

A Feedback-Based Regularized Primal-Dual Gradient Method for Time-Varying Optimization

Yujie Tang¹, Emiliano Dall'Anese², Andrey Bernstein², Steven Low¹ Netlab, California Institute of Technology ²National Renewable Energy Laboratory

Introduction time-varying environment $oldsymbol{y}_t = \mathcal{F}(oldsymbol{x}_t;t)$ physical / logical state input variables variables system operator sensor time-varying The operator's goal: cost function state variable $oldsymbol{x}_t^* = rg \min \ c_t(oldsymbol{x}_t)$ constraints s.t. $h_t(y_t) \le 0$ nput variable constraints $oldsymbol{x}_t \in \mathcal{X}_t$

This work: online feedback-based algorithms that track the optimal solutions $oldsymbol{x}_t^*$

Finding exact \boldsymbol{x}_t^* may not be appropriate in time-varying setting:

- Can be slow for large systems
- The system / environment may have changed a lot after an exact solution has been found.

Fluctuations Intermittency

Fast Control
Capabilities

A typical example

Real-time Measurements

Algorithm

Regularized Lagrangian: $\mathcal{L}_t(\boldsymbol{x}, \boldsymbol{\lambda}) = c_t(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{h}_t(\mathcal{F}(\boldsymbol{x};t)) - \frac{\epsilon}{2} \|\boldsymbol{\lambda}\|^2$

Primal-dual gradient method:

$$egin{aligned} \hat{oldsymbol{x}}_t &= \mathcal{P}_{\mathcal{X}_t} \left[\hat{oldsymbol{x}}_{t-1} - lpha
abla_{oldsymbol{x}} \mathcal{L}_t(\hat{oldsymbol{x}}_{t-1}, \hat{oldsymbol{\lambda}}_{t-1})
ight] \ \hat{oldsymbol{\lambda}}_t &= \mathcal{P}_{\mathbb{R}_+^m} \left[\hat{oldsymbol{\lambda}}_{t-1} + eta
abla_{oldsymbol{\lambda}} \mathcal{L}_t(\hat{oldsymbol{x}}_{t-1}, \hat{oldsymbol{\lambda}}_{t-1}))
ight] \end{aligned}$$

Utilize feedback measurements: replace $\mathcal{F}(\hat{m{x}}_{t-1};t)$ by measured values $\check{m{y}}_t$

Feedback-based primal-dual gradient method:

$$\hat{\boldsymbol{x}}_{t} = \mathcal{P}_{\mathcal{X}_{t}} \left[\hat{\boldsymbol{x}}_{t-1} - \alpha \left(\nabla c_{t} (\hat{\boldsymbol{x}}_{t-1}) + (\boldsymbol{H}_{t} (\check{\boldsymbol{y}}_{t}) \boldsymbol{J}_{t} (\hat{\boldsymbol{x}}_{t-1}, \check{\boldsymbol{y}}_{t}))^{T} \hat{\boldsymbol{\lambda}}_{t-1} \right) \right]$$

$$\hat{\boldsymbol{\lambda}}_{t} = \mathcal{P}_{\mathbb{R}_{m}^{+}} \left[\hat{\boldsymbol{\lambda}}_{t-1} + \beta \left(\boldsymbol{h}_{t} (\check{\boldsymbol{y}}_{t}) - \epsilon \hat{\boldsymbol{\lambda}}_{t-1} \right) \right]$$

- \boldsymbol{H}_t : Jacobian matrix of \boldsymbol{h}_t \boldsymbol{J}_t : Jacobian matrix of $\mathcal{F}(\,\cdot\,;t)$
- Fast timescale measurements monitor system's *time-varying* behavior.
- Measurements are fed back to optimization iterations *in real-time* even if iteration has not converged yet.
- The resulting \hat{x}_t tracks time-varying optimal solution.
- Feedback measurements
 help reduce computation time
 and facilitate distributed
 implementation.

A distribution network control system [2]

based on the proposed algorithm.

Theoretical Analysis

Theorem: Assume certain regularity conditions and that \mathcal{L}_t is locally sufficiently convex in \boldsymbol{x} around $(\boldsymbol{x}_t^*, \boldsymbol{\lambda}_t^*)$ for any t. With properly chosen parameters α, β, ϵ , if

$$\sigma := \sup_t \|\boldsymbol{x}_t^* - \boldsymbol{x}_{t-1}^*\|$$

is less than some threshold, and measurement error is upper bounded by Δ , then the tracking error satisfies

Simulation

The proposed algorithm has been simulated on a real-time optimal power flow (OPF) problem on a modified IEEE 37 node test feeder with high penetration of solar panels.

- [1] Y. Tang, E. Dall'anese, A. Bernstein, and S. Low. "A feedback-based regularized primal-dual gradient method for time-varying nonconvex optimization", submitted to CDC 2018.
- [2] E. Dall'Anese, S. Guggilam, A. Simonetto, Y. C. Chen, and S. V. Dhople. "Optimal regulation of virtual power plants", IEEE Transactions on Power Systems.