Publications

2017
Daniel S Tylee, Jonathan L Hess, Thomas P Quinn, Rahul Barve, Hailiang Huang, Yanli Zhang-James, Jeffrey Chang, Boryana S Stamova, Frank R Sharp, Irva Hertz-Picciotto, Stephen V Faraone, Sek Won Kong, and Stephen J Glatt. 2017. “Blood transcriptomic comparison of individuals with and without autism spectrum disorder: A combined-samples mega-analysis.” Am J Med Genet B Neuropsychiatr Genet, 174, 3, Pp. 181-201.Abstract
Blood-based microarray studies comparing individuals affected with autism spectrum disorder (ASD) and typically developing individuals help characterize differences in circulating immune cell functions and offer potential biomarker signal. We sought to combine the subject-level data from previously published studies by mega-analysis to increase the statistical power. We identified studies that compared ex vivo blood or lymphocytes from ASD-affected individuals and unrelated comparison subjects using Affymetrix or Illumina array platforms. Raw microarray data and clinical meta-data were obtained from seven studies, totaling 626 affected and 447 comparison subjects. Microarray data were processed using uniform methods. Covariate-controlled mixed-effect linear models were used to identify gene transcripts and co-expression network modules that were significantly associated with diagnostic status. Permutation-based gene-set analysis was used to identify functionally related sets of genes that were over- and under-expressed among ASD samples. Our results were consistent with diminished interferon-, EGF-, PDGF-, PI3K-AKT-mTOR-, and RAS-MAPK-signaling cascades, and increased ribosomal translation and NK-cell related activity in ASD. We explored evidence for sex-differences in the ASD-related transcriptomic signature. We also demonstrated that machine-learning classifiers using blood transcriptome data perform with moderate accuracy when data are combined across studies. Comparing our results with those from blood-based studies of protein biomarkers (e.g., cytokines and trophic factors), we propose that ASD may feature decoupling between certain circulating signaling proteins (higher in ASD samples) and the transcriptional cascades which they typically elicit within circulating immune cells (lower in ASD samples). These findings provide insight into ASD-related transcriptional differences in circulating immune cells. © 2016 Wiley Periodicals, Inc.
Christian R Marshall, Daniel P Howrigan, Daniele Merico, Bhooma Thiruvahindrapuram, Wenting Wu, Douglas S Greer, Danny Antaki, Aniket Shetty, Peter A Holmans, Dalila Pinto, Madhusudan Gujral, William M Brandler, Dheeraj Malhotra, Zhouzhi Wang, Karin Fuentes V Fajarado, Michelle S Maile, Stephan Ripke, Ingrid Agartz, Margot Albus, Madeline Alexander, Farooq Amin, Joshua Atkins, Silviu A Bacanu, Richard A Belliveau, Sarah E Bergen, Marcelo Bertalan, Elizabeth Bevilacqua, Tim B Bigdeli, Donald W Black, Richard Bruggeman, Nancy G Buccola, Randy L Buckner, Brendan Bulik-Sullivan, William Byerley, Wiepke Cahn, Guiqing Cai, Murray J Cairns, Dominique Campion, Rita M Cantor, Vaughan J Carr, Noa Carrera, Stanley V Catts, Kimberley D Chambert, Wei Cheng, Robert C Cloninger, David Cohen, Paul Cormican, Nick Craddock, Benedicto Crespo-Facorro, James J Crowley, David Curtis, Michael Davidson, Kenneth L Davis, Franziska Degenhardt, Jurgen Del Favero, Lynn E Delisi, Dimitris Dikeos, Timothy Dinan, Srdjan Djurovic, Gary Donohoe, Elodie Drapeau, Jubao Duan, Frank Dudbridge, Peter Eichhammer, Johan Eriksson, Valentina Escott-Price, Laurent Essioux, Ayman H Fanous, Kai-How Farh, Martilias S Farrell, Josef Frank, Lude