
MEMORANDUM

DATE: December 26, 1994, Revised 12/9/96; Revised 9/8/98

TO: File

FROM: Bill Hogan

SUBJ: DC Optimal Power Flow Model, V. 3.0 through V. 3.06

This note summarizes the assumptions and formulation behind the GAMS
implementation of version 3.0 of the DC optimal power flow model suitable for testing
illustrative examples of electric network power flows and prices. The discussion covers the
development of the DC load flow model in terms of a nonlinear program that yields the loads,
flows, and bus prices for an optimal solution that is also a market equilibrium under the
appropriate competitive conditions.

DC LOAD FLOW MODEL FOR MWs

This summary of the "DC Load" model follows almost exactly the development in
Schweppe et al. with minor modifications suitable for use in an optimization model.1 Let:

zPijk = Real power flowing from bus i to bus j along line k. Then

1. zPijk = Gk[V i
2 - ViVjcos(δi - δj)] + ΩkViVjsin(δi - δj),

where,

2. Gk = Rk/(Rk
2 + Xk

2),

and

3. Ωk = Xk/(Rk
2 + Xk

2).

The line resistance is Rk and the reactance is Xk. Hereδj = Voltage phase angle at bus j, and

1 F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R.E. Bohn, Spot Pricing of Electricity, Kluwer
Academic Publishers, Norwell, MA, 1988, Appendices A and D. The "DC Load" flow refers to the real power half
of the nonlinear AC load flow model. Under the maintained assumptions there is a weak link between the reactive
power and real power halves of the full problem. And the real power flow equations have the same general form
as the direct current flow equations in a purely resistive network; hence the name "DC Load Flow."
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Vi = Voltage magnitude at bus i.

Losses are given by

4. LPk = zPijk + zPjik ,

Hence,

5. LPk = Gk[V i
2 + Vj

2 - 2ViVjcos(δi - δj)] .

Now if δi - δj is small, then

6. cos(δi - δj ) ≈ 1 - (δi - δj)
2/2 .

Assuming that this is a per unit system2 where Vi ≈ Vj ≈ 1, we have,

7. LPk ≈ Gk(δi - δj)
2 .

As an approximation to the flows we can also assumeδi - δj is small and use the approximations

8. cos(δi - δj) ≈ 1

and

9. sin(δi - δj) ≈ (δi - δj) ,

in which case with Vi ≈ Vj ≈ 1 we have3

10. zPijk ≈ Ωk(δi - δj) .

Then combined with the line loss approximation we have,

11. LPk = GkzPk
2/Ωk

2 ,

2 Per unit refers to the common scaling of the power flow equations to a reference value for two of the
three factors of voltage, current and power. The third reference value is determined by the two others in order to
satisfy the power flow equations. See A. R. Bergen, Power Systems Analysis, Prentice Hall, Englewood Cliffs, New
Jersey, 1986, chapter 5.

3 This approximation also requires that Gk<<Ωk, which is appropriate for transmission lines. Otherwise
we need to attend to the percentage differences in the voltages.
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where in (11) for the losses approximation we have adopted the notation

12. zPijk ≈ -zPjik ≈ zPk .

Let

nB = Number of buses,

nL = Number of lines,

A = nL x nB Network incidence matrix with elements of 0, 1, -1 corresponding
to the network interconnections. If link k originates at bus i and
terminates at bus j, then aki = 1 = -akj.

yP = g - d = nB Vector of real bus injections, generation minus demand,

zP = nL Vector of line real power flows,

δ = nB Vector of voltage angles relative to the swing bus where by definition
for the swing bus,δswing=0,

Ω = Diagonal matrix of the elementsΩk ,

G = Diagonal matrix of the elements Gk ,

R = Diagonal matrix of the elements Gk/Ωk
2 .4

Then, by conservation of flow in and out of a bus

13. yP = AtzP ,

and by (10)

14. zP = ΩAδ .

