OPTIMIZED SURFACE PARAMETERIZATIONS WITH APPLICATIONS ON CHINESE VIRTUAL BROADCASTING

MEI-HENG YUEH†, HSIAO-HAN HUANG‡, TIEXIANG LI§, WEN-WEI LIN‡, AND SHING-TUNG YAU¶

Abstract. Surface parameterizations have been widely applied in the computer-aided design for the geometric processing tasks of surface registration, remeshing, texture mapping, and so on. In this paper, we present an efficient balanced energy minimization (BEM) algorithm for the computation of simply connected open surface parameterizations with balanced angle and area distortions. The existence of a nontrivial accumulation function of the BEM algorithm is guaranteed under some mild conditions and the limiting function is shown to be one-to-one. Comparisons of the BEM algorithm with the angle- and the area-preserving parameterizations show that the angular distortion is close to that of the angle-preserving parameterization while the area distortion is significantly improved. An application of the BEM on the Chinese virtual broadcasting technique is demonstrated thereafter, which is consisted of surface remeshing, registration, and morphing.

Key words. surface parameterization, simply connected open surface, balanced distortion, virtual broadcasting

AMS subject classifications. AMS subject classifications

1. Introduction. A 2D-surface parameterization refers to a homeomorphism between the surface and the domain in \mathbb{R}^2 with a canonical shape. The parameterization can be used to induce a canonical coordinate system on the surface. The surface parameterization issue aims to develop a feasible algorithm for the computation of an ideal mapping that maps a given surface bijectively to a domain of a specified shape. This issue has been widely studied and applied in various tasks of computer vision, such as surface registration, remeshing, morphing, alignment, and texture mapping. For more details on the history and recent advances for surface parameterization algorithms and applications, please see survey papers [21, 48, 31, 9, 24, 28].

A good parameterization usually preserves as much geometric information as possible. In the past, most of the related works consider either angle-preserving (conformal) or area-preserving (equiareal) parameterizations. In practice, an ideal global parameterization of a simply connected open surface usually has a canonical shape, e.g., a disk or a rectangle, with both angle and area distortions being small.

We first briefly introduce related previous works on computational algorithms of surface parameterizations. An ideal parameterization usually preserves geometric structure of data to the utmost. The major classifications of surface parameterizations are based on conformal mappings, equiareal mappings, and mappings with balanced angle and area distortions.

A conformal parameterization targets to minimize the angle distortion. Varieties of feasible numerical algorithms have been proposed, including the linear Laplace-Beltrami equation [10, 29], the angle-based flattening [46, 47, 59], the discrete conformal parameterization [19], the least-squares conformal mapping [38], the holomorphic one-form method [26, 27, 35], the discrete conformal equivalence [49], the nonlinear heat diffusion [25, 32], the spectral conformal parameterization [42, 33], the discrete Ricci flow [34, 60], the fast landmark aligned spherical harmonic algorithm [16], the fast disk mapping [17], the orbifold Tutte embedding [7, 8, 6], the linear disk mapping [14], the conformal energy minimization [57], and the discrete Calabi flow [61].
In contrast, an equiareal parameterization targets to minimize the area distortion. Several feasible numerical algorithms have been proposed, including the stretch-minimizing method [44, 54], the Lie advection method [63], the discrete optimal mass transportation [62, 51, 50], the density-equalizing mapping [15], and the stretch energy minimization [58, 56].

Furthermore, a distortion-balancing parameterization aims to reach a trade-off between minimizing the angle and area distortions. Some feasible numerical algorithms have been proposed, including the as-rigid-as-possible surface parameterization [39, 52], the most isometric parametrization [30, 18], the isometric distortion minimization [43], and the boundary first flattening [45].

In this paper, we focus on developing an efficient balanced energy minimization (BEM) algorithm for the computation of an optimized surface parameterization that maps a simply connected open surface to the unit disk with balanced angle and area distortions. A comparison of the BEM algorithm with the angle- and the area-preserving parameterizations shows that the angle distortion is close to that of the angle-preserving parameterization while the area distortion is significantly improved. We then apply the BEM algorithm to develop a Chinese virtual broadcasting technique, which is consisted of surface remeshing, registration and morphing skills.

Notations and Overview. The following notations are used in this paper, other notations will be clearly defined when they appear.

- Bold letters, e.g. \(\mathbf{u}, \mathbf{v}, \mathbf{w} \), denote (complex) vectors.
- Capital letters, e.g. \(A, B, C \), denote matrices.
- Typewriter letters, e.g. \(I, J, K \), denote ordered sets of indices.
- \(n_I \) denotes the number of elements in the set \(I \).
- \(v_i \) denotes the \(i \)th entry of the vector \(v \).
- \(v_I \) denotes the subvector of \(v \) composed of \(v_i \), for \(i \in I \).
- \(|v| \) denotes the vector with the \(i \)th entry being \(|v_i|\).
- \(\text{diag}(v) \) denotes the diagonal matrix with the \((i, i)\)th entry being \(v_i \).
- \(A_{i,j} \) denotes the \((i, j)\)th entry of the matrix \(A \).
- \(A_{I,J} \) denotes the submatrix of \(A \) composed of \(A_{i,j} \), for \(i \in I \) and \(j \in J \).
- \(\mathbb{D} := \{ z \in \mathbb{C} \mid |z| \leq 1 \} \) denotes the unit disk in \(\mathbb{C} \).
- \(i \) denotes the imaginary unit \(\sqrt{-1} \).
- \(I_n \) denotes the identity matrix of size \(n \times n \).
- \(1_n \) denotes the vector of length \(n \) with all the entries being 1.
- \(0 \) denotes the zero vectors and matrices of appropriate sizes.

This paper is organized as follows. First, in Section 2 we propose an efficient BEM algorithm for computing the optimal distortion-balancing surface parameterization. In Section 3, we prove the existence of nontrivial accumulation function of the BEM algorithm and show the limiting function is one-to-one. Numerical experiments and comparisons of our optimal distortion-balancing parameterizations with the conformal and equiareal parameterizations are presented in Section 4. The application of the distortion-balancing parameterizations on Chinese virtual broadcasting is demonstrated in Section 5. A concluding remark is given in Section 6.