Franke, Robert Freedman, Nelson B Freimer, Joseph I Friedman, Andreas J Forstner, Menachem Fromer, Giulio Genovese, Lyudmila Georgieva, Elliot S Gershon, Ina Giegling, Paola Giusti-Rodríguez, Stephanie Godard, Jacqueline I Goldstein, Jacob Gratten, Lieuwe De Haan, Marian L Hamshere, Mark Hansen, Thomas Hansen, Vahram Haroutunian, Annette M Hartmann, Frans A Henskens, Stefan Herms, Joel N Hirschhorn, Per Hoffmann, Andre A Hofman, Hailiang Huang, Masashi Ikeda, Inge Joa, Anna K Kähler, René S Kahn, Luba Kalaydjieva, Juha Karjalainen, David Kavanagh, Matthew C Keller, Brian J Kelly, James L Kennedy, Yun Jung Kim, James A Knowles, Bettina Konte, Claudine Laurent, Phil Lee, Hong S Lee, Sophie E Legge, Bernard Lerer, Deborah L Levy, Kung-Yee Liang, Jeffrey Lieberman, Jouko Lönnqvist, Carmel M Loughland, Patrik KE Magnusson, Brion S Maher, Wolfgang Maier, Jacques Mallet, Manuel Mattheisen, Morten Mattingsdal, Robert W McCarley, Colm McDonald, Andrew M Mcintosh, Sandra Meier, Carin J Meijer, Ingrid Melle, Raquelle I Mesholam-Gately, Andres Metspalu, Patricia T Michie, Lili Milani, Vihra Milanova, Younes Mokrab, Derek W Morris, Bertram Müller-Myhsok, Kieran C Murphy, Robin M Murray, Inez Myin-Germeys, Igor Nenadic, Deborah A Nertney, Gerald Nestadt, Kristin K Nicodemus, Laura Nisenbaum, Annelie Nordin, Eadbhard O'Callaghan, Colm O'Dushlaine, Sang-Yun Oh, Ann Olincy, Line Olsen, Anthony F O'Neill, Jim Van Os, Christos Pantelis, George N Papadimitriou, Elena Parkhomenko, Michele T Pato, Tiina Paunio, Diana O Perkins, Tune H Pers, Olli Pietiläinen, Jonathan Pimm, Andrew J Pocklington, John Powell, Alkes Price, Ann E Pulver, Shaun M Purcell, Digby Quested, Henrik B Rasmussen, Abraham Reichenberg, Mark A Reimers, Alexander L Richards, Joshua L Roffman, Panos Roussos, Douglas M Ruderfer, Veikko Salomaa, Alan R Sanders, Adam Savitz, Ulrich Schall, Thomas G Schulze, Sibylle G Schwab, Edward M Scolnick, Rodney J Scott, Larry J Seidman, Jianxin Shi, Jeremy M Silverman, Jordan W Smoller, Erik Söderman, Chris CA Spencer, Eli A Stahl, Eric Strengman, Jana Strohmaier, Scott T Stroup, Jaana Suvisaari, Dragan M Svrakic, Jin P Szatkiewicz, Srinivas Thirumalai, Paul A Tooney, Juha Veijola, Peter M Visscher, John Waddington, Dermot Walsh, Bradley T Webb, Mark Weiser, Dieter B Wildenauer, Nigel M Williams, Stephanie Williams, Stephanie H Witt, Aaron R Wolen, Brandon K Wormley, Naomi R Wray, Jing Qin Wu, Clement C Zai, Rolf Adolfsson, Ole A Andreassen, Douglas HR Blackwood, Elvira Bramon, Joseph D Buxbaum, Sven Cichon, David A Collier, Aiden Corvin, Mark J Daly, Ariel Darvasi, Enrico Domenici, Tõnu Esko, Pablo V Gejman, Michael Gill, Hugh Gurling, Christina M Hultman, Nakao Iwata, Assen V Jablensky, Erik G Jönsson, Kenneth S Kendler, George Kirov, Jo Knight, Douglas F Levinson, Qingqin S Li, Steven A McCarroll, Andrew McQuillin, Jennifer L Moran, Bryan J Mowry, Markus M Nöthen, Roel A Ophoff, Michael J Owen, Aarno Palotie, Carlos N Pato, Tracey L Petryshen, Danielle Posthuma, Marcella Rietschel, Brien P Riley, Dan Rujescu, Pamela Sklar, David St Clair, James TR Walters, Thomas Werge, Patrick F Sullivan, Michael C O'Donovan, Stephen W Scherer, Benjamin M Neale, and Jonathan Sebat. 2017. “Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects.” Nat Genet, 49, 1, Pp. 27-35.Abstract
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 × 10(-15)), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 × 10(-6)). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 × 10(-11)) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 × 10(-5)). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.
