Publications by Year: 2013

Warraich HJ. Piece of my mind. Fishing for yeti. JAMA. 2013;310 :373.
Warraich HJ, Nasir K. Subclinical cardiovascular disease assessment in persons with diabetes. Curr Cardiol Rep. 2013;15 :358.Abstract
Patients with diabetes mellitus are at particularly high risk for cardiovascular disease. Although global risk factor scoring systems, such as the Framingham Risk Score, are well established for screening asymptomatic adults, they are not as predictive in diabetics. Therefore, there has been considerable interest in new screening tests to establish cardiovascular risk in diabetics. Coronary artery calcium assessment, both baseline levels and progression, have been shown to be additive to risk factor scoring systems and are independently predictive of cardiovascular mortality in diabetics. Current American Heart Association/American College of Cardiology Foundation guidelines recommend coronary calcium scoring for asymptomatic diabetics. Myocardial perfusion studies are recommended for patients with a coronary calcium score >400 but the level of evidence is poor. The data for other screening tests is limited. Further research is required into assessing what would be an appropriate follow-up duration for serial coronary calcium scanning.
Khabbaz KR, Mahmood F, Shakil O, Warraich HJ, Gorman, J. H. 3rd, Gorman RC, Matyal R, Panzica P, Hess PE. Dynamic 3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation. Ann Thorac Surg. 2013;95 :105-10.Abstract
BACKGROUND: Mitral valve (MV) annular dynamics have been well described in animal models of functional mitral regurgitation (FMR). Despite this, little if any data exist regarding the dynamic MV annular geometry in humans with FMR. In the current study we hypothesized that 3-dimensional (3D) echocardiography, in conjunction with commercially available software, could be used to quantify the dynamic changes in MV annular geometry associated with FMR. METHODS: Intraoperative 3D transesophageal echocardiographic data obtained from 34 patients with FMR and 15 controls undergoing cardiac operations were dynamically analyzed for differences in mitral annular geometry with TomTec 4D MV Assessment 2.0 software (TomTec Imaging Systems GmbH, Munich, Germany). RESULTS: In patients with FMR, the mean mitral annular area (14.6 cm(2) versus 9.6 cm(2)), circumference (14.1 cm versus 11.4 cm), anteroposterior (4.0 cm versus 3.0 cm) and anterolateral-posteromedial (4.3 cm versus 3.6 cm) diameters, tenting volume (6.2 mm(3) versus 3.5 mm(3)) and nonplanarity angle (NPA) (154 degrees +/- 15 versus 136 degrees +/- 11) were greater at all points during systole compared with controls (p < 0.01). Vertical mitral annular displacement (5.8 mm versus 8.3 mm) was reduced in FMR compared with controls (p < 0.01). CONCLUSIONS: There are significant differences in dynamic mitral annular geometry between patients with FMR and those without. We were able to analyze these changes in a clinically feasible fashion. Ready availability of this information has the potential to aid comprehensive quantification of mitral annular function and possibly assist in both clinical decision making and annuloplasty ring selection.
Warraich HJ, Matyal R, Bergman R, Hess PE, Khabbaz K, Manning WJ, Mahmood F. Impact of aortic valve replacement for aortic stenosis on dynamic mitral annular motion and geometry. Am J Cardiol. 2013;112 :1445-9.Abstract
The impact of aortic valve replacement (AVR) on the dynamic geometry and motion of the mitral annulus remains unknown. We analyzed the effects of AVR on the dynamic geometry and motion of the mitral annulus. We used 3-dimensional transesophageal echocardiography to analyze 39 consecutive patients undergoing elective surgical AVR for aortic stenosis. Intraoperative 3-dimensional transesophageal echocardiography was performed immediately before and after AVR. Volumetric data sets were analyzed using a software package capable of dynamically tracking the mitral annulus and leaflets during the entire systolic ejection phase. After AVR, there were significant decreases (p <0.01) in annular dimensions such as anteroposterior (3.5 +/- 0.1 vs 3.2 +/- 0.1 cm), anterolateral-posteromedial (3.7 +/- 0.1 vs 3.5 +/- 0.1 cm), and commissural diameters (3.7 +/- 0.1 vs 3.3 +/- 0.1 cm), as well as annular circumference (12.0 +/- 0.30 vs 11.1 +/- 0.2 cm) and 3-dimensional mitral annular area (mean 10.9 +/- 0.6 vs 9.3 +/- 0.3 cm(3)). Vertical mitral annular displacement was also reduced (6.2 +/- 3.1 vs 4.3 +/- 2.2 mm). Mitral annular nonplanarity angle (154 +/- 1.5 degrees vs 161 +/- 1.6 degrees ) and aorto-mitral angle (133 +/- 3.3 degrees vs 142 +/- 2.0 degrees ) were both increased after AVR, suggesting reduced nonplanar shape of the mitral annulus and reduced aorto-mitral flexion. In conclusion, these data demonstrate that mitral annular size is reduced immediately after AVR and that the dynamic motion of the mitral annulus is restricted. These findings may have important clinical implications for patients undergoing AVR with concurrent mitral regurgitation.
Warraich H. Fishing for Yeti. Journal of the American Medical Association. 2013;310(4):373.
Warraich H, Nasir K. Subclinical cardiovascular disease assessment in persons with diabetes. . Current Cardiology Reports. 2013;15 (5) :358.