Computation of Convex Hull Prices
in Electricity Markets with Non-Convexities
using Dantzig-Wolfe Decomposition

Panagiotis Andrianesis, Michael C. Caramanis, and William W. Hogan

Abstract—The presence of non-convexities in electricity mar-
kets has been an active research area for about two decades. The
— inevitable under current marginal cost pricing — problem
of guaranteeing that no truthful-bidding market participant
incurs losses in the day-ahead (DA) market is addressed in
current practice through make-whole payments a.k.a. uplift.
Alternative pricing rules have been studied to deal with this
problem. Among them, Convex Hull (CH) prices associated with
minimum uplift have attracted significant attention. Several US
Independent System Operators (ISOs) have considered CH prices
but resorted to approximations, mainly because determining
exact CH prices is computationally challenging, while providing
little intuition about the price formation rational. In this paper,
we describe CH price estimation problem by relying on Dantzig-
Wolfe decomposition and Column Generation. Moreover, the
approach provides intuition on the underlying price formation
rational. A test bed of stylized examples elucidate an exposition
of the intuition in the CH price formation. In addition, a realistic
ISO dataset is used to suggest scalability and validate the proof-
of-concept.

Index Terms—Convex-Hull Pricing, Dantzig-Wolfe Decompo-
sition, Column Generation, Electricity Market Non-Convexities.

I. INTRODUCTION

ARGINAL cost pricing based on spot pricing under

convexity assumptions [1], [2] has been the standard
practice in organized electricity markets. However, in the pres-
ence of non-convexities (mainly due to unit commitment costs
and technical constraints, e.g., minimum output requirements),
marginal cost pricing from a restricted convex subproblem can-
not guarantee support of the solution where market participants
recover their as-bid production costs. There may be no market-
clearing prices for the economically efficient solution. This
problem has been typically dealt with the provision of “uplift”
side-payments to market participants, to make them whole.
Over the last two decades, motivated mainly by the electricity
market paradigm, pricing in markets with non-convexities has
attracted significant attention. Approaches have ranged from
standard marginal cost pricing with recovery mechanisms —
e.g., [3]-[5], to mechanism designs that “minimize”, internal-
ize or, sometimes, even eliminate uplifts — e.g., [6]-[9]. A
critical review of pricing rules employed in markets with non-
convex costs is provided in [9].
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Recently, FERC (Federal Energy Regulatory Commission)
initiated a discussion on price formation [10], with several
US Independent System Operators (ISOs) exploring Convex
Hull (CH) prices, — first suggested in [7] — and their
approximations, often called Extended Locational Marginal
Prices (ELMPs) [10]-[14]. CH pricing was introduced in [7]
as the CH of the aggregate cost function, i.e., the convex
function that is closest to approximating the aggregate cost
function from below. It is equivalently derived by Lagrangian
dualization or CH relaxation, i.e., considering the CH of
individual components, as pointed out already in [7] — see
also the interesting discussion in [15].

Interestingly, up until the early 2000s, the Unit Commitment
(UC) problem itself was traditionally solved using Lagrangian
Relaxation (LR), first by vertically integrated utilities, and
later by ISOs that “inherited” LR solvers — possibly the
only commercial option at the time — in the first market
implementations. Taking advantage of Mixed Integer Linear
Programming (MILP) solver advances, in 2005, PJIM replaced
LR with MILP achieving cost savings of about $500M/year;
by 2017, all US ISOs switched to MILP with estimated cost
savings of more than $2B/year [16]. Currently, the Day-Ahead
(DA) market is based on a sequence of Security Constrained
UC (SCUC) and Security Constrained Economic Dispatch
(SCED), followed after closure of the DA Market by an
ISO executed Reliability Unit Commitment (RUC) process.
DA prices are finally obtained by a pricing run with fixed
unit commitments, either before (e.g., PJM) or after (e.g.,
NYISO) the RUC process. Some ISOs proceeded to ELMPs,
by relaxing integrality constraints for fast-start units and using
ELMPs as a proxy to CH prices [17]. Integer Relaxation (IR)
of the MILP UC problem is considered in [15] as a simple
method that produces good approximations — sometimes even
exact — to the (equivalent) Lagrangian Dual (LD) and CH
relaxations, which, although referred to as “an ideal solutions,”
can remain computationally prohibitive.

Several works have attempted to overcome the computa-
tional difficulties by relying on two main approaches. An early
approach applied sub-gradient methods [18]-[21], whereas a
later and methods focused on identifying the CH of individual
generators through convex primal formulations [22] — also
including an AC Optimal Power Flow setting [23], extended
formulations [24]-[26], a network reformulation [27], and
Benders decomposition leveraging advances in thermal gener-
ator CH formulations [28]. Despite the aforementioned efforts,
two important barriers to CH price implementation remain: (i)



computational challenges, and (ii) opacity of their properties
[13]. An insightful work on the latter, [29], uses representative
stylized examples to illustrate some arguably counter intuitive
CH price properties.

Our aim here is to address the computational challenge
while providing intuition for the CH price formation. Our
approach is inspired by related experience in solving large-
scale optimization problems in other application domains,
in particular crew scheduling [30]. The Operations Research
theory underpinnings date back to the 60’s and the seminal
work of Dantzig and Wolfe [31] on Generalized Linear Pro-
gramming (LP), a.k.a. Dantzig-Wolfe (D-W) decomposition
or Column Generation (CG). D-W decomposition can be also
viewed as a problem characterization rendering the problem
suitable to a CG algorithm. The relationship of Generalized
LP as a solution method for the LD dates also back to
the 70’s — see e.g., [32], [33]. Around the same time, a
CG process was also proposed for approximating competitive
equilibria in a piecewise linear economy [34]. Later, around
the 90’s, the work of [35] on “branch-and-price”
others [36] — positioned CG as a powerful solution method
for huge integer problems, with two common illustrative
applications: the generalized assignment problem and crew
scheduling. Since then, CG has been successfully applied to
large scale integer programming [37], and is possibly the only
commercially available option for scheduling problems in the
airline industry.