Dimitre R Simeonov, Benjamin G Gowen, Mandy Boontanrart, Theodore L Roth, John D Gagnon, Maxwell R Mumbach, Ansuman T Satpathy, Youjin Lee, Nicolas L Bray, Alice Y Chan, Dmytro S Lituiev, Michelle L Nguyen, Rachel E Gate, Meena Subramaniam, Zhongmei Li, Jonathan M Woo, Therese Mitros, Graham J Ray, Gemma L Curie, Nicki Naddaf, Julia S Chu, Hong Ma, Eric Boyer, Frederic Van Gool, Hailiang Huang, Ruize Liu, Victoria R Tobin, Kathrin Schumann, Mark J Daly, Kyle K Farh, Mark K Ansel, Chun J Ye, William J Greenleaf, Mark S Anderson, Jeffrey A Bluestone, Howard Y Chang, Jacob E Corn, and Alexander Marson. 2017. “Discovery of stimulation-responsive immune enhancers with CRISPR activation.” Nature, 549, 7670, Pp. 111-115.Abstract
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.
Hailiang Huang, Ming Fang, Luke Jostins, Maša Umićević Mirkov, Gabrielle Boucher, Carl A Anderson, Vibeke Andersen, Isabelle Cleynen, Adrian Cortes, François Crins, Mauro D'Amato, Valérie Deffontaine, Julia Dmitrieva, Elisa Docampo, Mahmoud Elansary, Kyle Kai-How Farh, Andre Franke, Ann-Stephan Gori, Philippe Goyette, Jonas Halfvarson, Talin Haritunians, Jo Knight, Ian C Lawrance, Charlie W Lees, Edouard Louis, Rob Mariman, Theo Meuwissen, Myriam Mni, Yukihide Momozawa, Miles Parkes, Sarah L Spain, Emilie Théâtre, Gosia Trynka, Jack Satsangi, Suzanne van Sommeren, Severine Vermeire, Ramnik J Xavier, Rinse K Weersma, Richard H Duerr, Christopher G Mathew, John D Rioux, Dermot PB McGovern, Judy H Cho, Michel Georges, Mark J Daly, and Jeffrey C Barrett. 2017. “Fine-mapping inflammatory bowel disease loci to single-variant resolution.” Nature, 547, 7662, Pp. 173-178.Abstract
Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been conclusively resolved to specific functional variants. Here we report fine-mapping of 94 inflammatory bowel disease loci using high-density genotyping in 67,852 individuals. We pinpoint 18 associations to a single causal variant with greater than 95% certainty, and an additional 27 associations to a single variant with greater than 50% certainty. These 45 variants are significantly enriched for protein-coding changes (n = 13), direct disruption of transcription-factor binding sites (n = 3), and tissue-specific epigenetic marks (n = 10), with the last category showing enrichment in specific immune cells among associations stronger in Crohn's disease and in gut mucosa among associations stronger in ulcerative colitis. The results of this study suggest that high-resolution fine-mapping in large samples can convert many discoveries from genome-wide association studies into statistically convincing causal variants, providing a powerful substrate for experimental elucidation of disease mechanisms.
SE Legge, ML Hamshere, S Ripke, AF Pardinas, JI Goldstein, E Rees, AL Richards, G Leonenko, LF Jorskog, KD Chambert, DA Collier, G Genovese, I Giegling, P Holmans, A Jonasdottir, G Kirov, SA McCarroll, JH MacCabe, K Mantripragada, JL Moran, BM Neale, H Stefansson, D Rujescu, MJ Daly, PF Sullivan, MJ Owen, MC O'Donovan, and JTR Walters. 2017. “Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia.” Mol Psychiatry, 22, 10, Pp. 1502-1508.Abstract
The antipsychotic clozapine is uniquely effective in the management of schizophrenia; however, its use is limited by its potential to induce agranulocytosis. The causes of this, and of its precursor neutropenia, are largely unknown, although genetic factors have an important role. We sought risk alleles for clozapine-associated neutropenia in a sample of 66 cases and 5583 clozapine-treated controls, through a genome-wide association study (GWAS), imputed human leukocyte antigen (HLA) alleles, exome array and copy-number variation (CNV) analyses. We then combined associated variants in a meta-analysis with data from the Clozapine-Induced Agranulocytosis Consortium (up to 163 cases and 7970 controls). In the largest combined sample to date, we identified a novel association with rs149104283 (odds ratio (OR)=4.32, P=1.79 × 10(-8)), intronic to transcripts of SLCO1B3 and SLCO1B7, members of a family of hepatic transporter genes previously implicated in adverse drug reactions including simvastatin-induced myopathy and docetaxel-induced neutropenia. Exome array analysis identified gene-wide associations of uncommon non-synonymous variants within UBAP2 and STARD9. We additionally provide independent replication of a previously identified variant in HLA-DQB1 (OR=15.6, P=0.015, positive predictive value=35.1%). These results implicate biological pathways through which clozapine may act to cause this serious adverse effect.
