J. Xu, H. Li, M. G. Irwin, Z. Y. Xia, X. Mao, S. Lei, G. T. Wong, V. Hung, C. W. Cheung, X. Fang, A. S. Clanachan, and Z. Xia. 2014. “Propofol ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction via heme oxygenase-1/signal transducer and activator of transcription 3 signaling pathway in rats.” Crit Care MedCrit Care MedCrit Care Med, 42, Pp. e583-94.Abstract
OBJECTIVES: Heme oxygenase-1 is inducible in cardiomyocytes in response to stimuli such as oxidative stress and plays critical roles in combating cardiac hypertrophy and injury. Signal transducer and activator of transcription 3 plays a pivotal role in heme oxygenase-1-mediated protection against liver and lung injuries under oxidative stress. We hypothesized that propofol, an anesthetic with antioxidant capacity, may attenuate hyperglycemia-induced oxidative stress in cardiomyocytes via enhancing heme oxygenase-1 activation and ameliorate hyperglycemia-induced cardiac hypertrophy and apoptosis via heme oxygenase-1/signal transducer and activator of transcription 3 signaling and improve cardiac function in diabetes. DESIGN: Treatment study. SETTING: Research laboratory. SUBJECTS: Sprague-Dawley rats. INTERVENTIONS: In vivo and in vitro treatments. MEASUREMENTS AND MAIN RESULTS: At 8 weeks of streptozotocin-induced type 1 diabetes in rats, myocardial 15-F2t-isoprostane was significantly increased, accompanied by cardiomyocyte hypertrophy and apoptosis and impaired left ventricular function that was coincident with reduced heme oxygenase-1 activity and signal transducer and activator of transcription 3 activation despite an increase in heme oxygenase-1 protein expression as compared to control. Propofol infusion (900 mug/kg/min) for 45 minutes significantly improved cardiac function with concomitantly enhanced heme oxygenase-1 activity and signal transducer and activator of transcription activation. Similar to the changes seen in diabetic rat hearts, high glucose (25 mmol/L) exposure for 48 hours led to cardiomyocyte hypertrophy and apoptosis, both in primary cultured neonatal rat cardiomyocytes and in H9c2 cells compared to normal glucose (5.5 mmol/L). Hypertrophy was accompanied by increased reactive oxygen species and malondialdehyde production and caspase-3 activity. Propofol, similar to the heme oxygenase-1 inducer cobalt protoporphyrin, significantly increased cardiomyocyte heme oxygenase-1 and p-signal transducer and activator of transcription protein expression and heme oxygenase-1 activity and attenuated high-glucose-mediated cardiomyocyte hypertrophy and apoptosis and reduced reactive oxygen species and malondialdehyde production (p < 0.05). These protective effects of propofol were abolished by heme oxygenase-1 inhibition with zinc protoporphyrin and by heme oxygenase-1 or signal transducer and activator of transcription 3 gene knockdown. CONCLUSIONS: Heme oxygenase-1/signal transducer and activator of transcription 3 signaling plays a critical role in propofol-mediated amelioration of hyperglycemia-induced cardiomyocyte hypertrophy and apoptosis, whereby propofol improves cardiac function in diabetic rats.
S. Lei, H. Li, J. Xu, Y. Liu, X. Gao, J. Wang, K. F. Ng, W. B. Lau, X. L. Ma, B. Rodrigues, M. G. Irwin, and Z. Xia. 2013. “Hyperglycemia-induced protein kinase C beta2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling.” DiabetesDiabetesDiabetes, 62, Pp. 2318-28.Abstract
Protein kinase C (PKC)beta2 is preferably overexpressed in the diabetic myocardium, which induces cardiomyocyte hypertrophy and contributes to diabetic cardiomyopathy, but the underlying mechanisms are incompletely understood. Caveolae are critical in signal transduction of PKC isoforms in cardiomyocytes. Caveolin (Cav)-3, the cardiomyocyte-specific caveolar structural protein isoform, is decreased in the diabetic heart. The current study determined whether PKCbeta2 activation affects caveolae and Cav-3 expression. Immunoprecipitation and immunofluorescence analysis revealed that high glucose (HG) increased the association and colocalization of PKCbeta2 and Cav-3 in isolated cardiomyocytes. Disruption of caveolae by methyl-beta-cyclodextrin or Cav-3 small interfering (si)RNA transfection prevented HG-induced PKCbeta2 phosphorylation. Inhibition of PKCbeta2 activation by compound CGP53353 or knockdown of PKCbeta2 expression via siRNA attenuated the reductions of Cav-3 expression and Akt/endothelial nitric oxide synthase (eNOS) phosphorylation in cardiomyocytes exposed to HG. LY333531 treatment (for a duration of 4 weeks) prevented excessive PKCbeta2 activation and attenuated cardiac diastolic dysfunction in rats with streptozotocin-induced diabetes. LY333531 suppressed the decreased expression of myocardial NO, Cav-3, phosphorylated (p)-Akt, and p-eNOS and also mitigated the augmentation of O2(-), nitrotyrosine, Cav-1, and iNOS expression. In conclusion, hyperglycemia-induced PKCbeta2 activation requires caveolae and is associated with reduced Cav-3 expression in the diabetic heart. Prevention of excessive PKCbeta2 activation attenuated cardiac diastolic dysfunction by restoring Cav-3 expression and subsequently rescuing Akt/eNOS/NO signaling.