2. Balanced Energy Minimization Algorithm. In this paper, we consider simply connected open discrete surfaces embedded in \(\mathbb{R}^3 \). A discrete surface \(\mathcal{M} \) refers to a triangular mesh (homogeneous simplicial 2-complex) composed of \(n \) vertices with coordinates in \(\mathbb{R}^3 \)

\[
\mathcal{V}(\mathcal{M}) = \left\{ v_s \equiv (v_s^1, v_s^2, v_s^3)^\top \in \mathbb{R}^3 \right\}_{s=1}^n,
\]
where the coefficients \(\lambda \) which can be represented as a complex-valued vector

\[
(2.1) \quad L
\]

and edges

\[
\mathcal{E}(\mathcal{M}) = \{ [v_i, v_j] \mid [v_i, v_j, v_k] \in \mathcal{F}(\mathcal{M}) \text{ for some } v_k \in \mathcal{V}(\mathcal{M}) \} .
\]

The bracket \([v_i, v_j, v_k]\) denotes the **convex hull** of the affinely independent vertices \(\{v_i, v_j, v_k\}\).

On the other hand, a discrete mapping \(f: \mathcal{M} \to \mathbb{C}\) is a piecewise affine mapping, i.e., for each triangular face \(\tau \in \mathcal{F}(\mathcal{M})\), the restriction mapping \(f|_{\tau}: \tau \to \mathbb{C}\) is an affine mapping which can be represented as a complex-valued vector

\[
f = (f(v_1), \ldots, f(v_n))^T \in \mathbb{C}^n.
\]

For a point \(v \in [v_i, v_j, v_k] \in \mathcal{F}(\mathcal{M})\), the value \(f(v)\) is defined as

\[
f(v) = f|_{[v_i, v_j, v_k]}(v) = \lambda_i(v) f_i + \lambda_j(v) f_j + \lambda_k(v) f_k,
\]

where the coefficients \(\lambda_i(v) = \frac{\|v_i, v_j, v_k\|}{\|v_i, v_j, v_k\|}\), \(\lambda_j(v) = \frac{\|v_i, v_j, v_k\|}{\|v_i, v_j, v_k\|}\), and \(\lambda_k(v) = \frac{\|v_i, v_j, v_k\|}{\|v_i, v_j, v_k\|}\) are known as the **barycentric coordinates** of \(v\) on \([v_i, v_j, v_k]\). Here the absolute value \(\|v_i, v_j, v_k\|\) denotes the area of the triangular face \([v_i, v_j, v_k]\).

We now develop a balanced energy minimization (BEM) algorithm for the computation of disk-shaped surface parameterizations with balanced angle and area distortions. The strategy is to minimize a linear combination of the conformal energy [57] and the stretch energy [58].

First, we briefly review the conformal and stretch energy functionals in Section 2.1. Then, we introduce the distortion-balancing parameterization algorithm in Section 2.2.

2.1. Conformal and Stretch Energy Functionals [57, 58]. The discrete conformal energy of a discrete mapping \(f: \mathcal{M} \to \mathbb{C}\) is defined as

\[
E_C(f) = E_D(f) - A(f),
\]

where \(E_D\) is the discrete Dirichlet energy given by

\[
E_D(f) = \frac{1}{2} f^\top L_D f
\]

in which \(L_D\) is the Laplacian matrix with

\[
(2.1) \quad [L_D]_{i,j} = \begin{cases}
-\frac{1}{2} \cot \theta_{i,j} + \cot \theta_{j,i} & \text{if } [v_i, v_j] \in \mathcal{E}(\mathcal{M}), \\
- \sum_{k \neq i} [L_D]_{i,k} & \text{if } j = i, \\
0 & \text{otherwise},
\end{cases}
\]

\(\theta_{i,j}\) and \(\theta_{j,i}\) are the angles opposite to the edge \([v_i, v_j]\) connecting vertices \(v_i\) and \(v_j\) on the mesh \(\mathcal{M}\), and \(A(f)\) denotes the image area given by

\[
A(f) = \frac{1}{2} \sum_{[v_i, v_j] \in \partial \mathcal{M}} (\text{Re} f_i \text{ Im} f_j - \text{Re} f_j \text{ Im} f_i).
\]

It is worth noting that when the shape of the image is given, e.g., a unit disk \(\mathbb{D}\), the image area \(A(f)\) would be constant, so that minimizing \(E_C\) is equivalent to minimizing \(E_D\).
where the vector α with

\[L \parallel \cdot \parallel \]

is the stretch factor of f

\[(2.4) \]

\[\text{Laplace-Beltrami equation} \]

\[\text{balanced energy} \]

\[\text{in which } \theta_{i,j}(f) \text{ and } \theta_{j,i}(f) \text{ are the angles opposite to the edge } f([v_i, v_j]) \text{ connecting points } f(v_i) \text{ and } f(v_j) \text{ on the image } f(\mathcal{M}) \text{ and} \]

\[\sigma_{f^{-1}}([v_i, v_j, v_k]) = \frac{[v_i, v_j, v_k]}{|f([v_i, v_j, v_k])|} \]

is the stretch factor of f on the triangular face $[v_i, v_j, v_k]$.

2.2. Balanced Energy Minimization (BEM) Algorithm. The distortion-balancing parameterization algorithm aims to find a mapping $f : \mathcal{M} \to \mathbb{D}$ that minimize the balanced energy functional

\[E_\beta(f) = \frac{1}{2} \int_\mathbb{D} L_\beta(f)^2 \]

in which $L_\beta(f)$ is the balanced Laplacian matrix given by

\[(2.3) \]

\[L_\beta(f) = (1 - \beta) \frac{L_D}{\|L_D\|_F} + \beta \frac{L_S(f)}{\|L_S(f)\|_F}, \]

where $\| \cdot \|_F$ denotes the Frobenius norm, β is the balancing coefficient in $[0, 1]$, L_D and L_S are Laplacian matrices defined as (2.1) and (2.2), respectively. In particular, when $\beta = 0$, the functional is equivalent to the Dirichlet energy E_D. Similarly, when $\beta = 1$, the functional is equivalent to the stretch energy E_S. In the following, for a given coefficient $\beta \in [0, 1]$, we introduce a numerical method for computing a mapping $f : \mathcal{M} \to \mathbb{D}$ that minimizes the balanced energy E_β.