Hence,

4 Note that if Xk >> Rk then Gk/Ωk
2 ≈ Rk and the matrix R becomes the diagonal matrix of resistances.

This approximation is the one developed in Schweppe et al., but the alternative applied here seems a better
approximation without any loss of simplicity.
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15. yP = AtΩAδ .

Then from (11), the approximation of losses is

16. LP = zP
tRzP .

This formulation provides the foundation needed for the optimization model.
Schweppe et al. carry the approximation forward to the corresponding matrix solutions for losses
and prices as a function of the net loads. This last step requires an explicit matrix inversion
which is implicit in the optimization solution.

OPTIMAL POWER FLOW MODEL

With the above simplifications, the optimal power flow model can be expressed as a
nonlinear optimization problem. Suppose that we have

B = Benefit function defined on demand d, typically calculated as the area
under the bus demand curves;

C = Cost function defined on generation g, typically calculated as the area
under the bus supply curves;

zmin, zmax = The lower and upper bounds on the real power line flows;

Uint, Wint = Matrices defining the line flows and bus loads included in an interface
nomogram limit;

Umin,Umax= The lower and upper limits on the interface constraints.

Then the optimal power flow problem can be defined as:

Max B(d) - C(g) (Net Benefits)
d,g,y,zp,δ

subject to:

17. g-d = y , (Net Input Balance)

18. y = Atz , (Network Balance)

19. zP = ΩAδ , (Line Flows)
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20. δswing = 0 , (Swing Bus Angle)

21. zmin ≤ zP ≤ zmax , (Line Thermal Limits)

22. Umin ≤ UintzP - Winty ≤ Umax . (Interface Limits)

This model consists of linear constraints and a nonlinear objective function. If the cost
function includes only the area under the supply curve, then model gives the optimal dispatch
ignoring losses.

The GAMS implementation in version 3.06 assumes linear supply and demand curves
that are independent across buses. Because there can be more than one supply or demand at a
bus, with upper and lower limits, it is possible to create piecewise linear curves.

In any event, the optimal dual variables for the network balance constraints (17) yield
the optimal generation and load prices at the buses.

The original Schweppe formulation assumed zero losses for the approximation of the
flows, but calculated prices using a variant of (7) to determine the marginal losses. In this
formulation, if there is no limit to generation at the swing bus and losses are included in the cost
function as an additional load at the swing bus, with LP = zP

tRzP, then the model solves the DC
load model and attempts to minimize for all costs including losses. The losses would not affect
the flows, but the prices would be the Schweppe prices. In the event that the swing bus has
limited generation (i.e., a finite price elasticity), then the choice of the swing bus could affect the
dispatch and the prices.

An alternative loss formulation appears first in version 3.06. Here the line flows are
modeled as in (19). However, equation (18) for bus loads is modified to include one-half the
losses for every line flowing in or out of the bus, taken from (11). This makes the constraints
non-linear, which appears to have no effect on the ability of the GAMS-MINOS implementation
to find optimal solutions for the test problems. This formulation with losses affects the flows
and the dispatch, with the nodal balance including losses at each bus. However, this formulation
makes the prices and the dispatch independent of the choice of the swing bus, even in the with
losses formulation.

As always, the decomposition of prices into generation, losses and congestion depends
on the choice of the swing bus, which is used as the reference price bus. Before version 3.06,
the price decomposition exploited the special linear structure of the Schweppe assumptions. The
nonlinear formulation with losses at each bus requires a more general approach. In order to
calculate the decomposition, version 3.06 solves a related problem in order to determine the price
of generation and losses. In essence, we fix generation and demand at the optimal solution
everywhere but the swing bus, drop constraint equations in (21) and (22), and set the objective
function price at the reference bus price for load and generation at the swing bus, which is the
only slack bus. The price elsewhere is set at a high number. This problem has only one feasible
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dispatch, and the corresponding dual solution gives the prices for generation and losses only.
Subtracting these from the original bus prices gives the cost of congestion relative to the
reference price at the swing bus.