Parisa Shooshtari, Hailiang Huang, and Chris Cotsapas. 2017. “Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease.” Am J Hum Genet, 101, 1, Pp. 75-86.Abstract
Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk. These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites (DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molecular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across samples and connect them to the genes they control through robust re-analysis of public data. We find significant evidence of regulatory potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, and we find that individual genes are targeted by these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive disease risk.
Xia Li, Hailiang Huang, Yanfang Guan, Yuhua Gong, Cheng-Yi He, Xin Yi, Ming Qi, and Zhi-Ying Chen. 2017. “Whole-exome sequencing predicted cancer epitope trees of 23 early cervical cancers in Chinese women.” Cancer Med, 6, 1, Pp. 207-219.Abstract
Emerging evidence suggest that the heterogeneity of cancer limits the efficacy of immunotherapy. To search for optimal therapeutic targets for enhancing the efficacy, we used whole-exome sequencing data of 23 early cervical tumors from Chinese women to investigate the hierarchical structure of the somatic mutations and the neo-epitopes. The putative neo-epitopes were predicted based on the mutant peptides' strong binding with major histocompatibility complex class I molecules. We found that each tumor carried an average of 117 mutations and 61 putative neo-epitopes. Each patient displayed a unique phylogenetic tree in which almost all subclones harbored neo-epitopes, highlighting the importance of individual neo-epitope tree in determination of immunotherapeutic targets. The alterations in FBXW7 and PIK3CA, or other members of the significantly altered ubiquitin-mediated proteolysis and extracellular matrix receptor interaction related pathways, were proposed as the earliest changes triggering the malignant progression. The neo-epitopes involved in these pathways, and located at the top of the hierarchy tree, might become the optimal candidates for therapeutic targets, possessing the potential to mediate T-cell killing of the descendant cells. These findings expanded our understanding in early stage of cervical carcinogenesis and offered an important approach to assist optimizing the immunotherapeutic target selection.
2016
Joanna M Peloquin, Gautam Goel, Lingjia Kong, Hailiang Huang, Talin Haritunians, Balfour R Sartor, Mark J Daly, Rodney D Newberry, Dermot P McGovern, Vijay Yajnik, Sergio A Lira, and Ramnik J Xavier. 2016. “Characterization of candidate genes in inflammatory bowel disease-associated risk loci.” JCI Insight, 1, 13, Pp. e87899.Abstract
GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn's disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis.
Padhraig Gormley, Verneri Anttila, Bendik S Winsvold, Priit Palta, Tonu Esko, Tune H Pers, Kai-How Farh, Ester Cuenca-Leon, Mikko Muona, Nicholas A Furlotte, Tobias Kurth, Andres Ingason, George McMahon, Lannie Ligthart, Gisela M Terwindt, Mikko Kallela, Tobias M Freilinger, Caroline Ran, Scott G Gordon, Anine H Stam, Stacy Steinberg, Guntram Borck, Markku Koiranen, Lydia Quaye, Hieab HH Adams, Terho Lehtimäki, Antti-Pekka Sarin, Juho Wedenoja, David A Hinds, Julie E Buring, Markus Schürks, Paul M Ridker, Maria Gudlaug Hrafnsdottir, Hreinn Stefansson, Susan M Ring, Jouke-Jan Hottenga, Brenda WJH Penninx, Markus Färkkilä, Ville Artto, Mari Kaunisto, Salli Vepsäläinen, Rainer Malik, Andrew C Heath, Pamela AF Madden, Nicholas G Martin, Grant W Montgomery, Mitja I Kurki, Mart Kals, Reedik Mägi, Kalle Pärn, Eija Hämäläinen, Hailiang Huang, Andrea E Byrnes, Lude Franke, Jie Huang, Evie Stergiakouli, Phil H Lee, Cynthia Sandor, Caleb Webber, Zameel Cader, Bertram Muller-Myhsok, Stefan Schreiber, Thomas Meitinger, Johan G Eriksson, Veikko Salomaa, Kauko Heikkilä, Elizabeth Loehrer, Andre G Uitterlinden, Albert Hofman, Cornelia M van Duijn, Lynn Cherkas, Linda M Pedersen, Audun Stubhaug, Christopher S Nielsen, Minna Männikkö, Evelin Mihailov, Lili Milani, Hartmut Göbel, Ann-Louise Esserlind, Anne Francke Christensen, Thomas Folkmann Hansen, Thomas Werge, Jaakko Kaprio, Arpo J Aromaa, Olli Raitakari, Arfan M Ikram, Tim Spector, Marjo-Riitta Järvelin, Andres Metspalu, Christian Kubisch, David P Strachan, Michel D Ferrari, Andrea C Belin, Martin Dichgans, Maija Wessman, Arn MJM van den Maagdenberg, John-Anker Zwart, Dorret I Boomsma, George Davey Smith, Kari Stefansson, Nicholas Eriksson, Mark J Daly, Benjamin M Neale, Jes Olesen, Daniel I Chasman, Dale R Nyholt, and Aarno Palotie. 2016. “Corrigendum: Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.” Nat Genet, 48, 10, Pp. 1296.