The initial boundary mapping $f^{(0)}|_{\partial \mathcal{M}} : \partial \mathcal{M} \to \partial \mathbb{D}$ is computed by solving the discrete Laplace-Beltrami equation

\[(2.4) \]

\[L_D f^{(0)} = b, \]

where the vector $b = (b_1, \ldots, b_n)^T$ is given by

\[(2.5) \]

\[b_k := \begin{cases}
\frac{1}{\|v_k - v_a\|_2} + \frac{1}{\|v_k - (v_a + \alpha(v_k - v_a))\|_2} & \text{if } k = a, \\
\frac{1}{\|v_k - v_a\|_2} + \frac{\alpha}{\|v_k - (v_a + \alpha(v_k - v_a))\|_2} & \text{if } k = b, \\
\frac{1}{\|v_k - v_a\|_2} & \text{if } k = c, \\
0 & \text{if } k \notin \{a, b, c\}
\end{cases} \]

with $\alpha = \frac{\langle v_a - v_b, v_a - v_c \rangle}{\|v_a - v_b\|^2}$, the triangular face $[v_a, v_b, v_c]$ is the one closest to the mass center of \mathcal{M}. The equation (2.4) was first proposed by Angenent et al. [10, 29] for the computation
of spherical harmonic mappings of genus-zero closed surfaces. It was modified by Yueh et al. [57] for the computation of disk-shaped harmonic mappings of simply connected open surfaces.

Let I and B be the ordered index sets of the interior and boundary vertices, respectively. The subvector $f_b^{(0)}$ in (2.4) defines a boundary mapping. To constrain the image of the boundary $f_b^{(0)}$ to be a unit circle, we perform the centralization

$$f_b^{(0)} \leftarrow \left(I_{ns} - \frac{1_{ns} 1_{ns}^T}{n_B} \right) f_b^{(0)}$$

and the normalization

$$f_b^{(0)} \leftarrow (\text{diag} (|f_b|))^{-1} f_b^{(0)}.$$

Then the interior of the initial mapping is obtained by solving the linear system

$$[L_D]_{I,I} f_I^{(0)} = -[L_D]_{I,B} f_B^{(0)}.$$

Next, suppose a mapping $f^{(k)}$ at the kth step is obtained. In order to decrease the balanced energy E_β, we first compute the boundary of $f^{(k+1)}$ by solving the linear system

$$(2.6) \quad [L_\beta(f^{(k)})]_{B,B} f_B^{(k+1)} = -[L_\beta(f^{(k)})]_{B,I} \text{diag} (f_I^{(k)})^{-2} f_I^{(k)}.$$

Again, the circular boundary constraint is reached by performing the centralization

$$(2.7) \quad f_b^{(k+1)} \leftarrow \left(I_{ns} - \frac{1_{ns} 1_{ns}^T}{n_B} \right) f_b^{(k+1)}$$

and the normalization

$$(2.8) \quad f_b^{(k+1)} \leftarrow \text{diag} (|f_b|)^{-1} f_b^{(k+1)}.$$

Finally, the interior mapping is obtained by solving the linear system

$$(2.9) \quad [L_\beta(f^{(k)})]_{I,I} f_I^{(k+1)} = -[L_\beta(f^{(k)})]_{I,B} f_B^{(k+1)}.$$

The iteration is terminated until a certain maximum number of iterations is reached or the energy cannot be further decreased.

For a given $\beta \in [0, 1]$, iterations (2.6)–(2.9) can compute the function $f_\beta : M \to \mathbb{D}$ for minimizing the balanced energy $E_\beta(f)$, i.e., $f_\beta := \arg\min_{f:M \to \mathbb{D}} E_\beta(f)$. Here, the choice of the balancing value is crucial for applications. An optimal value of β can be determined by

$$(2.10) \quad \beta = \arg\max_{\beta \in [0,1]} g(\beta),$$

where $g(\beta) = \min_{f:M \to \mathbb{D}} E_\beta(f)$ is a single-variable bounded function of β. The maximizer of (2.10) can be obtained by the built-in function $\text{fminbnd} [12, 22]$ in MATLAB. The BEM algorithm for distortion-balancing parameterizations with the optimal value β^* is summarized in Algorithm 1.
Algorithm 1 Balanced Energy Minimization (BEM)

Input: A simply connected open mesh M.
Output: A distortion-balancing parameterization $f_{\beta^*} : M \to \mathbb{D}$ with the optimal value β^*.

1: global variables
2: M: the input simply connected open mesh
3: f: the parameterization
4: I: the ordered index set of the interior vertices
5: B: the ordered index set of the boundary vertices
6: L_D: the Laplacian matrix as defined in (2.1)
7: $L_S(f)$: the Laplacian matrix as defined in (2.2)
8: end global variables
9: procedure MAIN
10: $f = \text{INITIAL\hspace{0.1em}MAPPING}$.
11: $\beta^* = \text{fminbnd}(-g(\beta))$. \hspace{0.5em} \text{($\text{fminbnd}$ is a built-in function in MATLAB.)}
12: return f. \hspace{0.5em} \text{(f is the initial mapping.)}
13: end procedure
14: procedure INITIAL\hspace{0.1em}MAPPING
15: Solve $L_D f_b = b$, where b is as defined in (2.5).
16: $f_b \leftarrow (I_n - 1_n 1_n^T) f_b$. \hspace{0.5em} \text{($f_b$ is the boundary mapping.)}
17: $f_b \leftarrow \text{diag}([f_b])^{-1} f_b$. \hspace{0.5em} \text{($f_b$ is the normalized boundary mapping.)}
18: Solve $[L_D]_{1,1} f_I = -[L_D]_{1,B} f_B$. \hspace{0.5em} \text{($f_I$ is the interior mapping.)}
19: return f. \hspace{0.5em} \text{(f is the initial mapping.)}
20: end procedure
21: procedure $g(\beta)$
22: while not convergent do
23: \hspace{1em} $L \leftarrow (1 - \beta) \frac{L_D}{\|L_D\|_F} + \beta \frac{L_S(f)}{\|L_S(f)\|_F}$. \hspace{0.5em} \text{($L$ is the balanced Laplacian matrix.)}
24: \hspace{1em} $h \leftarrow f$. \hspace{0.5em} \text{(h is the current mapping.)}
25: \hspace{1em} Solve $L_{B,B} f_B = -L_{B,I} \text{diag}(f_I)^{-1} f_I$. \hspace{0.5em} \text{($f_B$ is the boundary mapping.)}
26: \hspace{1em} $f_b \leftarrow (I_n - 1_n 1_n^T) f_B$. \hspace{0.5em} \text{($f_b$ is the normalized boundary mapping.)}
27: \hspace{1em} $f_B \leftarrow \text{diag}([f_B])^{-1} f_B$. \hspace{0.5em} \text{($f_B$ is the normalized boundary mapping.)}
28: \hspace{1em} Solve $L_{I,I} f_I = -L_{I,B} f_B$. \hspace{0.5em} \text{($f_I$ is the interior mapping.)}
29: \hspace{1em} if $E_\beta(f) > E_\beta(h)$ then
30: \hspace{2em} $f \leftarrow h$. \hspace{0.5em} \text{(f is the adopted mapping.)}
31: \hspace{2em} break
32: \hspace{1em} end if
33: \hspace{1em} end while
34: return $E_\beta(f)$. \hspace{0.5em} \text{($E_\beta(f)$ is the energy function.)}
35: end procedure

