Publications

Submitted
Gupta M, Bansal A, Jain B, Rochelle J, Oak A, Jalali MS. Whether the Weather Will Help Us Weather the COVID-19 Pandemic: Using Machine Learning to Measure Twitter Users’ Perceptions. Submitted;Abstract

Objective: The potential ability for weather to affect SARS-CoV-2 transmission has been an area of controversial discussion during the COVID-19 pandemic. Individuals’ perceptions of the impact of weather can inform their adherence to public health guidelines; however, there is no measure of their perceptions. We quantified Twitter users’ perceptions of the effect of weather and analyzed how they evolved with respect to real-world events and time.

Materials and Methods: We collected 166,005 tweets posted between January 23 and June 22, 2020 and employed machine learning/natural language processing techniques to filter for relevant tweets, classify them by the type of effect they claimed, and identify topics of discussion.

Results: We identified 28,555 relevant tweets and estimate that 40.4% indicate uncertainty about weather’s impact, 33.5% indicate no effect, and 26.1% indicate some effect. We tracked changes in these proportions over time. Topic modeling revealed major latent areas of discussion.

Discussion: There is no consensus among the public for weather’s potential impact. Earlier months were characterized by tweets that were uncertain of weather’s effect or claimed no effect; later, the portion of tweets claiming some effect of weather increased. Tweets claiming no effect of weather comprised the largest class by June. Major topics of discussion included comparisons to influenza’s seasonality, President Trump’s comments on weather’s effect, and social distancing.

Conclusion: There is a major gap between scientific evidence and public opinion of weather’s impacts on COVID-19. We provide evidence of public’s misconceptions and topics of discussion, which can inform public health communications.

perceptions_weather_and_covid19.pdf
Jalali MS, Landman A, Gordon WJ. Telemedicine, Privacy, and Information Security in the Age of COVID-19. Submitted; telemedicine_privacy_and_information_security_preprint.pdf
Xu R, Rahmandad H, Gupta M, DiGennaro C, Ghaffarzadegan N, Jalali MS. Weather Conditions and COVID-19 Transmission: Estimates and Projections. Submitted;Abstract

Background: Understanding and projecting the spread of COVID-19 requires reliable estimates of how weather components are associated with the transmission of the virus. Prior research on this topic has been inconclusive. Identifying key challenges to reliable estimation of weather impact on transmission we study this question using one of the largest assembled databases of COVID-19 infections and weather.
Methods: We assemble a dataset that includes virus transmission and weather data across 3,739 locations from December 12, 2019 to April 22, 2020. Using simulation, we identify key challenges to reliable estimation of weather impacts on transmission, design a statistical method to overcome these challenges, and validate it in a blinded simulation study. Using this method and controlling for location-specific response trends we estimate how different weather variables are associated with the reproduction number for COVID-19. We then use the estimates to project the relative weather-related risk of COVID-19 transmission across the world and in large cities.
Results: We show that the delay between exposure and detection of infection complicates the estimation of weather impact on COVID-19 transmission, potentially explaining significant variability in results to-date. Correcting for that distributed delay and offering conservative estimates, we find a negative relationship between temperatures above 25 degrees Celsius and estimated reproduction number (R ̂), with each degree Celsius associated with a 3.1% (95% CI, 1.5% to 4.8%) reduction in R ̂. Higher levels of relative humidity strengthen the negative effect of temperature above 25 degrees. Moreover, one millibar of additional pressure increases R ̂ by approximately 0.8 percent (95% CI, 0.6% to 1%) at the median pressure (1016 millibars) in our sample. We also find significant positive effects for wind speed, precipitation, and diurnal temperature on R ̂. Sensitivity analysis and simulations show that results are robust to multiple assumptions. Despite conservative estimates, weather effects are associated with a 43% change in R ̂ between the 5th and 95th percentile of weather conditions in our sample.
Conclusions: These results provide evidence for the relationship between several weather variables and the spread of COVID-19. However, the (conservatively) estimated relationships are not strong enough to seasonally control the epidemic in most locations.