GAMS IMPLEMENTATION

The GAMS implementation consists of several generic files for controlling the model
input and output:

In the GAMS386 directory:

GAMS: The GAMS386 system located in an appropriate directory to
allow execution from another directory.

In the local directory:

DCMAIN.GMS: The main program that implements the model, calls the
MINOS solver, and prepares the output reports.

DCGAMS.BAT A batch file that copies the case data to an input file, calls
GAMS386, retrieves the output to be saved in the case output
file, and displays the results on the screen using any
convenient text editor.

case.MOD A GAMS style file that includes all the tables and so on for
the particular "case" being run. The user changes the tables
and parameters in this file to define the MODel and associated
input assumptions.

case.PUT The GAMS outPUT file that contains the results for the "case"
being run.

Once the data have been defined in the appropriate model file "case.MOD", the
command to execute the run is:

C: > DCGAMS case



7

EXAMPLE INPUT AND OUTPUT FILES

The network shown in Figure 1 provides an example of the application of the DC
optimal power flow model.

Here there is one interface constraint plus thermal limits on two individual lines. The
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interface constraint involves only lines but no buses, and in any event is not binding in this case.
The IPP at bus "L" has bid in a must run plant at 25 MW, having arranged a corresponding sale
to the Yellow distribution company at bus "V". Were it not for the IPP sale, more power could
be taken from the inexpensive generators at bus "P" and at bus "A". However, because of the
effects of loop flow, these plants are constrained at less than their maximum output, and there
are different prices applicable at buses "D", "M", "N", and "X".



8

The following is the input file DEMO.MOD for this network:

$Title -- DC Optimal Dispatch Model for Demonstration Network

$OFFSYMXREF
option sysout = on;
$onmulti
* allows multiple redefinition of tables

SCALAR
Swing Select the index of the swing bu s / 1 /
WITHLOSS Set to one for losses and zero for no losse s / 0 /

;

SETS
* The following parameters must be set to describe the network
* Bus names should be a maximum of 8 characters

P Players / 1*8 /
N Buses

/
A,B,C,D,L,P,M,N,V,W,X,Y,Z
/

* Index: A-1,B-2,C-3,D-4,L-5,P-6,M-7,N-8,V-9,W-10,X-11,Y-12,Z-13

M Links / 1*13 /
G Generators / 1*8 /
L Loads / 1*3 /
INT Interface Constraints /1*1/
IntZRows Number of links included in interface constraints /1*2/
IntYRows Number of buses included in interface constraints /1*1/

* The column data are fixed and set up the tables below

GenCols Number of Columns in GenData / 1*6 /
LoadCols Number of Columns in LoadData / 1*6 /
LinkCols Number of Columns in LinkData / 1*6 /
IntZCols Number of Columns in IntZData / 1*3 /
IntYCols Number of Columns in IntYData / 1*3 /
IntUCols Number of Columns in IntUData / 1*2 /

;

Table LinkData(M,LinkCols)
* Column 1: From bus index
* Column 2: To bus index
* Column 3: Resistance
* Column 4: Reactance
* Column 5: Minimum flow
* Column 6: Maximum flow

1 2 3 4 5 6
1 1 4 0.00005 0.00025 -1000 1000
2 2 4 0.00005 0.00025 -1000 1000
3 3 4 0.00005 0.00025 -1000 1000
4 4 7 0.00005 0.00025 -1000 1000
5 4 8 0.00005 0.00025 -1000 1000
6 7 11 0.00005 0.00025 -90 90
7 8 11 0.00005 0.00025 -90 90
8 12 11 0.00005 0.00025 -1000 1000
9 11 10 0.00005 0.00025 -1000 1000
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10 13 11 0.00005 0.00025 -1000 1000
11 5 7 0.00005 0.00025 -1000 1000
12 11 9 0.00005 0.00025 -1000 1000
13 6 8 0.00005 0.00025 -1000 1000
;