T. Wang, X. Mao, H. Li, S. Qiao, A. Xu, J. Wang, S. Lei, Z. Liu, K. F. Ng, G. T. Wong, P. M. Vanhoutte, M. G. Irwin, and Z. Xia. 2013. “N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes.” Free Radic Biol MedFree Radic Biol MedFree Radic Biol Med, 63, Pp. 291-303.Abstract
N-Acetylcysteine (NAC) and allopurinol (ALP) synergistically reduce myocardial ischemia reperfusion (MI/R) injury in diabetes. However, the mechanism is unclear. We postulated that NAC and ALP attenuated diabetic MI/R injury by up-regulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathways subsequent to adiponectin (APN) activation. Control (C) or streptozotocin-induced diabetic rats (D) were untreated or treated with NAC and ALP followed by MI/R. D rats displayed larger infarct size accompanied by decreased phosphorylation of Akt, STAT3 and decreased cardiac nitric oxide (NO) and APN levels. NAC and ALP decreased MI/R injury in D rats, enhanced phosphorylation of Akt and STAT3, and increased NO and APN. High glucose and hypoxia/reoxygenation exposure induced cell death and Akt and STAT3 inactivation in cultured cardiomyocytes, which were prevented by NAC and ALP. The PI3K inhibitor wortmannin and Jak2 inhibitor AG490 abolished the protection of NAC and ALP. Similarly, APN restored posthypoxic Akt and STAT3 activation and decreased cell death in cardiomyocytes. Gene silencing with AdipoR2 siRNA or STAT3 siRNA but not AdipoR1 siRNA abolished the protection of NAC and ALP. In conclusion, NAC and ALP prevented diabetic MI/R injury through PI3K/Akt and Jak2/STAT3 and cardiac APN may serve as a mediator via AdipoR2 in this process.
H. Li, Z. Liu, J. Wang, G. T. Wong, C. W. Cheung, L. Zhang, C. Chen, Z. Xia, and M. G. Irwin. 2013. “Susceptibility to myocardial ischemia reperfusion injury at early stage of type 1 diabetes in rats.” Cardiovasc DiabetolCardiovasc DiabetolCardiovasc Diabetol, 12, Pp. 133.Abstract
BACKGROUND: Large body of evidences accumulated in clinical and epidemiological studies indicate that hearts of diabetic subjects are more sensitive to ischemia reperfusion injury (IRI), which results in a higher rate of mortality at post-operation than that of non-diabetes. However, experimental results are equivocal and point to either increased or decreased susceptibility of the diabetic hearts to IRI, especially at the early stage of the disease. The present study was designed to test the hypothesis that the duration/severity of the indexed ischemia is a major determinant of the vulnerability to myocardial IRI at early stage of diabetes. METHODS: Four weeks streptozotocin (STZ)-induced diabetic (D) and non-diabetic (C) Sprague-Dawley rats were randomly assigned to receive 30 or 45 min of left anterior descending artery ligation followed by 2 or 3 hours of reperfusion, respectively. Cardiac function was recorded by using Pressure-Volume (PV) conduction system. Myocardial infarct size was determined with triphenyltetrazolium chloride staining. Plasma Creatine kinase-MB (CK-MB), Lactate dehydrogenase (LDH) release, myocardial nitric oxide(NO) content and nitrotyrosine formation, 15-F(2t)-Isoprostane and plasma superoxide dismutase (SOD) were measured with colorimetric assays. Cardiomyocyte apoptosis was assessed by TUNEL staining. Myocardial TNFalpha, Caspase-3, STAT3, Akt, and GSK-3beta were determined by Western blotting. RESULTS: Prolongation of ischemia but not reperfusion from 30 min to 45 min significantly increased infarct size in D compared to C rats (P < 0.05), accompanied with significantly increased plasma CK-MB (P < 0.05). Prolongation of the duration of either ischemia or reperfusion significantly increased plasma LDH release and myocardial 15-F(2t)-Isoprostane and reduced plasma SOD activity, with concomitant reduction of myocardial NO and increase of nitrotyrosine formation in D relative to C (P < 0.05). Prolongation of ischemia and reperfusion significantly reduced left ventricular ejection fraction and increased the peak rate of pressure, accompanied with increased end systolic pressure in D relative to C rats (P < 0.05) but reduced phosphorylations of myocardial STAT3 at site Ser727 and Akt at site Ser473 as well as GSK-3beta at Ser 9 (P < 0.05). CONCLUSIONS: Diabetic hearts, even at early stage of the disease are more sensitive to IRI, and this increased severity of post-ischemic myocardial injury depends more on the duration of ischemia than that of reperfusion.