Yunfeng Ruan, Jie Jiang, Liang Guo, Yan Li, Hailiang Huang, Lu Shen, Mengqi Luan, Mo Li, Huihui Du, Cheng Ma, Lin He, Xiaoqing Zhang, and Shengying Qin. 2016. “Genetic Association of Curative and Adverse Reactions to Tyrosine Kinase Inhibitors in Chinese advanced Non-Small Cell Lung Cancer patients.” Sci Rep, 6, Pp. 23368.Abstract
Epidermal growth factor receptor (EGFR) Tyrosine kinase inhibitor (TKI) is an effective targeted therapy for advanced non-small cell lung cancer (NSCLC) but also causes adverse drug reactions (ADRs) e.g., skin rash and diarrhea. SNPs in the EGFR signal pathway, drug metabolism/ transport pathways and miRNA might contribute to the interpersonal difference in ADRs but biomarkers for therapeutic responses and ADRs to TKIs in Chinese population are yet to be fully investigated. We recruited 226 Chinese advanced NSCLC patients who received TKIs erlotinib, gefitinib and icotinib hydrochloride and systematically studied the genetic factors associated with therapeutic responses and ADRs. Rs884225 (T > C) in EGFR 3' UTR was significantly associated with lower risk of ADRs to erlotinib (p value = 0.0010, adjusted p value = 0.042). A multivariant interaction four-SNP model (rs884225 in EGFR 3'UTR, rs7787082 in ABCB1 intron, rs38845 in MET intron and rs3803300 in AKT1 5'UTR) was associated with ADRs in general and the more specific drug induced skin injury. The SNPs associated with both therapeutic responses and ADRs indicates they might share a common genetic basis. Our study provided potential biomarkers and clues for further research of biomarkers for therapeutic responses and ADRs in Chinese NSCLC patients.
Kara G Lassen, Craig I McKenzie, Muriel Mari, Tatsuro Murano, Jakob Begun, Leigh A Baxt, Gautam Goel, Eduardo J Villablanca, Szu-Yu Kuo, Hailiang Huang, Laurence Macia, Atul K Bhan, Marcel Batten, Mark J Daly, Fulvio Reggiori, Charles R Mackay, and Ramnik J Xavier. 2016. “Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk.” Immunity, 44, 6, Pp. 1392-405.Abstract
Although numerous polymorphisms have been associated with inflammatory bowel disease (IBD), identifying the function of these genetic factors has proved challenging. Here we identified a role for nine genes in IBD susceptibility loci in antibacterial autophagy and characterized a role for one of these genes, GPR65, in maintaining lysosome function. Mice lacking Gpr65, a proton-sensing G protein-coupled receptor, showed increased susceptibly to bacteria-induced colitis. Epithelial cells and macrophages lacking GPR65 exhibited impaired clearance of intracellular bacteria and accumulation of aberrant lysosomes. Similarly, IBD patient cells and epithelial cells expressing an IBD-associated missense variant, GPR65 I231L, displayed aberrant lysosomal pH resulting in lysosomal dysfunction, impaired bacterial restriction, and altered lipid droplet formation. The GPR65 I231L polymorphism was sufficient to confer decreased GPR65 signaling. Collectively, these data establish a role for GPR65 in IBD susceptibility and identify lysosomal dysfunction as a potentially causative element in IBD pathogenesis with effects on cellular homeostasis and defense.