Table GenData(G,GenCols)
* Column 1: Price at which supply is zero at a given bus.
* Column 2: Inverse of slope of supply curve (dQ/dP) at a bus. ENTER INF
* FOR HORIZONTAL AND ZERO FOR VERTICAL SUPPLY CURVES.
* Column 3: Minimum supply at a given bus.
* Column 4: Maximum supply at a given bus.
* Column 5: Index to bus number.
* Column 6: Index of player owning generation.

1 2 3 4 5 6
1 3.5 inf 0 100 1 1
2 4 inf 0 100 1 2
3 2 inf 0 100 2 3
4 5 inf 0 50 12 4
5 7 inf 0 50 12 5
6 3 inf 0 100 13 6
7 0 inf 25 25 5 7
8 3.25 inf 0 250 6 8
;

Table LoadData(L,LoadCols)
* Column 1: Price at which demand is zero at a given bus. ANY NUMBER CAN
* BE ENTERED FOR VERTICAL DEMAND CURVES.
* Column 2: Inverse of slope of demand curve (dQ/dP) at a bus.
* ENTER -INF FOR HORIZONTAL AND ZERO FOR VERTICAL DEMAND CURVES.
* Column 3: Minimum load at a given bus. MIN LOAD SHOULD EQUAL MAX LOAD FOR
* VERTICAL DEMAND CURVES.
* Column 4: Maximum load at a given bus.
* Column 5: Index to bus number.
* Column 6: Index of player owning load.

1 2 3 4 5 6
1 257 -0.1 0 95 9 1
2 3207 -0.1 0 390 10 2
3 100 -inf 25 25 3 2
;

Table IntZData(IntZRows,IntZCols)
* Column 1: Index of interface constraint.
* Column 2: Index of link included in interface constraint.
* Column 3: Coefficient for link in interface constraint.

1 2 3
1 1 4 1
2 1 5 1
;

Table IntYData(IntYRows,IntYCols)
* Column 1: Index of interface constraint.
* Column 2: Index of bus included in interface constraint.
* Column 3: Coefficient for bus in interface constraint.

1 2 3
1 1 1 0
;
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Table IntUData(INT,IntUCols)
* Column 1: Lower bound on the interface constraint.
* Column 2: Upper bound on the interface constraint.

1 2
1 -2000 150
;

* With these tables, the model links to the main GAMS program
* for implementing the DC optimal power flow computation.

$include dcmain.gms

The command for executing this input file is:

DCGAMS DEMO

With this command, the GAMS-MINOS system finds the optimal dispatch and produces the
output file DEMO.PUT:

DCMODEL V3.06: I:\GAMS225\HOGLIB\DCMODL3\DEMO.GMS ON 09/06/98 AT 15:48:10

Note: This simplified DC model is designed to illustrate constrained network
dispatch and pricing. However, it does not account for the spinning
reserve or contingency constraints needed for a full analysis of a
security constrained dispatch and the true (lower) system capacity.

Dispatch Ignoring Losses
Buses Gen Load Net Input Price

1 A 55.00000 0.00000 55.00000 3.50000
2 B 100.00000 0.00000 100.00000 3.50000
3 C 0.00000 25.00000 -25.00000 3.50000
4 D 0.00000 0.00000 0.00000 3.50000
5 L 25.00000 0.00000 25.00000 3.75000
6 P 25.00000 0.00000 25.00000 3.25000
7 M 0.00000 0.00000 0.00000 3.75000
8 N 0.00000 0.00000 0.00000 3.25000
9 V 0.00000 25.00000 -25.00000 7.00000

10 W 0.00000 320.00000 -320.00000 7.00000
11 X 0.00000 0.00000 0.00000 7.00000
12 Y 65.00000 0.00000 65.00000 7.00000
13 Z 100.00000 0.00000 100.00000 7.00000