3. Existence of Nontrivial Accumulation Points for BEM. In this section, we prove the existence of a nontrivial (nonconstant) accumulation function of iterations (2.6)–(2.9) in the BEM algorithm. Then we show the limiting piecewise affine function is a one-to-one map. The iterations form a sequence $\{f_{b}^{(k)}\}_{k \in \mathbb{N}}$ given by

\[f_{b}^{(k+1)} = D_{N}^{(k)} C \left[L_{\beta} (f_{b}^{(k)}) \right]_{B,B}^{-1} \left[L_{\beta} (f_{b}^{(k)}) \right]_{B,I} \left[L_{\beta} (f_{b}^{(k)}) \right]_{I,B}^{-1} \left[L_{\beta} (f_{b}^{(k)}) \right]_{I,I} f_{b}^{(k)}, \]
where \(D^{(k)}_V \) is the inversion matrix given by
\[
D^{(k)}_V = \text{diag} \left(\left| \left[L_\beta(f^{(k)}) \right]_{1,1}^{-1} \left[L_\beta(f^{(k)}) \right]_{I,\beta} f^{(k)}_\beta \right| \right)^{-2},
\]
\(C \) is the centralization matrix given by \(C = I_n - \frac{1}{m} \mathbf{1}_n \mathbf{1}_n^T \), and \(D^{(k)}_N \) is the normalization matrix given by
\[
D^{(k)}_N = \text{diag} \left(\left| \left[L_\beta(f^{(k)}) \right]_{I,\beta}^{-1} \left[L_\beta(f^{(k)}) \right]_{\beta,I} D^{(k)}_V \left[L_\beta(f^{(k)}) \right]_{1,1}^{-1} \left[L_\beta(f^{(k)}) \right]_{I,\beta} f^{(k)}_\beta \right| \right)^{-1}.
\]

For convenience, we give a mild assumption for the triangular mesh.

Definition 3.1 (Well-conditioned mesh). A simply connected open mesh \(\mathcal{M} \) is said to be well-conditioned if it satisfies the following conditions:

(i) The subgraph of all the interior vertices is connected.

(ii) Every boundary vertex is connected to at least one interior vertex.

(iii) Both the numbers of interior and boundary vertices are larger or equal to 3.

Also, we give the definition of M-matrix [11] and some related lemmas.

Definition 3.2.

(i) A matrix \(A \in \mathbb{R}^{m \times n} \) is said to be nonnegative (positive) if all the entries of \(A \) are nonnegative (positive).

(ii) A square matrix \(A \in \mathbb{R}^{n \times n} \) is irreducible, if the corresponding graph \(G(A) \) of \(A \) is connected.

Definition 3.3. A matrix \(A \in \mathbb{R}^{n \times n} \) is said to be an M-matrix if \(A = sI - B \), where \(B \) is nonnegative and \(s \geq \rho(B) \), where \(\rho(B) \) is the spectral radius of \(B \).

Lemma 3.4 (Theorem 1.4.10 in [41]). Suppose \(A \in \mathbb{R}^{n \times n} \) is a singular, irreducible M-matrix. Then each principal submatrix of \(A \) other than \(A \) itself is a nonsingular M-matrix.

Lemma 3.5 (Theorem 1.4.7 in [41]). If \(A \in \mathbb{R}^{n \times n} \) is a nonsingular M-matrix, then \(A^{-1} \) is a nonnegative matrix. Moreover, if \(A \) is irreducible, then \(A^{-1} \) is a positive matrix.

The following lemma plays an important role in the geometric point of view of the matrix products in (3.1).

Lemma 3.6. Given a well-conditioned simply connected open mesh \(\mathcal{M} \) of \(n \) vertices. Let \(L \) be a Laplacian matrices of \(\mathcal{M} \), defined similar as in (2.3), with positive weights \(\{w_{i,j} \mid (i,j) \in E(\mathcal{M})\} \). Let \(I \) and \(B \) be index sets of interior vertices and boundary vertices of \(\mathcal{M} \), respectively. Then each entry of the vectors \(-L^{-1}_{1,1} L_{1,B} \mathbf{f}_B \) and \(-L^{-1}_{B,B} L_{B,1} \mathbf{f}_I \) is a convex combination of the entries of \(\mathbf{f}_B \) and \(\mathbf{f}_I \), respectively.

