

Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations

Zhen Qu

Harvard University zhenqu@g.harvard.edu

IGC10,6/8/2022

With Daniel J. Jacob, Yuzhong Zhang, Lu Shen, Daniel J. Varon, Xiao Lu, Tia R. Scarpelli, Anthony Bloom, John Worden, and Robert J. Parker

Climate Impacts of CH₄

- CH₄ contributed to a 1.2 W m⁻² radiative forcing and 0.6°C increase of global mean surface air temperature.
- Methane mitigation has the greatest potential to slow warming over the next 20 years.
 (IPCC AR6, 2021)

US and EU Announce Global Pledge to Slash CH₄

(Picture from USA Today)

- The Global Methane Pledge was formally launched on Nov 2, 2021.
- More than 100 countries agree to cut methane emissions by 30% (0.2°C) by 2030

Surge of CH₄ in 2020

(NOAA, 2021)

Global CH₄ Burden is Balanced by the Sources and Sinks

Global CH₄ Burden is Balanced by the Sources and Sinks

Mainly through reactions with OH:

$$CH_4 + OH \longrightarrow CH_3 + H_2O$$

Sources – Sinks = Imbalance Growth of CH₄ concentration

Changes in CH₄ Sources and Sinks During the COVID-19 Shutdown

Sources

(https://www.oilandgasiq.com/strategy-management-and-information/articles/oil-and-gas-companies)

- Oil and gas emission declined in the Permian Basin (Laughner et al., 2021)
- Reduced maintenance lead to **new leaks**(Lyon et al., 2021)

Changes in CH₄ Sources and Sinks During the COVID-19 Shutdown

Sources

(https://www.oilandgasiq.com/strategy-management-and-information/articles/oil-and-gas-companies)

- Oil and gas emission declined in the Permian Basin (Laughner et al., 2021)
- Reduced maintenance lead to **new leaks**(Lyon et al., 2021)

Sinks

Max reduction of 4% in global mean OH

(Miyazaki et al., 2021

Limitation: existing works do not quantify the relative impact of sources and sinks.

Continental regions increased more than the oceans, arguing against a dominant role of the methane sink in driving the 2020 surge.
 (Qu et al., submitted)

Analytical Inversion of the Sources and Sinks of CH₄

Inverse Modeling of Global Methane Sources and Sinks

Prior non-wetland emissions

Prior wetland emissions

- Whole year of 2019 & 2020
- Initial conditions on Jan 1, 2019 and Jan 1,
 2020 are scaled to match GOSAT
- EDGARv4.3.2 as global default;
 EPA greenhouse inventory for CONUS;
 oil, gas, and coal from GFEI;
 wetland from WetCHARTs
- No correction on stratosphere smaller biases at 2° × 2.5° & low latitudes

(Stanevich et al., 2019)

Optimizing CH₄ Sources and Sinks Using Observations

Methane growth rate:

$$\frac{dm}{dt} = E - km - L$$

Acceleration of growth rate:

$$\frac{d^2m}{dt^2} = \frac{dE}{dt} - k\frac{dm}{dt} - m\frac{dk}{dt} - \frac{dL}{dt}$$

$$F = \frac{dE}{dt} - m\frac{dk}{dt}$$

m = methane mass

E = emission

k = OH loss rate constant

L = minor losses (strat, Cl. Dep)

Optimizing CH₄ Sources and Sinks Using Observations

Methane growth rate:

$$\frac{dm}{dt} = E - km - L$$

Acceleration of growth rate:

$$\frac{d^2m}{dt^2} = \frac{dE}{dt} - k\frac{dm}{dt} - m\frac{dk}{dt} - \frac{dL}{dt}$$

m = methane massE = emission

k = OH loss rate constantL = minor losses (strat, Cl. Dep)

Forcing away from steady state:
$$F = \frac{dE}{dt} - m\frac{dk}{dt} = 36 \text{ Tg a}^{-1}$$

Sources

+ 31 Tg a⁻¹ (86%)

2020-2019 change in emissions [Tg a⁻¹]

(Qu et al., submitted)

Optimizing CH₄ Sources and Sinks Using Observations

Methane growth rate:

$$\frac{dm}{dt} = E - km - L$$

m = methane mass

E = emission

k = OH loss rate constant

L = minor losses (strat, Cl. Dep)

Acceleration of growth rate:

Forcing away from steady state:
$$F = \frac{dE}{dt} - m\frac{dk}{dt} = 36 \text{ Tg a}^{-1}$$

Sources

+ 31 Tg a⁻¹ (86%)

Sinks

- 5 Tg a⁻¹ (14%)

Global mean OH reduce by 1.2%

(Qu et al., submitted)

9-member inversion ensemble: $+30 \pm 5.5$ Tg a⁻¹ (82% ± 18 %)

Summary

- A global inversion of GOSAT methane observation shows that:
- The increase of emissions contributes to 86% increase of forcing on methane budget away from a steady state, and the rest is attributed to decreases in global OH concentrations.
- Half of the increase in methane emissions from 2019 to 2020 is in Africa, potentially due to high precipitation and flooding in East Africa.
- We may be seeing the wetlands respond to climate change!

Analytical Inversion of the Sources and Sinks of CH₄

Description	Variable
State vector	x
Jacobian matrix	K
Satellite observation	У
Observational error covariance matrix	S _o
Prior error covariance matrix	S _a
Regularization parameter	γ

Cost Function (Gaussian errors, uncorrelated obs & prior errors):

$$J(x) = \frac{1}{2} (x - x_a)^T \mathbf{S_a}^{-1} (x - x_a) + \frac{1}{2} \gamma (y - \mathbf{K}x)^T \mathbf{S_o}^{-1} (y - \mathbf{K}x)$$

Analytical solution:
$$\hat{x} = x_a + (\gamma \mathbf{K}^T \mathbf{S_o}^{-1} \mathbf{K} + \mathbf{S_a}^{-1})^{-1} \gamma \mathbf{K}^T \mathbf{S_o}^{-1} (y - \mathbf{K} \mathbf{x})$$