Price Decomposition Relative to Swing Bus at A
Buses Gen&Loss Congestion Price

1 A 3.50000 0.00000 3.50000
2 B 3.50000 0.00000 3.50000
3 C 3.50000 0.00000 3.50000
4 D 3.50000 0.00000 3.50000
5 L 3.50000 0.25000 3.75000
6 P 3.50000 -0.25000 3.25000
7 M 3.50000 0.25000 3.75000
8 N 3.50000 -0.25000 3.25000
9 V 3.50000 3.50000 7.00000

10 W 3.50000 3.50000 7.00000
11 X 3.50000 3.50000 7.00000
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12 Y 3.50000 3.50000 7.00000
13 Z 3.50000 3.50000 7.00000

Lines From To Min Zp Max ZloMult ZupMult
1 A D -1000.00 55.00000 1000.00 0.000 0.000
2 B D -1000.00 100.00000 1000.00 0.000 0.000
3 C D -1000.00 -25.00000 1000.00 0.000 0.000
4 D M -1000.00 65.00000 1000.00 0.000 0.000
5 D N -1000.00 65.00000 1000.00 0.000 0.000
6 M X -90.00 90.00000 90.00 0.000 3.000
7 N X -90.00 90.00000 90.00 0.000 4.000
8 Y X -1000.00 65.00000 1000.00 0.000 0.000
9 X W -1000.00 320.00000 1000.00 0.000 0.000
10 Z X -1000.00 100.00000 1000.00 0.000 0.000
11 L M -1000.00 25.00000 1000.00 0.000 0.000
12 X V -1000.00 25.00000 1000.00 0.000 0.000
13 P N -1000.00 25.00000 1000.00 0.000 0.000

Interface Lower Upper
Trans. Interface Mult, 1 0.00000 0.00000

Individual Generator Output:
Generator Bus Index Output

1 A 1 54.00000
2 A 1 0.00000
3 B 2 0.00000
4 Y 12 0.00000
5 Y 12 0.00000
6 Z 13 0.00000
7 L 5 25.00000
8 P 6 0.00000

Total Generation Cost, $ 11287.50000

Total Generation, MW 370.00000

Total Load Value, $ 5200400.00000

Total Load, MW 370.00000

Total Losses, MW 0.00000

Total Surplus, $ 5189112.50000

Total Generation Pmts, $ 18724.99986

Total Load Pmts, $ 25024.99971

Total Rents, $ 6299.99985

* LoadData:
* Column 1: Price at which demand is zero at a given bus.
* Column 2: Inverse of slope of demand curve (dQ/dP) at a bus.
* Column 3: Minimum load at a given bus.
* Column 4: Maximum load at a given bus.
* Column 5: Index to bus number.
* Column 6: Index of player owning load.

1 2 3 4 5 6
1 257.00 -0.10 0.00 95.00 9 1
2 3207.00 -0.10 0.00 390.00 10 2
3 100.00 -INF 25.00 25.00 3 2
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* GenData:
* Column 1: Price at which supply is zero at a given bus.
* Column 2: Inverse of slope of supply curve (dQ/dP) at a bus.
* Column 3: Minimum supply at a given bus.
* Column 4: Maximum supply at a given bus.
* Column 5: Index to bus number.
* Column 6: Index of player owning generation.