Proof. From the definition of the Laplacian matrix (2.3), it is clear that \(L \mathbf{1}_n = \mathbf{0} \), i.e.,
\[
\begin{align*}
L_{1,1} \mathbf{1}_{n_1} + L_{1,B} \mathbf{1}_{n_B} &= \mathbf{0}, \\
L_{B,1} \mathbf{1}_{n_1} + L_{B,B} \mathbf{1}_{n_B} &= \mathbf{0}.
\end{align*}
\]
(Note that \(L \) is a singular irreducible M-matrix. By Lemma 3.4, the matrices \(L_{1,1} \) and \(L_{B,B} \) are invertible. Then (3.2) implies that)
\[
\begin{align*}
-L^{-1}_{1,1} L_{1,B} \mathbf{1}_{n_B} &= \mathbf{1}_{n_1}, \\
-L^{-1}_{B,B} L_{B,1} \mathbf{1}_{n_1} &= \mathbf{1}_{n_B}.
\end{align*}
\]

In addition, from the definition of the Laplacian matrix and the assumption of positive weights, the entries of \(-L_{1,B} \) are non-negative. Furthermore, the irreducibilities of \(L_{1,1} \) and \(L_{B,B} \) are, respectively, guaranteed by Definition 3.1 (i) and the simply connected assumption of \(\mathcal{M} \).
By Lemma 3.5, $I_{1,1}^{-1}$ and $I_{B,B}^{-1}$ are positive, so that the entries of the matrices $-I_{1,1}^{-1}L_{1,B}$ and $-I_{B,B}^{-1}L_{B,1}$ are non-negative. Therefore, (3.3) implies each entry of the vectors $-I_{1,1}^{-1}L_{1,B}f_B$ and $-I_{B,B}^{-1}L_{B,1}f_1$ is a convex combination of the entries of f_B and f_1, respectively. \[\square \]

Now we prove the existence of nontrivial accumulation vectors of the iterations (3.1) in the following theorem.

Theorem 3.7. Suppose the sequence $\{f_B^{(k)}\}_{k \in \mathbb{N}}$ defined in (3.1) with $L_{1,1}(f^{(k)})$ satisfying the assumption of Lemma 3.6. Then it has a nontrivial accumulation vector $f_B^{(*)}$.

Proof. Since every entry of $f_B^{(k)}$ is on the unit circle, by Bolzano-Weierstrass theorem there exists a vector $f_B^{(*)}$ and a convergent subsequence $\{f_B^{(k_j)}\}_{j \in \mathbb{N}}$ such that

$$
\lim_{j \to \infty} f_B^{(k_j)} = f_B^{(*)}.
$$

From Lemma 3.6, for $\ell = 1, \ldots, n_1$,

$$
(f_1^{(k)})_{\ell} = -\left(\left[\left[I_{1,1}^{-1}L_{1,1}(f^{(k)})\right]_{1,1} I_{1,1} f_B^{(k)}\right]_{1,1} f_1^{(k)}\right)_{\ell}
$$

is a convex combination of the points $\{(f_1^{(k)})_{\ell}\}_{k = 1}^{n_1} \subset \partial \mathbb{D}$, so that $(f_1^{(k)})_{\ell} \in \mathbb{D}$, for $\ell = 1, \ldots, n_2$. It follows that the inverted points $f_1^{(*)} = (D_1^{-1}f_1^{(k)})_{\ell}$ are located in $\mathbb{C} \setminus \mathbb{D}$, for $\ell = 1, \ldots, n_1$. Again, from Lemma 3.6, for $\ell = 1, \ldots, n_B$,

$$
(f_B^{(k)})_{\ell} = -\left(\left[\left[I_{B,B}^{-1}L_{B,B}(f^{(k)})\right]_{B,B} I_{B,B} f_B^{(k)}\right]_{B,B} f_B^{(k)}\right)_{\ell}
$$

is a convex combination of the points $\{(f_B^{(k)})_{\ell}\}_{k = 1}^{n_B} \subset \partial \mathbb{D}$. As a result, the centralization in the iteration (3.1) guarantees that after a rotation by setting $(f_B^{(k)})_1 = 1$ for each $k \in \mathbb{N}$, the maximal argument over all $\text{Arg}(Cf_B^{(k)}_{\ell})$, for $\ell = 1, \ldots, n_B$, should be greater than π. Otherwise, each entry of the vector $Cf_B^{(*)}_{\ell}$ is located on the upper half-plane of \mathbb{C}. Then the center

$$
\frac{1}{n_B} \sum_{\ell = 1}^{n_B} (Cf_B^{(*)}_{\ell})_{\ell} \neq 0,
$$

which contradicts to the fact that the center should be zero. In particular, it holds for the subsequence $\{k_j\}_{j \in \mathbb{N}}$. Hence, the maximal argument over all components of the accumulation point $f_B^{(*)}$ should be greater than or equal to π. Therefore, $f_B^{(*)}$ is nontrivial. \[\square \]

Theorem 3.8. The mapping $F^{(*)} := \begin{bmatrix} f_1^{(*)} \\ f_B^{(*)} \end{bmatrix} : \mathcal{M} \to \mathbb{D}$ constructed by Theorem 3.7 is one-to-one.

Proof. For convenience, we denote $L_{1,1} := [L_{1,1}^{(f^{(*)})}]_{1,1}$, $L_{1,B} := [L_{1,B}^{(f^{(*)})}]_{1,B}$, $L_{B,1} := [L_{B,1}^{(f^{(*)})}]_{B,1}$ and $D_1 := \text{diag}(L_{1,1})$, $D_B := \text{diag}(L_{B,B})$. From (2.9), (2.6) and Lemma 3.6 follows that

$$
\begin{align*}
D_1^{-1}(L_{1,1}f_1^{(*)} + L_{1,B}f_B^{(*)}) &= 0, \\
D_B^{-1}(L_{B,1}f_1^{(*)} + L_{B,B}f_B^{(*)}) &= 0.
\end{align*}
$$

From (3.2), we have that

$$
\begin{align*}
1 - \sum_{j \in \mathbb{N}(v_j)} \lambda_{j,1} &\equiv c_1^j (D_1^{-1}L_{1,1}1_{n_1} + D_1^{-1}L_{1,B}1_{n_2}) = 0, \quad \ell \in \mathbb{I}, \\
1 - \sum_{j \in \mathbb{N}(v_j)} \lambda_{j,1} &\equiv c_1^j (D_B^{-1}L_{B,1}1_{n_1} + D_B^{-1}L_{B,B}1_{n_2}) = 0, \quad \ell \in \mathbb{B}.
\end{align*}
$$

Table 4.1, we observe that the mean of the angle distortion is roughly the vertex v, e_ℓ denotes the vector of appropriate length with the ℓth entry being 1 and other entries being 0. This implies that $f^{(\ast)}$ is a convex combination map from \mathcal{M} to \mathbb{D} which maps ∂M homeomorphically into the boundary of the convex hull of $\{f^{(\ast)}(\ell)\}_{\ell \in B}$. From Theorem 6.7 of [20] follows that $f^{(\ast)}$ is one-to-one.