Our analysis draws from CH price “first principles” [7],
and our main focus has two elements. First, we provide a D-
W characterization of the UC problem, without changing any
of the original functions or constraints, whose LP relaxation
is equivalent to the solution of the LD of the original MILP
formulation; we then present a CG algorithm to solve the LP
relaxation, and derive the CH prices. Second, we illustrate the
applicability of the approach to (i) stylized examples in [29]
that provide intuition into the CH price formation, (ii) a more
detailed ramp-constrained example from [26], to show that
our approach can handle features that could not be practically
addressed without reformulation of the UC problem, and (iii)
a large-scale ISO dataset [38] with about 1000 generators, thus
illustrating the potential scalability.

The remainder of the paper is organized as follows. In
Section II, we define CH prices for a stylized UC problem. In
Section III, we present a D-W reformulation of the problem
and sketch the CG solution algorithm. In Section IV, we
detail the application to stylized examples, and in Section V,
we demonstrate the computational tractability on realistic test
cases. Lastly, Section VI concludes and provides directions for
further research.

II. DESCRIPTION OF CH PRICES

To fix ideas, but without loss of generality, we assume that
x,,; refers to power output (energy for a dispatch interval) and
i+ refers to the discrete variables (e.g., the on/off status) of
unit ¢, at time period ¢. Let Z denote the set of generation units,
and 7 = {1,2,...,T} the set of time periods, where T is the
length of the optimization horizon. In what follows, we refer

to t as an hour for simplicity. For brevity, and occasionally
with some abuse of notation, we use x;, y;, to denote vectors
of unit ¢ comprising the respective variables, x; ;, y; +, Vt € T;
at a more abstract level, we use x and y as vectors comprising
the respective variables, z; ; and y; ¢, Vi € Z, and Vt € T. Let
also D, denote the demand for energy at hour ¢. A basic UC
problem is formulated as follows:

mlnf X y Zfz X1>YZ (18.)
i€l
subject to: Z xiy = Dy, VteT, (1b)
i€T
(xi,¥i) € Zi, VieZ. (lc)

The objective function (la) minimizes the aggregate com-
mitment and dispatch costs for all units, with f;(x;,y;) denot-
ing the respective cost for unit ¢ over the entire optimization
horizon. Constraints (1b) represent the power balance for all
hours. Constraints (1c) represent all unit specific constraints,
with Z; denoting the set of constraints for unit ¢ for the entire
horizon. We use Z; to ease the exposition for reasons that will
soon become apparent.

Constraints (1b) can be straightforwardly extended to in-
clude all system constraints (e.g., power balance, reserve
requirements, transmission constraints, etc.). Second, although
throughout the paper we use for simplicity the term UC, we
essentially refer to a UC and Economic Dispatch problem in
the broad sense. Our analysis can also cater to current ISO
needs and practices (e.g., SCUC, SCED, RUC). Third, we
make no assumptions on constraints (1c). These include stan-
dard unit specific constraints (capacity, ramps, etc.), as well as
integrality constraints for y variables. Fourth, constraints (1c)
define a feasible schedule for unit . It may not be evident at
this point, but this last remark is arguably the most important
and key to our analysis.

Standard marginal cost pricing relates to the dual variable
of constraint (1b), after fixing discrete variables y to their
optimal values. Enforcing such explicit equality constraints is
used in [3] to price integralities, under standard marginal cost
pricing, and immediately derive the make-whole payments, in
what has been called the “IP pricing,” — see also [9]. ELMPs
are currently derived by relaxing integer variables of only the
fast-start units. In general, the IR of the MILP UC problem (1)
yields less tight convex approximations. Revisiting [7], there
are two equivalent methods to derive CH prices. The first
method prices out complicating system constraints through
Lagrangian dualization. Dualizing constraint (1b), with \; the
respective dual and A an appropriate vector, CH prices are
obtained by the solution of the LD:

max q(N), (2a)

where g() is the dual function of the Lagrangian, £(x,y, A),

q(A) =

inf
(xi,yi)EZ;, VIET
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L(x,y,A), (2b)
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The second method is based on describing the CH of indi-
vidual components usually employing tight/extended formu-
lations. However, regardless of the derivation method, com-
putational intractability persists, in particular for general UC
settings and unit characteristics.

CH prices are also often called “minimum uplift” prices.
This characterization essentially refers to the minimization of
the total Lost Opportunity Costs (LOCs) in addition to what is
referred to as “Product Revenue Shortfall” (PRS) in [29]. For
brevity, we focus our discussion on LOCs, and refer the reader
to [29] for PRS. Notably, “uplift minimization” is directly
related to the duality gap between (1) and (2).

Compensating for LOCs, even for units that are offline as a
result of the UC solution, is a means to deter inefficient self-
scheduling. More specifically, given prices A, let us denote the
profit of unit ¢ by ¢;(x;,yi; \), where:

)= Newiy — fil(xi,¥i). 3)

teT

i(Xi, yis A

Unit ¢, following the solution of (1), assuming a market sched-
ule (xM, yM) and prices A, would gain ¢;(xM, yM; X). How-
ever, given prices A, had the unit optimally self-scheduled, i.e.,
had the unit solved the following profit maximization problem:

(x{,y75A) € argmax ¢4 (x;, i3 A), “)
(%i,y:)EZ;

the tentative profit would have been ¢;(x,y?; X). Hence, the
LOC for unit ¢, LOC;, is given by:

LOC; = ¢i(x,y7i ) — ¢i(xM, y M X). (5)

CH prices are complemented by minimal LOCs according to
(5) plus the PRS, to support the market solution by making
the unit indifferent between following the market schedule
(xM,yM) and self-scheduling (x7,y?).