1 2 3 4 5 6
1 3.50 +INF 0.00 100.00 1 1
2 4.00 +INF 0.00 100.00 1 2
3 2.00 +INF 0.00 100.00 2 3
4 5.00 +INF 0.00 50.00 12 4
5 7.00 +INF 0.00 50.00 12 5
6 3.00 +INF 0.00 100.00 13 6
7 0.00 +INF 25.00 25.00 5 7
8 3.25 +INF 0.00 250.00 6 8

* LinkData:
* Column 1: From bus index
* Column 2: To bus index
* Column 3: Resistance
* Column 4: Reactance
* Column 5: Minimum flow
* Column 6: Maximum flow

1 2 3 4 5 6
1 1 4 0.00005 0.00025 -1000.0 1000.0
2 2 4 0.00005 0.00025 -1000.0 1000.0
3 3 4 0.00005 0.00025 -1000.0 1000.0
4 4 7 0.00005 0.00025 -1000.0 1000.0
5 4 8 0.00005 0.00025 -1000.0 1000.0
6 7 11 0.00005 0.00025 -90.0 90.0
7 8 11 0.00005 0.00025 -90.0 90.0
8 12 11 0.00005 0.00025 -1000.0 1000.0
9 11 10 0.00005 0.00025 -1000.0 1000.0
10 13 11 0.00005 0.00025 -1000.0 1000.0
11 5 7 0.00005 0.00025 -1000.0 1000.0
12 11 9 0.00005 0.00025 -1000.0 1000.0
13 6 8 0.00005 0.00025 -1000.0 1000.0

* IntZData:
* Column 1: Index of interface constraint.
* Column 2: Index of link included in interface constraint.
* Column 3: Coefficient for link in interface constraint.

1 2 3
1 1 4 1.00000
2 1 5 1.00000

* IntYData:
* Column 1: Index of interface constraint.
* Column 2: Index of bus included in interface constraint.
* Column 3: Coefficient for bus in interface constraint.

1 2 3
1 1 1 0.00000

* IntUData:
* Column 1: Lower bound on the interface constraint.
* Column 2: Upper bound on the interface constraint.
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1 2
1 -2000.00000 150.00000

--------------------------------------------------------------------------

PLAYER 1

Generation

Price Avg. Cost Total Quasi-
Bus C/KWH MWH Revenue C/KWH Cost Rent
A 3.50 54.00 1890 3.50 1890 0

---------- ---------- ---------- ----------
54.00 1890 1890 0

Load

Price
Bus C/KWH MWH Cost
V 7.00 25.00 1750

---------- ----------
25.00 1750

--------------------------------------------------------------------------

PLAYER 2

Generation

Price Avg. Cost Total Quasi-
Bus C/KWH MWH Revenue C/KWH Cost Rent
A 3.50 0.00 0 4.00 0 0

---------- ---------- ---------- ----------
0.00 0 0 0

Load

Price
Bus C/KWH MWH Cost
W 7.00 320.00 22400
C 3.50 25.00 875

---------- ----------
345.00 23275

--------------------------------------------------------------------------

PLAYER 3

Generation

Price Avg. Cost Total Quasi-
Bus C/KWH MWH Revenue C/KWH Cost Rent
B 3.50 0.00 0 2.00 0 0

---------- ---------- ---------- ----------
0.00 0 0 0

Load

Price
Bus C/KWH MWH Cost

---------- ----------
0.00 0
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--------------------------------------------------------------------------

PLAYER 4

Generation

Price Avg. Cost Total Quasi-
Bus C/KWH MWH Revenue C/KWH Cost Rent
Y 7.00 0.00 0 5.00 0 0

---------- ---------- ---------- ----------
0.00 0 0 0

Load

Price
Bus C/KWH MWH Cost

---------- ----------
0.00 0

--------------------------------------------------------------------------

PLAYER 5

Generation

Price Avg. Cost Total Quasi-
Bus C/KWH MWH Revenue C/KWH Cost Rent
Y 7.00 0.00 0 7.00 0 0

---------- ---------- ---------- ----------
0.00 0 0 0

Load

Price
Bus C/KWH MWH Cost

---------- ----------
0.00 0

--------------------------------------------------------------------------

PLAYER 6

Generation

Price Avg. Cost Total Quasi-
Bus C/KWH MWH Revenue C/KWH Cost Rent
Z 7.00 0.00 0 3.00 0 0