4. Numerical Experiments. In this section, we demonstrate numerical experiments of the proposed BEM algorithm for balanced parameterizations of simply connected open surfaces. The maximum numbers of iterations are set to be 10. The linear systems in the BEM algorithm are solved by the built-in backslash operator (\) in MATLAB. Some of surface mesh models are obtained from TurboSquid [5], AIM@SHAPE shape repository [3], the Stanford 3D scanning repository [4], a project page of ALICE [1], and Gu’s website [2].

Table 4.1 shows the optimal balancing coefficient β determined by (2.10) and the balanced energy E_β as well as angle and area distortions. The angle distortion is measured by the mean and standard deviation (SD) of the angle difference in degree

$$D_{\text{angle}}(v, [u, v, w]) = |\angle(u, v, w) - \angle(f(u), f(v), f(w))| \text{ (degree)},$$

where $v \in \mathcal{V}(\mathcal{M})$ and $[u, v, w] \in \mathcal{F}(\mathcal{M})$. The area distortion is measured by the mean and SD of the area ratio

$$R_{\text{area}}(v) = \frac{\sum_{\tau \in N(v)} |f(\tau)|/|f(\mathcal{M})|}{\sum_{\tau \in N(v)} |\tau|/|\mathcal{M}|},$$

where $v \in \mathcal{V}(\mathcal{M})$, $N(v) = \{\tau \in \mathcal{F}(\mathcal{M}) | v \in \tau\}$ is the set of neighboring triangular faces of the vertex v, $|\mathcal{M}|$ and $|f(\mathcal{M})|$ denote areas of \mathcal{M} and its image $f(\mathcal{M})$, respectively. From Table 4.1, we observe that the mean of the angle distortion is roughly 4 to 6 degrees with the SD being roughly 4 to 6 degrees, which is fairly acceptable. In addition, the mean of the area ratio is roughly 1 with the SD being 0.7 to 2.3, which is also relatively acceptable.

Furthermore, Fig. 4.1 shows the relationship between the number of iterations and the balanced energy of the parameterization computed by the BEM algorithm. We can observe that the balanced energy is significantly decreased in the first 3 iteration steps, which indicates the proposed BEM algorithm performs effectively on decreasing the balanced energy.

Comparisons of our proposed distortion-balancing parameterizations with the conformal and equiareal parameterizations are demonstrated in Fig. 4.2. In addition, Figures 4.3 and 4.4 further show the angle distortions as well as the absolute value of the logarithm of the area ratios of the parameterizations. It is worth noting that among the demonstrated benchmark mesh models, all the balanced parameterization computed by the proposed BEM algorithm are bijective while some of the conformal and equiareal parameterizations are not bijective.
FIG. 4.1. The relationship between the number of iterations and the balanced energy of the parameterization computed by the BEM algorithm.

5. Applications on 3D Chinese Virtual Broadcasting System. The virtual broadcasting refers to the process of automatically generating the video of broadcasting a given article. With the virtual broadcasting system, the user can easily make a broadcasting video by inputting a few sentences or an article. Due to the fact that the Chinese syllables are composed of 1 to 3 Mandarin phonetic symbols, a Chinese virtual broadcasting system can be realized via recording the videos of pronouncing all the 37 phonetic symbols and construct the in-between smooth homotopy of surfaces. With the aid of the parameterizations of surfaces, the correspondence between each pair of surfaces can be computed efficiently in the domain of a canonical shape. Then the in-between smooth motion of each pair of surfaces can be constructed by surface homotopy with a suitable smooth path.

The broadcasting system requires the following key steps. First, a remeshing process is introduced in Section 5.1 to improve the mesh quality of the captured raw surface mesh data. Then a registration process is introduced in Section 5.2 to find a one-to-one correspondence between each pair of surfaces. Finally, a morphing process is introduced in Section 5.3 to construct a smooth 3D video sequence for the inputted sequence of surfaces.

5.1. Surface Remeshing for Structured-Light Based 3D Scanner. Surface remeshing refers to the improvement process of the mesh quality, including the uniformity of vertex sampling, the regularity of mesh connectivity and the quality of triangles [9, 13]. In particular, the quality of a triangle $[u, v, w]$ can be measured by the quantity

\[
Q([u, v, w]) = \frac{1}{3} \left(\left\| \frac{1}{|u, v|} \left| [u, v] \right| + |v, w| \right\|_3 \right) - \frac{1}{3} \left(\left\| \frac{1}{|v, w|} \left| [v, w] \right| + |w, u| \right\|_3 \right) - \frac{1}{3} \left(\left\| \frac{1}{|w, u|} \left| [w, u] \right| + |u, v| \right\|_3 \right).
\]

The smaller the value $Q(\tau)$, the better the quality of the triangle τ. Note that an equilateral triangle τ has value $Q(\tau) = 0$.

Fig. 4.2. The benchmark mesh models and their conformal, balanced, and equiareal parameterizations.
Fig. 4.3. The benchmark mesh models and the angle distortions of their conformal, balanced, and equiareal parameterizations.
FIG. 4.4. The benchmark mesh models and the absolute value of the logarithm of the area ratios of their conformal, balanced, and equiareal parameterizations.
By applying the proposed BEM algorithm, the remeshing procedure can be smoothly carried out as follows. First, a balanced parameterization \(f : \mathcal{M} \to \mathbb{D} \subset \mathbb{C} \) is computed by using the BEM algorithm. Then the image \(f(M) \) is covered by a regular mesh \(\mathcal{U} \) of a unit disk with uniform sampling. Finally, the remeshed surface \(f^{-1}(\mathcal{U}) \) is obtained by the one-to-one correspondences between the barycentric coordinates of each triangular face on \(\mathcal{M} \) and on \(f(M) \).

In our numerical experiments, the raw mesh data of human faces are captured by the structured-light based 3D scanner GeoVideo (produced by GI company) in the ST Yau Center in Taiwan. Fig. 5.1 shows the zoom-in images at the nose part, the triangle quality of remeshed data of a human face, respectively, which indicate that the mesh quality in terms of uniformity of vertex sampling, the regularity of mesh connectivity and the quality of triangles are improved.