III. D-W CHARACTERIZATION AND CG ALGORITHM

Consider an equivalent formulation of the UC problem (1),
using variable z; to describe a feasible schedule of unit i, for
the entire optimization horizon, i.e., z; := (x;,¥;) € Z;. In
a parenthesis, we note that stylized formulations of the UC
problem would describe it as follows:

Zfl x;), subject to: (1b),x; € Z;, Vi € Z,
€T

mln flx

considering x; as a feasible schedule, internalizing the discrete
(status) variables (y;) in the feasibility constraint set Z;, and
defining the cost function f;(-) so as to account for both
dispatch and commitment costs. Indeed, for a certain schedule,
the unit status and cost can be considered as endogenously
determined — see for instance [39]-[41] that relate to an older
work [42] for such formulations — among others. The main
reason for this parenthesis is that the above formulation —
which is equivalent to (1), provides a natural interpretation of
the proposed D-W characterization of the convex hull.
Suppose we make the assumption that the sets of fea-
sible schedules are finite but exponentially large. Such an
assumption can be thought of as the result of the numeric
(decimal) precision in the offered quantities, which implicitly

discretizes the problem. We note, however, that although this
assumption eases the description, it is not formally required
for our analysis; it suffices that the feasible sets are bounded
[33]. Hence, let n; € N; be a counter of unit ¢ feasible
schedules, which are contained in the set N;. Considering
the UC formulation (1), each variable z[ il corresponds to a
specific feasible schedule, denoted by (%", §1") and has
a cost denoted by ¢ [7“] = fi(x [”L],yi"@) Equivalently, a
feasible schedule is also determined by X “[7“ and c[ " We
will use the two representations 1nterchangeably to facilitate
the exposition.

Following the above, the UC problem can be expressed as:

ming(z) = Y @Ml (6a)
z i€T,n;EN;
subject to: M =Dy vt e T, (6b)
i€L,n; EN;
> oAM=, vier, (60)
nLEN
2 e 0,1y, VieZn €N (6d)

Solving (6), accounting for all feasible schedules, is equivalent
to solving (1). Objective function (6a) is equivalent to (la).
Constraint (6b) represents the power balance and is equivalent
to (1b). Of note that ¢ A["’] and {L‘[ t] are parameters. Constraint
(6¢) requires to select exactly one feasible schedule repre-
sented by the binary variable zl[ i, Equivalently, problem (6)
can be viewed as a set partitioning problem.

At a first glance, the effort of brute-force solving (6) would
seem hopeless, as it would require not only an exhaustive
enumeration of feasible schedules, but also the solution of a
huge integer problem — (6) is an integer linear programming
problem. That said, we naturally associate (6) with D-W
decomposition and CG — see e.g., [35]. However, solving
a large UC problem with CG does not yet seem promising —
see e.g., a recent work [43]. Fortunately, we remind the reader
that our goal is not to solve this integer problem, but the LD
(2). With this in mind, we recall a result which dates back
to the 70’s [32], that the LP relaxation of (6), solves the LD
(2); this is also clearly stated in [33], that Generalized LP —
a.k.a. D-W decomposition — solves the dual. Indeed, we know
that D-W decomposition or CG is essentially a cutting plane
method applied to the LD [44], which we find as particularly
instructive in our problem setting, hopefully enhancing the
intuition into the formation of CH prices.

Many approaches to CH pricing involve restrictions on the
form of the objective function [15] or reformulations of the UC
problem such as dynamic programming characterizations [45],
[46]. The D-W approach starts with a natural formulation,
which does not require any change in the UC functions or
constraints. This allows a wide degree of flexibility in defining
the UC problem. This representation allows us to characterize
the full CH [47]. Essentially, the same formulation is applied in
crew scheduling problems [35]. If we had to deal with the full
listing of all the feasible points, the computational problem
would be overwhelming. But the D-W method provides a
natural CG technique that uses sub-problems to produce what



is in practice a relatively small number of feasible points
adequate to characterize the solution of the CH relaxation.
The intuition is that the same approach would work for the
UC problem, without requiring any reformulations of the UC
model, but with the computational feasibility observed in the
related very large crew scheduling problems.

The solution of the LP relaxation of (6), employing a CG
algorithm, proceeds as follows. First, consider a subset of
feasible schedules for each unit ¢, say M(k) C N;, where k is
an iteration counter, i.e., j\/i(k) contains all feasible schedules
of unit ¢ available at iteration k. Using these schedules, a
Restricted Master Problem (RMP) at iteration k, RMP®) | is
formulated as follows:

RMP) - ming®(z) = > Ml gw
i€Z, n;eNH]
subject to: Y @l = Dy vt e T, AP, (70)
ieZ,nieN®
Soo=1vieT, -2, (30
niE.Afi(k)

with zz[m] >0,VieI, n; € ./\/'i(k), and )\Ek), wgk), the duals of
constraints (7b), (7c), respectively. Note that limiting the upper
bound to zz[nb} < 1 is enforced by (7c). Then, CG “generates”
new columns (feasible schedules) and adds them to the RMP,
as long as they have a negative reduced cost. The reduced cost
re(-) of feasible schedule (x;,y;) is given by:

) =Y Az = (8)

teT

Tci(x’iayl) fz Xz;}’?
Hence, at iteration k, feasible schedules with potential negative
reduced cost can be obtained by the solution of the following
sub-problem, for each unit 4:

Subz('k) : min hgk) (XiaYz) fz XuYz Z)\( Ti,t, (9a)
XiYi
teT
subject to: (xi,yi) € Zi, (9b)

where we dropped the constant term —ﬂfk) from the objective

function. If the schedule obtained by the solution of (9) has
a negative reduced cost, which is calculated using (8) —
essentially by adding back the term —wgk) to the objective
function value hl(-k), then a new column is added to the RMP
corresponding to this schedule. The RMP is solved again, and
the algorithm terminates when no new feasible schedule with
negative reduced cost can be found.

This is a standard CG algorithm. We only highlight some in-
teresting computational features. For the algorithm to proceed,
we need to find at least one column with a negative reduced
cost to update the duals. That said, sub-problem (9) does
not need to be solved to optimality in intermediate iterations,
but only at the end, to guarantee termination. Evidently, all
sub-problems can be solved in parallel, or we may tailor
the number of sub-problems solved at each iteration to the
available computational resources. Obviously, we will not
always be able to find negative reduced cost schedules at each
iteration for all units; this has been the reason that we did not

use superscript (k) instead of [n;] for the feasible schedule.
Assuming full parallelization, the computational time of each
iteration is dominated by the solution of the RMP, which is
an LP problem. The complexity of the unit specific constraints
appears only in the sub-problems, not the RMP. Using standard
UC formulations, the sub-problem is a small MILP, usually
very easy to solve. Note that we are not obliged to solve the
profit maximization problem with a MILP formulation; we
only need to find a negative reduced cost feasible schedule
regardless of the method. Nevertheless, a MILP formulation
would definitely facilitate the implementation in current ISO
Market Management Systems.