Isabelle Cleynen, Gabrielle Boucher, Luke Jostins, Philip L Schumm, Sebastian Zeissig, Tariq Ahmad, Vibeke Andersen, Jane M Andrews, Vito Annese, Stephan Brand, Steven R Brant, Judy H Cho, Mark J Daly, Marla Dubinsky, Richard H Duerr, Lynnette R Ferguson, Andre Franke, Richard B Gearry, Philippe Goyette, Hakon Hakonarson, Jonas Halfvarson, Johannes R Hov, Hailang Huang, Nicholas A Kennedy, Limas Kupcinskas, Ian C Lawrance, James C Lee, Jack Satsangi, Stephan Schreiber, Emilie Théâtre, Andrea E van der Meulen-de Jong, Rinse K Weersma, David C Wilson, Miles Parkes, Severine Vermeire, John D Rioux, John Mansfield, Mark S Silverberg, Graham Radford-Smith, Dermot PB McGovern, Jeffrey C Barrett, and Charlie W Lees. 2016. “Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study.” Lancet, 387, 10014, Pp. 156-67.Abstract
BACKGROUND: Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. METHODS: This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34,819 patients (19,713 with Crohn's disease, 14,683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype-phenotype associations across 156,154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. FINDINGS: After quality control, the primary analysis included 29,838 patients (16,902 with Crohn's disease, 12,597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with disease subphenotype (p=1·65 × 10(-78)), even after exclusion of NOD2, MHC, and 3p21 (p=9·23 × 10(-18)). Predictive models based on the genetic risk score strongly distinguished colonic from ileal Crohn's disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk profiles who were significantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10(-4)). INTERPRETATION: Our data support a continuum of disorders within inflammatory bowel disease, much better explained by three groups (ileal Crohn's disease, colonic Crohn's disease, and ulcerative colitis) than by Crohn's disease and ulcerative colitis as currently defined. Disease location is an intrinsic aspect of a patient's disease, in part genetically determined, and the major driver to changes in disease behaviour over time. FUNDING: International Inflammatory Bowel Disease Genetics Consortium members funding sources (see Acknowledgments for full list).
Padhraig Gormley, Verneri Anttila, Bendik S Winsvold, Priit Palta, Tonu Esko, Tune H Pers, Kai-How Farh, Ester Cuenca-Leon, Mikko Muona, Nicholas A Furlotte, Tobias Kurth, Andres Ingason, George McMahon, Lannie Ligthart, Gisela M Terwindt, Mikko Kallela, Tobias M Freilinger, Caroline Ran, Scott G Gordon, Anine H Stam, Stacy Steinberg, Guntram Borck, Markku Koiranen, Lydia Quaye, Hieab HH Adams, Terho Lehtimäki, Antti-Pekka Sarin, Juho Wedenoja, David A Hinds, Julie E Buring, Markus Schürks, Paul M Ridker, Maria Gudlaug Hrafnsdottir, Hreinn Stefansson, Susan M Ring, Jouke-Jan Hottenga, Brenda WJH Penninx, Markus Färkkilä, Ville Artto, Mari Kaunisto, Salli Vepsäläinen, Rainer Malik, Andrew C Heath, Pamela AF Madden, Nicholas G Martin, Grant W Montgomery, Mitja I Kurki, Mart Kals, Reedik Mägi, Kalle Pärn, Eija Hämäläinen, Hailiang Huang, Andrea E Byrnes, Lude Franke, Jie Huang, Evie Stergiakouli, Phil H Lee, Cynthia Sandor, Caleb Webber, Zameel Cader, Bertram Muller-Myhsok, Stefan Schreiber, Thomas Meitinger, Johan G Eriksson, Veikko Salomaa, Kauko Heikkilä, Elizabeth Loehrer, Andre G Uitterlinden, Albert Hofman, Cornelia M van Duijn, Lynn Cherkas, Linda M Pedersen, Audun Stubhaug, Christopher S Nielsen, Minna Männikkö, Evelin Mihailov, Lili Milani, Hartmut Göbel, Ann-Louise Esserlind, Anne Francke Christensen, Thomas Folkmann Hansen, Thomas Werge, Jaakko Kaprio, Arpo J Aromaa, Olli Raitakari, Arfan M Ikram, Tim Spector, Marjo-Riitta Järvelin, Andres Metspalu, Christian Kubisch, David P Strachan, Michel D Ferrari, Andrea C Belin, Martin Dichgans, Maija Wessman, Arn MJM van den Maagdenberg, John-Anker Zwart, Dorret I Boomsma, George Davey Smith, Kari Stefansson, Nicholas Eriksson, Mark J Daly, Benjamin M Neale, Jes Olesen, Daniel I Chasman, Dale R Nyholt, and Aarno Palotie. 2016. “Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.” Nat Genet, 48, 8, Pp. 856-66.Abstract
Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.