5.2. Surface Registration. The registration issue between a pair of surfaces \(\mathcal{M} \) and \(\mathcal{N} \) refers to developing a feasible algorithm for the computation of a homeomorphism \(f : \mathcal{M} \to \mathcal{N} \) that maps \(\mathcal{M} \) to \(\mathcal{N} \) bijectively such that the characteristics of the surfaces are matched. It is a fundamental issue that has been widely applied to computer graphics and geometry processing [36, 40, 53, 58]. The characteristics of surfaces are often represented as sets of landmarks (feature points). For convenience, we write \(V(\mathcal{M}) = \{v_1, v_2, \ldots, v_n\} \) and let \(I \) and \(B \) be the index sets of interior and boundary vertices of \(\mathcal{M} \), respectively. Without loss of generality, suppose the index sets of landmarks on the interior and boundary of \(\mathcal{M} \) are given by

\[
P = \{P(1), P(2), \ldots, P(n_p)\} \quad \text{and} \quad R = \{R(1), R(2), \ldots, R(n_h)\},
\]

respectively, and the coordinates of landmarks on the interior and boundary of \(\mathcal{N} \) are given by

\[
Q = \{q_1, q_2, \ldots, q_{n_p}\} \quad \text{and} \quad S = \{s_1, s_2, \ldots, s_{n_h}\},
\]

respectively. The goal of the surface registration is to construct a low-distorted bijective mapping \(\varphi : \mathcal{M} \to \mathcal{N} \) that satisfies \(\varphi(v_{p(\ell)}) = q_\ell \), for \(\ell = 1, 2, \ldots, n_p \), and \(\varphi(v_{b(\ell)}) = s_\ell \), for \(\ell = 1, 2, \ldots, n_h \). By applying the proposed distortion-balancing parameterizations

\[
\begin{align*}
 f : \mathcal{M} \to \mathbb{D} \quad \text{and} \quad g : \mathcal{N} \to \mathbb{D},
\end{align*}
\]

the surface registration issue in \(\mathbb{R}^3 \) is reduced into a planar registration issue on \(\mathbb{D} \). The reduced issue is to find a low-distorted bijective mapping \(h : \mathbb{D} \to \mathbb{D} \) that satisfies

\[
 h \circ f(v_{p(\ell)}) = g(q_\ell), \quad \text{for} \quad \ell = 1, \ldots, n_p,
\]

and

\[
 h \circ f(v_{b(\ell)}) = g(s_\ell), \quad \text{for} \quad \ell = 1, \ldots, n_h.
\]

Once we have such a mapping \(h \), the mapping \(\varphi : \mathcal{M} \to \mathcal{N} \) can be obtained by the composition mapping \(\varphi = g^{-1} \circ h \circ f \).

For convenience, we denote the discrete mapping \(h \) by the vector \(\mathbf{h} = (h(v_1), \ldots, h(v_m))^\top \in \mathbb{C}^m \). A low-distorted registration mapping \(h : \mathbb{D} \to \mathbb{D} \) can be obtained by minimizing the penalized biharmonic energy defined as

\[
E_P(h) = \|L_H(h)\mathbf{h}\|_2^2 + \lambda^2 \sum_{\ell=1}^{n_p} |h_{p(\ell)} - g(q_\ell)|^2
\]

(5.2)
Fig. 5.1. The zoom-in images at the nose part, the triangle quality as well as the histograms of the angles and areas of triangles of (a) the raw mesh data and (b) the remeshed data of a human face.
in which \(\lambda^2 \in (0, \infty) \) is the weight for the penalty, \(L_H(h) \) is the Laplacian matrix defined by
\[
[L_H(h)]_{i,j} = \begin{cases}
-\frac{1}{2} \left(\cot(\alpha_{i,j}(h)) + \cot(\alpha_{j,i}(h)) \right) & \text{if } [v_i, v_j] \in \mathcal{E}(\mathcal{M}), \\
\sum_{\ell \neq i} [L_H(h)]_{i,\ell} & \text{if } j = i, \\
0 & \text{otherwise,}
\end{cases}
\]
where \(\alpha_{i,j}(h) \) and \(\alpha_{j,i}(h) \) being two angles opposite to the edge \(h([v_i, v_j]) \) connecting points \(h(v_i) \) and \(h(v_j) \) on \(\mathbb{C} \).

The surface registration process is performed as follows. First, the boundary mapping \(h_B \) is chosen to be the unique piecewise affine mapping that satisfies \(h \circ f(v_0(t)) = g(s(t)) \), for \(t = 1, \ldots, n_B \). Then an initial interior mapping \(h_1^{(0)} \) is computed by a harmonic mapping
\[
[L_H(f)]_{1,1} h_1^{(0)} = -[L_H(f)]_{1,1} h_B,
\]
where \(f \) is the distortion balancing parameterization computed by the BEM algorithm. Next, the penalized biharmonic energy (5.2) is minimized by the iterative procedure
\[
h^{(k+1)} = \arg\min_{h \given h_B} \left(\left\| L_H(h^{(k)}) h \right\|^2_F + \lambda_k^2 \sum_{\ell=1}^{n_B} |h_B(\ell) - g(\ell)|^2 \right),
\]
which is a standard least squares problem that can be easily solved by the built-in backslash operator (\(\backslash \)) in MATLAB. The value of \(\lambda_k^2 \) can be chosen to be sufficiently small so that the resulting mapping is bijective.

In practice, the coefficients \(\lambda_k^2 \) in (5.2) are chosen to be a sequence in \((0, 1]\), e.g., \(\lambda_k = 0.2 \), for \(k = 1, \ldots, 10 \) and \(\lambda_k = 0.4 \), for \(k = 11, \ldots, 20 \), etc.