We further elaborate on the intuition that the CG algorithm
provides. Evidently, the RMP selects fractional feasible sched-
ules, in fact a convex combination of them — see constraint
(7c) that is often called a “convexity constraint” for a reason.
CG terminates by “shaping” the CH yielding the CH prices.
Indeed, had we asked a similar question as in [48] — “since
the CH is our ultimate desire, why don’t we just shape it?”
— the CG algorithm would have been a natural choice. It is
also evident that the sub-problem (9) is a profit maximization
problem, given prices AR compare with (3) and (4). The
reduced cost calculation has a natural interpretation, in the
spirit of [49], which reveals a key property of CH prices and
associated LOCs with respect to self-scheduling. When unit
i “is notified” tentative prices AF) at iteration k, the unit
“fictitiously” self-schedules, solving (9) and calculating the
tentative profit, ¢; (x5, y5; A, which equals —h{",
with some abuse of notation hz(-k denotes the optimal value of
(9). The dual —7r§k) represents the tentative profit of unit ¢, as
calculated by the RMP, i.e., given the prices A% If the unit
can do better by self-scheduling, i.e., if ¢;(x7,y?; )\(k)) >
—wz(k), then self-scheduling results in a negative reduced cost
— see (8). Practically, the algorithm terminates when the
profit-maximization problem yields a feasible schedule that
already exists in the RMP for all units, implying that for the
CH prices, aggregate LOCs are minimized, and the optimal
solution of the LD is reached.

where

IV. ILLUSTRATION ON STYLIZED EXAMPLES

This section employs the stylized examples from [29], as a
useful exercise, which aims at (i) illustrating the CG algorithm,
and (ii) providing intuition on the formation of CH prices
viewed through the lens of D-W decomposition. We refer
the reader to [29] for a detailed discussion of the CH price
properties that each example illustrates.

A. Example 1: 2-Gen, 1-Hour [29, Ex. 1]

Two generators, G1 and G2, serve a 35 MW load, in a single
period. G1 is online, with technical minimum and maximum
10 and 50 MW, respectively, and energy offer $50/MWh. G2
can be either offline or online and submits a block offer of 50
MW at $10/MWh. The MILP formulation is as follows:

MILP: min f = 50x; + 104,

Z1,T2,Y2

T1+T2 = 35,

(10a)

subject to: (10b)



10 < 21 < 50, ys € {0,1}. (10c)

T2 = 50y21
This example has only one feasible solution with G1 providing
35 MW, and MILP objective function value f* = $1750. The

CH price is $10/MWh, and G1 has $1000 LOC.

Next, we solve this example using CG. Consider trivial ini-
tial schedules: z[l] : A[l] =10, ¢ [ = = 500, and z[ I : [21} =0,
6[21] = 0. Assuming a slack (deﬁc1t) variable s for the energy
balance constraint, with penalty $1000/MWh, the initial RMP

is as follows:

RMPO . [lr]nlllll] g™ =500z + 028! + 10005, (11a)
2] 523 »S

subject to: 1028 4 020N 4+ 5 =35, A, (11b)

M=1,5a0 Al=1,540, 1o

with z[') 2l s > 0. The solution of RMP() yields duals
A = 1000, ﬂ” = —9500, and wél) = 0. For these values,
Sub™ :  min A =50z, — 1000z, = —950z,
10<z1 <50
yields 21 = 50, h{" = —47500, with rc{" = n{" — 7l =
—38000 < 0, hence 22 : 21 = 50, ¢/ = 2500, whereas

Subl!) min hY = 1025 — 10002, =

—990z4,
912:50y27y2€{071}
yields 7o = 50, yo = 1, h\" = —49500, with rel”) = n{M —
7" = —49500 < 0, hence zy -2l = 50, e = 500. The
RMP after adding these two new columns becomes:

RMP® : min g® = 5002{" + 250027 + 50025 + 1000s,

subject to: IOZEI] + 50z£2] + 50252] +5=235— A\,

(2)

[”+z£]_1 —>7r(2), zg]—!—zg] 1, = my

with 2/, 200 2 2B s > 0. The solution of RMP(®) now
yields A@ = 10, § ) = 400, and 7r£ ) = = 0. For these values,
Sub'? yields z; = 10, with h{? = 400, and rc{? = B —
7r§2) = 0 — note that a schedule with z; = 10 already exists in
the RMP — whereas Sub” yields héQ) = 0, for any feasible
schedule, and 7“052) = h22) - 7r§2) = 0. Since no feasible
schedule with negative reduced cost is found, CG terminates.
The CH che is A(Q $10/MWh The solution of RMP(?) is
F] = 0.5, and the value of the objective
functlon is g(z) = g = $75O Hence, the duality gap between
the MIP and the RMP is f* — g* = $1750 — $750 = $1000,
which represents the LOC to be paid to G1 (uplift). Note that
the maximum profit of G1 at the CH price would be derived
by x1 = 10, instead of 1 = 35, which is the MILP dispatched
quantity. Notably, this quantity was the optimal solution for
the G1 sub-problem when the algorithm terminated. On the
other hand, G2 has no LOC, since CH price equals its cost.

B. Example 2: Example 1 with Start-up Cost [29, Ex. 3]

This example adds to Example 1 a $100 start-up cost to
G2, i.e., fa(we,y2) = 10x9 4+ 100ys, yielding a CH price
equal to $12/MWh that corresponds to the average cost of
G2. Still, the only feasible solution is to dispatch G1 at 35
MW, and the MILP objective function value is f* = $1750.
Assuming same initial schedules, hence same RMP() duals,
we get 212+ 2% = 50, ¥ = 2500, and z§] - 2l = 50,

2 = 600. RMP®) yields duals A®) 12, 7 = 380 and

(2) = 0, for which no negative reduced cost schedule can
be found. The solution of RMP(?) (z variables) is the same
with Example 1, but the value of the objective function is
now g®) = ¢g* = $800. Hence, the duality gap is $950, also
representing the G1 LOC.