Zhe Ji, Ruisheng Song, Hailiang Huang, Aviv Regev, and Kevin Struhl. 2016. “Transcriptome-scale RNase-footprinting of RNA-protein complexes.” Nat Biotechnol, 34, 4, Pp. 410-3.Abstract
Ribosome profiling is widely used to study translation in vivo, but not all sequence reads correspond to ribosome-protected RNA. Here we describe Rfoot, a computational pipeline that analyzes ribosomal profiling data and identifies native, nonribosomal RNA-protein complexes. We use Rfoot to precisely map RNase-protected regions within small nucleolar RNAs, spliceosomal RNAs, microRNAs, tRNAs, long noncoding (lnc)RNAs and 3' untranslated regions of mRNAs in human cells. We show that RNAs of the same class can show differential complex association. Although only a subset of lncRNAs show RNase footprints, many of these have multiple footprints, and the protected regions are evolutionarily conserved, suggestive of biological functions.
2015
Jimmy Z Liu, Suzanne van Sommeren, Hailiang Huang, Siew C Ng, Rudi Alberts, Atsushi Takahashi, Stephan Ripke, James C Lee, Luke Jostins, Tejas Shah, Shifteh Abedian, Jae Hee Cheon, Judy Cho, Naser E Dayani, Lude Franke, Yuta Fuyuno, Ailsa Hart, Ramesh C Juyal, Garima Juyal, Won Ho Kim, Andrew P Morris, Hossein Poustchi, William G Newman, Vandana Midha, Timothy R Orchard, Homayon Vahedi, Ajit Sood, Joseph Y Sung, Reza Malekzadeh, Harm-Jan Westra, Keiko Yamazaki, Suk-Kyun Yang, Jeffrey C Barrett, Behrooz Z Alizadeh, Miles Parkes, Thelma Bk, Mark J Daly, Michiaki Kubo, Carl A Anderson, and Rinse K Weersma. 2015. “Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations.” Nat Genet, 47, 9, Pp. 979-986.Abstract
Ulcerative colitis and Crohn's disease are the two main forms of inflammatory bowel disease (IBD). Here we report the first trans-ancestry association study of IBD, with genome-wide or Immunochip genotype data from an extended cohort of 86,640 European individuals and Immunochip data from 9,846 individuals of East Asian, Indian or Iranian descent. We implicate 38 loci in IBD risk for the first time. For the majority of the IBD risk loci, the direction and magnitude of effect are consistent in European and non-European cohorts. Nevertheless, we observe genetic heterogeneity between divergent populations at several established risk loci driven by differences in allele frequency (NOD2) or effect size (TNFSF15 and ATG16L1) or a combination of these factors (IL23R and IRGM). Our results provide biological insights into the pathogenesis of IBD and demonstrate the usefulness of trans-ancestry association studies for mapping loci associated with complex diseases and understanding genetic architecture across diverse populations.
Regina C Betz, Lynn Petukhova, Stephan Ripke, Hailiang Huang, Androniki Menelaou, Silke Redler, Tim Becker, Stefanie Heilmann, Tarek Yamany, Madeliene Duvic, Maria Hordinsky, David Norris, Vera H Price, Julian Mackay-Wiggan, Annemieke de Jong, Gina M DeStefano, Susanne Moebus, Markus Böhm, Ulrike Blume-Peytavi, Hans Wolff, Gerhard Lutz, Roland Kruse, Li Bian, Christopher I Amos, Annette Lee, Peter K Gregersen, Bettina Blaumeiser, David Altshuler, Raphael Clynes, Paul IW de Bakker, Markus M Nöthen, Mark J Daly, and Angela M Christiano. 2015. “Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci.” Nat Commun, 6, Pp. 5966.Abstract
Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the major histocompatibility complex, where we fine-map four independent effects, all implicating human leukocyte antigen-DR as a key aetiologic driver. Outside the major histocompatibility complex, we identify two novel loci that exceed the threshold of statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ATXN2 (12q24.12). Candidate susceptibility gene expression analysis in these regions demonstrates expression in relevant immune cells and the hair follicle. We integrate our results with data from seven other autoimmune diseases and provide insight into the alignment of AA within these disorders. Our findings uncover new molecular pathways disrupted in AA, including autophagy/apoptosis, transforming growth factor beta/Tregs and JAK kinase signalling, and support the causal role of aberrant immune processes in AA.