Fig. 5.2 (a)-(d) show the human faces of 4 different mouth shapes, (e)-(h) show the images of their balanced parameterizations computed by using the BEM algorithm, and (i)-(k) show the images of their registration mappings. In particular, we choose the face \(\mathcal{M}_0 \), shown in Fig. 5.2, as the standard face. The balanced parameterization of \(\mathcal{M}_0 \) is denoted by \(f_0 \). The green circles on the disks \(f_0(M_0), \ldots, f_3(M_3) \), shown in Fig. 5.2 (e)-(h), are the landmarks of the standard face \(\mathcal{M}_0 \) while the red dots on the disks \(f_1(M_1), f_2(M_2), f_3(M_3) \), shown in Fig. 5.2 (f)-(h), are the landmarks of the faces \(\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3 \), respectively. From the registration mappings, shown in Fig. 5.2 (i)-(k), we observe that the images of the disks \(r_\ell \circ f_\ell(M_\ell) \) looks similar as the images \(f_\ell(M_\ell) \), for \(\ell = 1, 2, 3 \), but each red dot is located inside the corresponding green circle, respectively. This indicates that the introduced disk registration performs accurately on mapping the landmarks to the targets while retaining the distortion small.

5.3. Surface Morphing and Virtual Broadcasting. A morphing between two surfaces refers to the process of continuously deforming one surface into another one [37, 55]. The correspondence between surfaces plays a crucial role. For example, suppose two surfaces \(\mathcal{M}_0 \) and \(\mathcal{M}_1 \) together with a registration mapping \(\varphi_1 : \mathcal{M}_0 \rightarrow \mathcal{M}_1 \) are given. The in-between surfaces \(\mathcal{H} : [0, 1] \times \mathcal{M}_0 \rightarrow \mathbb{R}^3 \) that satisfies \(\mathcal{H}(0, \mathcal{M}_0) = \mathcal{M}_0 \) and \(\mathcal{H}(1, \mathcal{M}_0) = \mathcal{M}_1 \) can be obtained by the linear homotopy
\[
\mathcal{H}(t, v) = (1-t)v + t \varphi_1(v).
\]
In general, suppose \(T + 1 \) surfaces \(\mathcal{M}_0, \ldots, \mathcal{M}_T \) and registration mappings \(\varphi_\ell : \mathcal{M}_0 \rightarrow \mathcal{M}_\ell, \ell = 1, \ldots, T, \) are given. A smooth morphing sequence between these surfaces can be computed by choosing a suitable homotopy \(\mathcal{H} : [0, T] \times \mathcal{M}_0 \rightarrow \mathbb{R}^3 \) that satisfies
\[
\mathcal{H}(t, v) = \varphi_t(v),
\]
FIG. 5.2. The registration mappings between human faces of 4 different mouth shapes via the balanced parameterizations.
for $t = 1, \ldots, T$, which can be carried out by a smooth interpolation between the data points

$$\{(0,v),(1,\varphi_1(v)), \ldots, (T, \varphi_T(v)) \mid v \in M_0 \}.$$

Here we adopt the piecewise cubic Hermite interpolating polynomial [23] to obtain a smooth path of homotopy, which can be easily done by the built-in function `pchip` in MATLAB. A demo video of the Chinese virtual broadcasting of the poem "Yu Mei Ren" can be found at https://mhyueh.github.io/projects/Diskmap_BEM.html.

Remark 5.1. We are sorry here for that readers do not speak Chinese. However, readers can see the changes of mouth-shapes in the video for simulating the pronunciation of Chinese poem.

5.4. Head-Face Alignment and Fusion. The alignment and fusion issues refer to align two or more surface patches into correct positions and fuse them together into one surface. In particular, we focus on the alignment and fusion of the human head and face, e.g., given a head model M and a human face surface N, as shown in Fig. 5.3 (a) and (b), respectively. The goal is to smoothly align and fuse the head and face together so that the face part of the head model is replaced by the human face surface, as shown in Fig. 5.3 (c).

For convenience, we let $V^{(0)} = [v_1 \ v_2 \ \cdots \ v_n]^T \in \mathbb{R}^{n \times 3}$ be the vertex matrix of M with the ℓth row being v_ℓ^T, for $\ell = 1, \ldots, n$. Let the index set of landmarks on M be P, and the coordinates of landmarks on N be $q_1, q_2, \ldots, q_m \in \mathbb{R}^3$. The alignment of M with N can be carried out by the following procedures. First, the head model M is appropriately deformed in order to fit with the scanned human face N. The deformed shape of the head model can be computed iteratively by minimizing the change of the mean curvature vectors of M with a landmark-based penalty

$$V^{(k+1)}_M = \arg\min_{V \in \mathbb{R}^{n \times 3}} \left(\|L_D(V - V^{(k)}_M)\|_2^2 + \lambda^2 \sum_{\ell=1}^{m} \|v_{\ell} - q_{\ell}\|_2^2 \right),$$

where, in practice, the coefficient λ^2 is chosen to be 0.03. The problem (5.3) can be easily solved by using the least squares method. Next, we let $S \subset M$ be the face part of the head model M. Note that both S and N are simply connected open triangular meshes. The registration mapping $f : S \rightarrow N$ can be computed similar as in Section 5.2. Finally, each
vertex \(v_\ell \) on \(S \) is replaced by

\[
v_\ell \leftarrow w_\ell v_\ell + (1 - w_\ell)f(v_\ell),
\]

where \(w_\ell \) is the weight that satisfies \(w_\ell = 1 \) for every \(v_\ell \in \partial S \) and \(w_\ell \) polynomially decays to 0 as the distance between \(v_\ell \) and \(\partial S \) is larger than 0. A demo video of the head-face alignment and fusion can be found at https://mhyueh.github.io/projects/Diskmap_BEM.html.

6. Concluding Remarks. In this paper, we propose an efficient BEM algorithm for the computation of optimal distortion-balancing disk-shaped parameterizations of simply connected open surfaces. In addition, we prove the existence of a nontrivial accumulation function of our BEM algorithm under some mild conditions of the triangular mesh and show the limiting function is a one-to-one map. Applications on the 3D Chinese virtual broadcasting system as well as the head-face alignment and fusion are demonstrated to show the usefulness of our algorithm.

Acknowledgments. The authors want to thank Prof. Chin-Tien Wu for many valuable discussions. This work is partially supported by the Ministry of Science and Technology, the National Center for Theoretical Sciences, the ST Yau Centers in National Chiao Tung University and Southeast University, and the Center of Mathematical Sciences and Applications at Harvard University.

REFERENCES