C. Example 3: 2-Gen, 2-Hour (linked) [29, Ex. 4]

This example considers 2 hours, with load 45 and 80
MW. G1 remains the same and should be online during both
hours. G2 has a 25 MW minimum, a 35 MW maximum, an
energy offer of $100/MWh, and should be either online or
offline during both hours. The MILP problem is formulated
as follows:

MILP: minf = 50211 + 5021 2 + 10029 1 + 100255, (12a)
xy

subject to:  x1,1 +x21 =45, 12+ 222 =80, (12b)
10 <211 <50, 10 <15 <50, (12¢)

25y2 < w21 < 35y2, 25y2 < w22 < 35y2, (12d)
y2 € {0,1}, (12e)

yielding 1,1 = 20, £12 = 50, 221 = 25, 222 =30, y2 =1
and MILP objective function value is f* = $9000.
Skipping the first CG steps, the last RMP is as follows:

RMP® : min @ = 100021") + 0237 + 5000217 + 7000257

+3000z£3] + 600027 + 10005, + 100055, subject to:

1028 4 502 4 3520 1 1028 4 25201 4 5; = 45,5 AP,

10241 + 50217 4 35202 4 50218 + 2520% 4 5, = 80, = ALY,
H+z”+z[] 1,%7753),z£1]+z£]+z£3]:1,%7%3),
with zgl], zgl], z?], z£2], z?], zgg], 51,52 > 0. RMP®) yields
duals A = 50, A = 135.714, ©®) = 4285.714, and
ég) = (0, for Wthh CG terminates. The solution of RMP(®) is
= 0.339, 21¥ = 0.661, and 2}] = 0.143, zf’] = 0.857, and
the value of the objective function is ¢(®) = ¢* = $8821.429.
Hence, the duality gap is $178.571, representing G2 LOC.

D. Example 4: Example 3 with non-linked Hours [29, Ex. 5]

This example considers the previous setting but as two
single-period problems. Equivalently, we can write the MILP
formulation, using (12) and replacing (12d)—(12e) with:
25y21 < w21 < 3by21, 20y22 < x22 < 35y22, and
Y2.1,Y2.2 € {0,1}. CG terminates with RMP(®) yielding duals
A Z 50, and A = 100, 71 = ~2500, and 1) = 0, and



a value of the objective function g(®) = ¢g* = $7750. Hence
the duality gap is $1250, representing G2 LOC. We leave this
example as an exercise to the interested reader.

V. MORE REALISTIC TEST CASES

In this section, we proceed to more realistic test cases.
In Subsection V-A, we review an example provided in [26],
including the “problematic” ramp constraints. In Subsection
V-B, we test a 24-hour UC formulation on an ISO-sized FERC
dataset [38] with about 1000 generators.

A. Ramp Constrained Example [26, Ex. 2]

This example includes 2 generators and a 3-hour horizon
with load 95, 100, and 130 MW. G1 has a maximum of
100 MW, and energy offer $10/MWh. G2 has a 20 MW
minimum, 35 MW maximum, energy offer $50/MWh, start-up
cost $1000, no-load cost $30, ramp rate 5 MW/hour, start-up
rate 22.5 MW/hour, shut-down rate 35 MW/hour, minimum
up/down times of 1 hour, and initially it is offline. The UC
3-binary formulation is provided below [26].

3

leI,llianf Z 10p1 ¢ + 30ug,; + 50p2,; + 1000v2 ), (13a)

’ t=1
subject to: D1t +p2e =Dy, 1<t<3,  (13b)
0<p <100, 1<t<3,  (13¢)
20u2,; < p2t < 3dugy, 1<t<3 (13d)
D2t — P2,t—1 < Dug r—1 + 22.5v9 4, <t<3, (3e)
DP2t—1 — D2t < Bugy +3bway, 2<t<3, (13
U — U -1 = Vo — Way, 1<tE<3,  (13g)
Vo SUugy, U2y < 1—uoy—1, 1<t<3,  (13h)

with py ¢, p2¢ > 0, and ug g, v 4, wa, € {0, 1}, V¢, represent-
ing the status, start-up and shut-down variables, respectively.
The optimal schedule is: p1; = 75, p12 = 75, p1,3 = 100,
and pa 1 = 20, pa 2 = 25, py 3 = 30, with f* = 7340.

The interesting feature of this example is related to the
ramping constraints, which has been a challenge for the appli-
cation of CH pricing. The IR of (13) yields a vector of prices
AR = (10,10,182.701), which deviate from the CH prices,
which we show to be A = (10, 10, 276). We note that [26]
reports Average Incremental Prices (AIC) prices obtained by
an extended formulation that yields A = (10, 10, 146.333),
while also noting that a numerical approximation using the
3-binary formulation would result in a very high price at hour
3, namely (10,10, 1161). Apparently, in this example, hour 3
is of interest, and obviously, the IR (whose objective function
value is $6464.55) is less tight compared to the LD (whose
value is shown to be $6975).

Applying CG, we obtain: (1) Initial columns: zgl] p[l] =

(0,0,0),¢ = 0; M ¢ pl = (0,0,0), [2] 0; RMP()
duals: A = (1000, 1000, 1000), = “) Y = 0. @)
New columns: 2 : pl = (100, 100, 100 %2] = 3000;
A pl = (22.5,275,325), ¢ = 5215 RMP® du.
als: A = (-970,0,1000), 7\ = 0,7? = —5460. (3)
New columns: zf’} : 13[13] = (0,0,100), 2[3 = 1000; 25’] :

$7,500
MILP: f* = $7,340
__| CH: q(10,10,276) = $6,975;
7,000 - .
$ Duality Gap = $365.
$6,500 I e
g i AIC 3-bin: q(10,10,1161) = $4,762.5;
| Gap = $2,577.5. -
$6,000 Y
/ Y IR:q(10,10,182.7) = $6,464.55; Wﬂ
$5,500 v Gap = $875.45. Dual function
1463 AIC extended: (10,10,146.3) = $6,202.25; q(10,10, '13)
$5,000 Gap = $1,137.75.
$4500 182.7 A3 ($/MWh) ~
T cbowowmowvwon OMOoOMNOLOMNONONONONONONOMNONONONOWVONOS
EEECERREE R R R PR R R
Fig. 1. Evaluation of g(\), for A = (10,10, A3), 90 < A3 < 1200.

pi) = (0,22.5,27.5),é = 3560; RMP®) duals: A®) =

(45 832, —25.832, 150. 589) (3’ = —14060, 7Y = 0. (4)
o, gl (100 0,100), & 44] = 2000; 25"

New columns: z; ]1
i = (0,0,225),¢ = 2155 RMPA) duals: A —

(10,10,276), 7Y = —26600, 7" = —4255. CG terminates
with 21 = 0.75,21% = 0.163,21" = 0.088, and 2? =
0.5, z£3 = 0.5; objective function value: ¢*) = ¢g* = $6975.