---------- ---------- ---------- ----------
0.00 0 0 0

Load

Price
Bus C/KWH MWH Cost

---------- ----------
0.00 0

--------------------------------------------------------------------------

PLAYER 7

Generation
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Price Avg. Cost Total Quasi-
Bus C/KWH MWH Revenue C/KWH Cost Rent
L 3.75 25.00 938 0.00 0 938

---------- ---------- ---------- ----------
25.00 938 0 938

Load

Price
Bus C/KWH MWH Cost

---------- ----------
0.00 0

--------------------------------------------------------------------------

PLAYER 8

Generation

Price Avg. Cost Total Quasi-
Bus C/KWH MWH Revenue C/KWH Cost Rent
P 3.25 0.00 0 3.25 0 0

---------- ---------- ---------- ----------
0.00 0 0 0

Load

Price
Bus C/KWH MWH Cost

---------- ----------
0.00 0



16

FURTHER EXAMPLES

The example network can be modified to illustrate a range of price effects induced by
the interaction of loop flow and constraints. In Figure 2, every line in the main loop is
constrained by a thermal limit of 90 MW. With these constraints, an added load of 150 MW at
bus "L" alters the flows for the market equilibrium. In this case, the combined effect of the
increased load and the constraints leads to a price of 8.25¢ per kWh at bus "L". This price is
higher than the 7¢ marginal running cost of the old gas plant at bus "Y", the most expensive
plant in the system. Apparently the load at bus "L" causes an expensive rearrangement of the
dispatch throughout the network.

New Gen.

125 M
W

P

Orange LDC Red LDC Blue LDC
Green LDC

New Gas Old Gas

70 MW

Old Nuke

A

B

C

D

M

N

W

X

Y

Z

Congestion and Loop Flow Create High and Low Prices

New Coal

80 MW

25 M
W

90 MW

35 MW 90 MW

35 MW

100 M
W

320 M
W

25 MW 200 MW 50 MW

0 M
W

190 MW

New IPP

L

Yellow LDC

V
25 MW

125 M
W

25 M
W

2

8.25

3.25

7

3

7

5

3.25

4

3.5

2

Pink LDC

150 MW
25 MW

90 M
W

90 M
W

90 M
W

90 M
W

Figure 2

In Figure 3, a new line has been added to the network, connecting bus "N" to bus "M".
This line is assumed to have a thermal limit of 50 MW. The new line adds to the capability of
the network in that the new pattern of generation lowers the overall cost of satisfying the same
load. The total cost in the case in Figure 2 is $20,962.50, while the corresponding cost in the
case of Figure 3 is $19,912.50. However, although the average cost of power generation has
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fallen, the marginal cost of power has increased at bus "L", where the price is now 10.75¢ per
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kWh.

A further extension of this example network in Figure 4 adds a new bus "O" between
bus "M" and bus "N", and lowers the thermal limit to 30 MW between bus "O" and bus "M".
In addition, bus "O" has a small load of 15 MW. In this case, the total cost of meeting the
higher load is $20,900, again less than in Figure 2. The cost is higher than in Figure 3, due in
part to the tighter thermal limit on the line between bus "O" and bus "M".5 The increased load
of 15 MW at bus "O" actually lowers the total cost of the dispatch, as reflected in the negative
price. Each additional MW of load at bus "O" changes the flows to allow a new dispatch that
lowers the overall cost of meeting the remaining load. Even further, with the 30 MW limit and
no load at bus "O", there is no feasible dispatch.

Hence, as summarized in these figures, it is possible to have a network where marginal

5 For simplicity, all lines have the same impedance. Hence, introducing bus "O" converts the single line
between "M" and "N" into two lines, and doubles the impedance.
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costs at some locations that are higher than the variable cost of the most expensive plant and
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Figure 4

lower than the variable cost of the least expensive plant in operation. In principle, it is even
possible to have negative prices in a least-cost dispatch and market equilibrium.


