Publications by Year: 2010

T. Ayer, O. Alagoz, J. Chhatwal, J. W. Shavlik, Jr. Kahn, C. E., and E.S. Burnside. 2010. “Breast cancer risk estimation with artificial neural networks revisited: discrimination and calibration.” Cancer, 116, Pp. 3310-21.Abstract
BACKGROUND: Discriminating malignant breast lesions from benign ones and accurately predicting the risk of breast cancer for individual patients are crucial to successful clinical decisions. In the past, several artificial neural network (ANN) models have been developed for breast cancer-risk prediction. All studies have reported discrimination performance, but not one has assessed calibration, which is an equivalently important measure for accurate risk prediction. In this study, the authors have evaluated whether an artificial neural network (ANN) trained on a large prospectively collected dataset of consecutive mammography findings can discriminate between benign and malignant disease and accurately predict the probability of breast cancer for individual patients. METHODS: Our dataset consisted of 62,219 consecutively collected mammography findings matched with the Wisconsin State Cancer Reporting System. The authors built a 3-layer feedforward ANN with 1000 hidden-layer nodes. The authors trained and tested their ANN by using 10-fold cross-validation to predict the risk of breast cancer. The authors used area the under the receiver-operating characteristic curve (AUC), sensitivity, and specificity to evaluate discriminative performance of the radiologists and their ANN. The authors assessed the accuracy of risk prediction (ie, calibration) of their ANN by using the Hosmer-Lemeshow (H-L) goodness-of-fit test. RESULTS: Their ANN demonstrated superior discrimination (AUC, 0.965) compared with the radiologists (AUC, 0.939; P<.001). The authors' ANN was also well calibrated as shown by an H-L goodness of fit P-value of .13. CONCLUSIONS: The authors' ANN can effectively discriminate malignant abnormalities from benign ones and accurately predict the risk of breast cancer for individual abnormalities.
T. Ayer, J. Chhatwal, O. Alagoz, Jr. Kahn, C. E., R.W. Woods, and E.S. Burnside. 2010. “Informatics in radiology: comparison of logistic regression and artificial neural network models in breast cancer risk estimation.” Radiographics, 30, Pp. 13-22.Abstract
Computer models in medical diagnosis are being developed to help physicians differentiate between healthy patients and patients with disease. These models can aid in successful decision making by allowing calculation of disease likelihood on the basis of known patient characteristics and clinical test results. Two of the most frequently used computer models in clinical risk estimation are logistic regression and an artificial neural network. A study was conducted to review and compare these two models, elucidate the advantages and disadvantages of each, and provide criteria for model selection. The two models were used for estimation of breast cancer risk on the basis of mammographic descriptors and demographic risk factors. Although they demonstrated similar performance, the two models have unique characteristics-strengths as well as limitations-that must be considered and may prove complementary in contributing to improved clinical decision making.
J. Chhatwal, O. Alagoz, and E.S. Burnside. 2010. “Optimal Breast Biopsy Decision-Making Based on Mammographic Features and Demographic Factors.” Oper Res, 58, Pp. 1577-1591.Abstract
Breast cancer is the most common non-skin cancer affecting women in the United States, where every year more than 20 million mammograms are performed. Breast biopsy is commonly performed on the suspicious findings on mammograms to confirm the presence of cancer. Currently, 700,000 biopsies are performed annually in the U.S.; 55%-85% of these biopsies ultimately are found to be benign breast lesions, resulting in unnecessary treatments, patient anxiety, and expenditures. This paper addresses the decision problem faced by radiologists: When should a woman be sent for biopsy based on her mammographic features and demographic factors? This problem is formulated as a finite-horizon discrete-time Markov decision process. The optimal policy of our model shows that the decision to biopsy should take the age of patient into account; particularly, an older patient's risk threshold for biopsy should be higher than that of a younger patient. When applied to the clinical data, our model outperforms radiologists in the biopsy decision-making problem. This study also derives structural properties of the model, including sufficiency conditions that ensure the existence of a control-limit type policy and nondecreasing control-limits with age.