In Fig. 1, we illustrate the evaluation of the dual function
g(A) for A = (10,10, A3), with A3 ($/MWh) ranging from
90 — the marginal cost reported in [26] — to 1200, so as to
include the high price of 1161. The CH duality gap is $365,
and corresponds to LOC of G2. Notably, the IR gap is $875.45,
whereas the extended formulation AIC gap is $1137.75.

B. FERC Dataset Example

In this subsection, we test our approach on the PJM-like
FERC “summer” dataset [38]. UC formulations have been
extensively studied — see e.g., [50] for an overview of
MILP formulations, and our goal in this last example is not
to exhaustively include all features, but to provide evidence
on the scalability to real-sized problems. In fact, as it has
already become evident, a major strength of CG is that it can
easily accommodate any unit model, and all system constraints
currently present in electricity markets.

The employed UC MILP formulation is provided below.
Unless, otherwise mentioned, i € Z, ¢t € T, and b € {1,...B},
where B is the number of block offer steps.

min f Z |:CNLU,1t +CSU1}Z,5+CS Wit
p,u,v,w,s

i,

+Z szztb +C th} +Z Mp +MT3:)7 (14a)

subject to: Zpi,t +s?=DP W, (14b)

7
D rig+sp =Dy, W (14c)

7
Piay < Piptig, Vist,b, piy =3 piss, Vit (14d)

b

Poujy <piy < Piugg—riy, 1ip <R, Vit, (lde)
pit —Pit—1 < ROuis 1+ RVviy,  Vist, (14f)
pit-1—pii < RPuis + RPw;,, Vist, (l4g)



Us,t — Ui t—1 = Vit — Wi, Vi, t, (14h)
t

Y v Swy, Vit=[MUT,T), (140

t'=t—MUT;+1

t
>, wiw <l—uwy, Yit=[MDT,T], (14)
t’:thDTiJrl
DT;

Zui v =UT;, > iy =0, Vi, (14k)

t'=1 t'=1
with p; 46, Dt i, S5, 57 > 0, and w; g, v, wiy € {0,1},
Vi, t,b. In brief, (14a) minimizes the aggregate commitment
costs (no-load, C’iN L start-up, CZ.SU, and shut-down, C’iSD ),
dispatch costs (C?, is the cost of block offer b), plus the
reserve cost (reser7ve offer C7), plus a penalty cost related
to power/reserve deficit slacks sf , 8¢, with penalties M? and
MT". System constraints (14b)—(14c) include power balance
(demand DY) and reserve requirements (DF). Unit specific
constraint sets (14d)-(14k) are as follows. (14d) imposes
block offer b maximum, ]5“,, and defines p;; as the sum
of accepted block quantities p; ;. (14e) imposes minimum
and maximum capacity limits for power, P, P;, and maxi-
mum reserve capability R;. (14f)—(14g) impose ramp up/down
limits RZU s RZD , including start-up/shut-down, RfU, RZSD .
(14h) defines commitment variables, (14i)—(14j) impose the
minimum up/down time limits, MUT;, M DT;, whereas (14k)
enforces initial up/down times; UT; and DT; are the number
of hours the unit should remain online or offline, respectively,
depending on initial conditions (truncated at 7).
The RMP at iteration k, RMP(k), is formulated as:

ming® = 37 LN (v 4+ M),
t

z,S
[ TLL' N(k)
subject to: Z [)E”t‘]z +sP=DP vt AW
i,nle./\ff")
DR A VN TR
inieN

Vi — ng),

Z zz[n] =1

nq‘,GNi(k)

with 2" >0, Vi, n; e N, and s?, s7 > 0, Vt.
The unit ¢ sub-problem at iteration k, Subgk), is given by:

min hgk) = Z [CZNLui,t + C’iSUUi,t + Cl'SDwi,t
t

+Z (Cf,bpi,t,b) +C7 Ti,t:| — Z ()\p(k) ¢+ A (k). )7

b t

subject to umt s%)ecn‘ic ckonstramts (14d)—(14k). The reduced
cost is rc .

The dataset was adJusted to fit (14). It contains 1011 units,
each with up to 10-block energy offers and zero-priced reserve
offers. The 24-hour Df was set equal to forecasted demand,
and penalties MP and M" to 1000 and 900. Hot-type values
were used for C?Y | missing MUT; and M DT; were set to
1, UT; and DT; to 0, and all units initially online dispatched
at P,. RY and RP were reduced to half, R;U were set equal

RMP Obj.
0bj =3 Columns [Warm] &%Columns [Flat]
value Columns
k) _g* --RMP obj [Warm] —-RMP obj [Flat]
9 9 25000
$700
Duality Gap
$600 f*—g'=$435 20000
$500
15000
$400
$300 10000
$200
5000
$100
$o ERAERE R RN R RRRNRRRRRY 4 N4 0
1 35 7 91113151719 21232527 29 3133 3537 39 41 43 45 47 49 51 53 55
Iteration (k)

Fig. 2. CG iterations for flat and warm start. Left axis shows the RMP
objective function value as the difference of g(¥) from the optimal LD bound
g* = $32,169, 154.7. Right axis shows total columns at each iteration. UC
MILP solved with 0.01% optimality gap. For comparison purposes, note that
the objective function value of IR is $32,149,006.2 (less tight bound).

to P; plus half the RY, RSP equal to P, and R; equal to
30-min ramp up. CG was modeled in C, and solved on a Intel
Core i7-5500U 2.4GHz with 8§ GB RAM, using CPLEX 12.7.

