k̄ = αN . Then,
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from equation (8) we have:

Vb = NcVc


n(αN+1)q − 1

nq − 1
+ (1− α)N


= NcVc


nNαqnq − 1
nq − 1

+ (1− α)N


= NcVc


Nαq
c nq − 1
nq − 1

+ (1− α)
logNc

logn


(16)

Rewriting the equation in terms of M and B, as before, yields:

M =
cM
cB

Vc





B
cB
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nq − 1

nq − 1
+ (1− α)

log B
cB

logn


B

=
cMVc
cB


nq

cαqB (nq − 1)
Bαq −


1

nq − 1
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(1− α) log cB

logn


+
(1− α)
logn

logB

B
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−cMVc

cB


1

nq − 1
+
(1− α) log cB

logn


B +


(1− α)cMVc
cB logn


B logB

+


cMVc

cαq+1
B

nq

(nq − 1)


Bαq+1

= c0B + c1B logB + c2B
p (17)

where c0, c1, c2 and p = αq + 1 are all free parameters. This large number of parameters gives the
model great flexibility. Since c1 and c2 are necessarily greater than 0, the scaling function can
produce convex curvature, with an asymptotic exponent of p−1. Since the expression has so many
parameters, one cannot definitively estimate values for them, and indeed the model can result in
very similar fits for different sets of parameters. Interestingly, nearly optimal fits of the scaling
function (17), in particular the best fit (for which ĉ1 = 0), tend to have shapes nearly identical to
the small N̄ case (Section 4.2.2). Equation (11) for the small N̄ model is a special case of
equation (17), which explains the performance of the small N̄ model, despite its apparently
unphysical nature. It is important to note here that, while equation (17) is capable of fitting the
data well for large sets of parameters, it is unclear whether any of these parameters represent
physically realistic cases. We leave further evaluation of the PT model and other modifications of
WBE to future work.

4.3 Residuals of WBE Modifications

In order to evaluate the quality of fit of each of the above models, we examine their residuals.
Figure 5a and 5b clearly demonstrate that both the WBE and FH models fit the data poorly, as
claimed. The PT model appears to fit the data nearly as well as the quadratic model, though it
requires one more parameter to do so.
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Figure 5: a: Plot of residuals from PT Model with lowess line (green). Lowess lines for the WBE (red), FH
(magenta), and quadratic (blue) models are overlaid for comparison. b: Lowess lines from a presented alone
in order to accentuate differences.
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