Philippe Goyette, Gabrielle Boucher, Dermot Mallon, Eva Ellinghaus, Luke Jostins, Hailiang Huang, Stephan Ripke, Elena S Gusareva, Vito Annese, Stephen L Hauser, Jorge R Oksenberg, Ingo Thomsen, Stephen Leslie, Mark J Daly, Kristel Van Steen, Richard H Duerr, Jeffrey C Barrett, Dermot PB McGovern, Philip L Schumm, James A Traherne, Mary N Carrington, Vasilis Kosmoliaptsis, Tom H Karlsen, Andre Franke, and John D Rioux. 2015. “High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis.” Nat Genet, 47, 2, Pp. 172-9.Abstract
Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.
Zhifang Cao, Kara L Conway, Robert J Heath, Jason S Rush, Elizaveta S Leshchiner, Zaida G Ramirez-Ortiz, Natalia B Nedelsky, Hailiang Huang, Aylwin Ng, Agnès Gardet, Shih-Chin Cheng, Alykhan F Shamji, John D Rioux, Cisca Wijmenga, Mihai G Netea, Terry K Means, Mark J Daly, and Ramnik J Xavier. 2015. “Ubiquitin Ligase TRIM62 Regulates CARD9-Mediated Anti-fungal Immunity and Intestinal Inflammation.” Immunity, 43, 4, Pp. 715-26.Abstract
CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.
2014
Xiaoni Li, Hongshun Yang, Hailiang Huang, and Tao Zhu. 2014. “CELLCOUNTER: novel open-source software for counting cell migration and invasion in vitro.” Biomed Res Int, 2014, Pp. 863564.Abstract
Transwell Boyden chamber based migration/invasion assay is a simple and extensively used approach for the characterization of cell motility in vitro. Cell motility is quantified by counting the number of cells that pass through the filter membrane. The counting is usually performed manually, which is laborious and error prone. We have therefore developed CELLCOUNTER, an application that is capable of recognizing and counting the total number of cells through an intuitive graphical user interface. The counting can be performed in batch, and the counting results can be visualized and further curated manually. CELLCOUNTER will be helpful in streamlining the experimental process and improving the reliability of the data acquisition.
Jacqueline I Goldstein, Fredrik L Jarskog, Chris Hilliard, Ana Alfirevic, Laramie Duncan, Denis Fourches, Hailiang Huang, Monkol Lek, Benjamin M Neale, Stephan Ripke, Kevin Shianna, Jin P Szatkiewicz, Alexander Tropsha, Edwin JCG van den Oord, Ingolf Cascorbi, Michael Dettling, Ephraim Gazit, Donald C Goff, Arthur L Holden, Deanna L Kelly, Anil K Malhotra, Jimmi Nielsen, Munir Pirmohamed, Dan Rujescu, Thomas Werge, Deborah L Levy, Richard C Josiassen, James L Kennedy, Jeffrey A Lieberman, Mark J Daly, and Patrick F Sullivan. 2014. “Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles.” Nat Commun, 5, Pp. 4757.Abstract
Clozapine is a particularly effective antipsychotic medication but its use is curtailed by the risk of clozapine-induced agranulocytosis/granulocytopenia (CIAG), a severe adverse drug reaction occurring in up to 1% of treated individuals. Identifying genetic risk factors for CIAG could enable safer and more widespread use of clozapine. Here we perform the largest and most comprehensive genetic study of CIAG to date by interrogating 163 cases using genome-wide genotyping and whole-exome sequencing. We find that two loci in the major histocompatibility complex are independently associated with CIAG: a single amino acid in HLA-DQB1 (126Q) (P=4.7 × 10(-14), odds ratio (OR)=0.19, 95% confidence interval (CI)=0.12-0.29) and an amino acid change in the extracellular binding pocket of HLA-B (158T) (P=6.4 × 10(-10), OR=3.3, 95% CI=2.3-4.9). These associations dovetail with the roles of these genes in immunogenetic phenotypes and adverse drug responses for other medications, and provide insight into the pathophysiology of CIAG.

Pages