In Fig. 2, we explore CG performance in terms of iterations,
when initiated from (i) the MILP UC solution — referred to
as a “Warm start,” and (ii) a “Flat start” with initial columns
assuming self-scheduling at zero prices. Note that current
practice normally performs the pricing run after the MILP
UC solution. However, CH pricing could be run in parallel
to the MILP UC problem, as it does not actually need its
solution! The results indicate that CG terminates in a few
tens of iterations for both cases. We do observe an anticipated
plateau at the beginning of the warm start, since CG initially
needs some columns to be able to “combine” them. The flat
start drops rapidly (high values due to deficit variable penalties
are truncated), but it takes a few more iterations to terminate.
The computational times in a sequential implementation are
dominated by the sub-problems; each iteration took about 14
seconds. However, we note that the RMP time was less than 1
second (usually significantly less), whereas each sub-problem
was solved in the order of 10 msec. It goes without saying that
parallel implementation of sub-problems would drive down
each iteration to practically the time to solve the RMP, i.e., an
LP problem; the estimated time for both cases assuming full
parallelization would be well below 1 minute. But even with
some simple partial parallelization, say e.g., solving a batch
of a dozen of sub-problems, the time per iteration would be
reduced by approximately a factor of 10.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this work, we compute CH prices, employing D-W de-
composition and CG. We balance the narrative with describing
the theory, enhancing the reader’s intuition with illustrative ex-
amples, and providing indications of computational tractability
and scalability to real-sized systems. The simplicity of CG, the
intuitive explanation of the problem “convexification” or CH
formation, and the amenable to parallelization structure using
standard UC and unit specific MILP formulations reinforce
the use of CG for explanation and computation. There was
no use of any of the known methods that may enhance CG
performance, although such strategies have been successful in



other applications. Ongoing work is directed in testing CG
with actual market data on a large US ISO application.

[1]

[6]

[7

—

[8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

M. C. Caramanis, R. R. Bohn, F. C. Schweppe. “Optimal spot pricing:
Practice and theory,” IEEE Trans. Power App. Syst., vol. PAS-101, no.
9, pp. 3234-3245, 1982.

F. C. Schweppe, M. C. Caramanis, R. D. Tabors, R. E. Bohn, “Spot
pricing of electricity,” Kluwer Academic Publishers, Boston, MA, 1988.
R. P. O’Neill, PM. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf, and
W. R. Stewart Jr., “Efficient market-clearing prices in markets with
nonconvexities,” Europ. J. Oper. Res., vol 164, no. 1, pp. 269-285, 2005.
P. Andrianesis, G. Liberopoulos, G. Kozanidis, and A. D. Papalexopou-
los, “Recovery mechanisms in day-ahead markets with non-convexities
— Part I: Design and evaluation methodology,” IEEE Trans. Power Syst.,
vol 28, no. 2, pp. 960-968, 2013.

——, “Recovery mechanisms in day-ahead markets with non-convexities
— Part II: Implementation and numerical evaluation,” [EEE Trans.
Power Syst., vol 28, no. 2, pp. 969-977, 2013.

W. W. Hogan and B. J. Ring, “On minimum-uplift pricing for electricity
markets,” Working Paper, John F. Kennedy School of Government,
Harvard University, 2003.

P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing electricity
prices and energy uplift,” Working Paper, John F. Kennedy School of
Government, Harvard University, 2007.

R. P. O’Neill, A. Castillo, B. Eldridge, and R. B. Hytowitz, “Dual
algorithm in ISO markets,” IEEE Trans. Power Syst., vol 32, no. 4,
pp. 3308-3310, 2017.

G. Liberopoulos and P. Andrianesis, “Critical review of pricing schemes
in markets with non-convex costs,” Oper. Res., vol. 64, no. 1, pp. 17-31,
2016.

Federal Energy Regulatory Commission, ‘“Price formation in organized
wholesale electricity markets,” Docket No. AD14-14-000, Dec. 2014.
C. Wang, P. B. Luh, P. Gribik, T. Peng, and L. Zhang, “Commitment
cost allocation of fast-start units for approximate extended locational
marginal prices,” IEEE Trans. Power Syst., vol 31, no. 6, pp. 4176—
4184, 2016.

Y. Chen, and C. Wang, “Enhancements of extended locational marginal
pricing — Advancing practical implementation,” Midcontinent Indepen-
dent System Operator, Nov. 2017.

PJM, “Important concepts from price formation education session 2:
Alternative pricing frameworks,” 2018.

Midcontinent Independent System Operator, “ELMP III white paper I,
R&D report and design recommendation on short-term enhancements,”
Jan. 31, 2019.

H. Chao, “Incentive for efficient pricing mechanism in markets with
non-convexities,” J. Reg. Econ., vol 56, pp. 33-58, 2019.

R. P. O’Neill, “Nonconvex electric power auction markets: market
efficiency and pricing,” presented at INFORMS Annual Meeting 2020.
C. Wang, P. B. Luh, P. Gribik, T. Peng, and L. Zhang, “Commitment
cost allocation of fast-start units for approximate extended locational
marginal prices,” in IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4176—
4184, 2016.

C. Wang, P. B. Luh, P. Gribik, L. Zhang, and T. Peng, “A subgradient-
based cutting plane method to calculate convex hull market prices,” in
Proc. 2009 IEEE PES GM,, Calgary, AB, Canada, 26-30 July 2009.
G. Wang, U. V. Shanbhag, T. Zheng, E. Litvinov, and S. Meyn, “An
extreme-point subdifferential method for convex hull pricing in energy
and reserve markets — Part I: Algorithm structure,” IEEE Trans. Power
Syst., vol 28, no. 3, pp. 2111-2120, 2013.

——, “An extreme-point subdifferential method for convex hull pricing
in energy and reserve markets — Part II: Convergence analysis and
numerical performance,” IEEE Trans. Power Syst., vol 28, no. 3, pp.
2121-2127, 2013.

N. Ito, A. Takeda and T. Namerikawa, “Convex hull pricing for de-
mand response in electricity markets,” in Proc. IEEE SmartGridComm,
Vancouver, BC, 21-24 Oct. 2013.

B. Hua and R. Baldick, “A convex primal formulation for convex hull
pricing,” IEEE Trans. Power Syst., vol 32, no. 5, pp. 3814-3823, 2017.
M. Garcia, H. Nagarajan, and R. Baldick, “Generalized convex hull
pricing for the AC optimal power flow problem,” IEEE Trans. Control
Netw. Syst., vol. 7, no. 3, pp. 1500-1510, 2020.

Z. Yang, T. Zheng, J. Yu, and K. Xie, “A unified approach to pricing
under nonconvexity,” IEEE Trans. Power Syst., vol 34, no. 5, pp. 3417-
3427, 2019.

[25]

[26]

[27]

(28]

[29]

[30]

[31]
(32]

[33]

[34]

(35]

(36]

(371
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Y. Yu, Y. Guan, and Y. Chen, “An extended integral unit commitment
formulation and an iterative algorithm for convex hull pricing,” IEEE
Trans. Power Syst., vol 35, no. 6, pp. 43354346, 2020.

Y. Chen, R. O’Neill, and P. Whitman, “A Unified approach to solve
convex hull pricing and average incremental cost pricing with large
system study,” Working Paper, 2020.

C. Alvarez, F. Mancilla-David, P. Escalona, and A. Angulo, “A
Bienstock-Zuckerberg-based algorithm for solving a network-flow for-
mulation of the convex hull pricing problem,” IEEE Trans. Power Syst.,
vol 35, no. 3, pp. 2108-2114, 2020.

B. Knueven, J. Ostrowski, A. Castillo, and J.-P. Watson, “A computation-
ally efficient algorithm for computing convex hull prices,” SAND2019-
10896 J, Sandia National Laboratories, Albuquerque, NM, Sep. 2019.
D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull
pricing in electricity markets: Formulation, analysis, and implementation
challenges,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4068-4075,
2016.

P. Andrianesis and G. Kozanidis, “A multi-stage column generation
solution approach for the bidline aircrew scheduling problem,” in Proc.
3rh Intl. Symp. Oper. Res., Volos, Greece June 26-28, 2014.

G. B. Dantzig and P. Wolfe, “Decomposition Principle for Linear
Programs,” Oper. Res., vol. 8, no. 1, pp. 101-111, 1960.

A. M. Geoffrion, “Lagrangian relaxation for integer programming,”
Mathem. Program. Study, pp. 82—114, 1974.

T. L. Magnanti, J. F. Shapiro, and M. H. Wagner, “Generalized linear
programming solves the dual,” Manag. Sci., vol. 22, no. 11, pp. 1195—
1203, 1976.

A. Manne, H. Chao, and R. Wilson, “Computation of competitive
equilibria by a sequence of linear programs,” Econometrica, vol. 48,
no. 7, pp. 1595-1615, 1980.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsebergh,
and P. H. Vance, “Branch-and-Price: Column generation for solving huge
integer programs,” Oper. Res., vol. 46, no. 3, pp. 316-329, 1998.

F. Vanderbeck, “On Dantzig-Wolfe decomposition in integer program-
ming and ways to perform branching in a branch-and-price algorithm,”
Oper. Res., vol. 48, no. 1, pp. 111-128, 2000.

M. E. Liibbecke and J. Desrosiers, “Selected Topics in Column Gener-
ation,” Oper. Res., vol. 53, no. 6, pp. 1007-1023, 2005.

E. Krall, M. Higgins, and R. P. O’Neill, “RTO unit commitment test
system,” FERC Staff Report, 2012.

S. Feltenmark and K. C. Kiwiel, “Dual applications of proximal bundle
methods, including Lagrangian relaxation of nonconvex problems,”
SIAM J. Optim., vol. 10, no. 3, pp. 697-721, 2001.

C. Lémarechal, “The omnipresence of Lagrange,” Ann. Oper. Res., vol.
153, pp. 9-27, 2007.

J. P. Luna, C. Sagastizabal, and P. J. S. Silva, “A discussion on electricity
prices, or the two sides of the coin,” 2020, http://www.optimization-
online.org/DB_HTML/2020/07/7904.html.

D. P. Bertsekas, G. S. Lauer, N. R. Sandell, and T. A. Posberg, “Optimal
short-term scheduling of large-scale power systems,” IEEE Trans. Aut.
Control, vol. 28, pp. 1-11, 1983.

N. Dupin, “Column generation for the discrete UC problem with min-
stop ramping constraints,” I[FAC PapersOnLine, vol 52, no. 13, pp. 529—
534, 2019.

D. P. Bertsekas, 2016. Nonlinear Programming. Third Edition. Athena
Scientific, Belmont, MA.

B. Knueven, J. Ostrowski, and J. Wang, “The ramping polytope and cut
generation for the unit commitment problem,” INFORMS J. Comput.,
vol. 30, no. 4, pp. 739-749, 2018.

T. Bacci, A. Frangioni, C. Gentile, and K. Tavlaridis-Gyparakis,
“New MINLP formulations for the unit commitment problems
with  ramping  constraints,” 2019,  http://www.optimization-
online.org/DB_HTML/2019/10/7426.html.

J. E. Falk, “Lagrange multipliers and nonconvex programs.” SIAM J.
Control, vol. 7, no. 4, pp. 534—545, 1969.

M. Bergner, A. Caprara, F. Furini, M. E. Liibbecke, E. Malaguti, and
E. Traversi. “Partial Convexification of General MIPs by Dantzig-Wolfe
Reformulation,” in O. Giinliikk, G. J. Woeginger (eds) Integer Pro-
gramming and Combinatoral Optimization. Lecture Notes in Computer
Science, vol. 6655. Springer, Berlin, Heidelberg, 2011.

W. J. Baumol and T. Fabian, “Decomposition, pricing for decentraliza-
tion and external economies,” Manag. Sci., vol. 11, no. 1, pp. 1-32,
1964.

B. Knueven, J. Ostrowski, and J.-P. Watson, “On mixed-integer pro-
gramming formulations for the unit commitment problem,” INFORMS
J. Comput., 2020, https://doi.org//10.1287/ijoc.2019.0944.