 

Online simulator: https://projects.iq.harvard.edu/covid19

Deutsch AR, Lustfield R, Jalali MS. Community-based System Dynamics Modeling of Sensitive Public Health Issues: Maximizing Diverse Representation of Individuals with Personal Experiences. Submitted;Abstract

Community-based system dynamics (CBSD) models enhance our understanding of stigmatized public health issues and related health disparities. The accuracy and usefulness of these models depend upon the individuals who take part in group modeling sessions. Marginalized individuals that are personally impacted by these health issues are critical in the function and development of the models. However, the extent of inclusion varies between studies since such individuals are often hard to recruit. There is substantial diversity in how individuals experience a stigmatized public health issue and with the underrepresentation of individuals with personal experience, research may conclude in biased model development. The purpose of this study was to explore a method that would increase representation for individuals with personal experience of stigmatized issues in model development. We used a case study from a CBSD project on the association between alcohol misuse (AM) and intimate partner violence (IPV) within a Northern Plains American Indian community. Group model building sessions were held at three community organizations: a faith-based re-entry program, a substance use rehabilitation program for pregnant women and mothers, and a domestic violence shelter. Session participants (clients of these organizations) were quick to understand the systems method and were engaged in the modeling process. There were few similarities between the three CBSD models. Each model contributed unique system components, and a consolidated model provided a rich picture of the complex AM-IPV system, as well as the ways in which health disparities are maintained. Coupled with an emphasis on transparency and trust building between researchers and modelers, our approach illuminated the diversity of ways in which individuals with personal experience can perceive AM-IPV systems. Using similar strategies for model building can complement existing efforts to build representative models for stigmatized public health issues within communities.

CBSD for sensitive issues.pdf
Readiness of Healthcare Providers for e-Hospitals: Cross-sectional Analysis in China. Submitted; eHospitals_healthcare providers.pdf
Jalali MS, DiGennaro C, Guitar A, Lew K, Rahmandad H. Evolution of Simulation Modeling in Health Policy over Half a Century. Submitted;Abstract

Background: Simulation models are increasingly used to inform health policy. We provide an overview of applications of simulation models in health policy, analyze the use of best reporting practices, and assess the reproducibility of existing studies.

Method: Studies that used simulation modeling as the core method to address any health policy questions were included. Health policy domain distribution and changes in quality over time were well-characterized using MeSH terms and model characteristics, respectively. Reproducibility was assessed using predefined, categorical criteria.

Findings: 1,613 studies were analyzed. We found an exponential growth in the number of studies over the past half century, with the highest growth in dynamic modeling approaches. The largest subset of studies is focused on disease policy models (70%), within which pathological conditions, viral diseases, neoplasms, and cardiovascular diseases account for one-third of the articles. Nearly half of the studies do not report the details of their models. A subset of 100 articles (50 highly cited and 50 random) were selected to analyze in-depth criteria for reporting quality and reproducibility. Significant gaps between best modeling practices could be found in both the random and highly cited samples; only seven of 26 in-depth evaluation criteria were satisfied by more than 80% of samples. We found no evidence that the highly cited samples adhered better to the modeling best practices.

Interpretation: Our results suggest crucial areas for increased applications of simulation modeling, and opportunities to enhance the rigor and documentation in the conduct and reporting of simulation modeling in health policy.

 

simulation_modeling_in_health_policy.pdf
Forthcoming
Jalali MS, Ewing E, Bannister CB, Glos L, Eggers S, Lim TY, Stringfellow E, Stafford C, Pacula RL, Jalal H, Kazemi-Tabriz R. Data Needs in Opioid Systems Modeling: Challenges and Future Directions. American Journal of Preventive Medicine Forthcoming;Abstract

Background: The opioid crisis is a pervasive public health threat in the U.S. Simulation modeling approaches that integrate a systems perspective are used to understand the complexity of this crisis and to analyze what policy interventions can best address it. However, limitations in currently available data sources can hamper the quantification of these models.

Methods: To understand and discuss data needs and challenges for opioid systems modeling, a meeting of federal partners, modeling teams, and data experts was held at the U.S. Food and Drug Administration in April 2019. This paper synthesizes the meeting discussions and interprets them in the context of ongoing simulation modeling work.

Results: The current landscape of national-level quantitative data sources of potential use in opioid systems modeling is identified, and significant issues within data sources are discussed. Major recommendations on how to improve data sources are to: maintain close collaboration among modeling teams; enhance data collection to better fit modeling needs; focus on bridging the most crucial information gaps; engage in direct and regular interaction between modelers and data experts; and gain a clearer definition of policymakers’ research questions and policy goals.

Conclusions: This article provides an important step in identifying and discussing data challenges in opioid research in general and opioid systems modeling in particular. It also identifies opportunities for systems modelers and government agencies to improve opioid systems models.

data_needs_opioids_modeling.pdf
Jalali MS, DiGennaro C, Sridhar D. Transparency Assessment of COVID-19 Models. The Lancet Global Health Forthcoming;Abstract
As the COVID-19 pandemic has caused major societal unrest, modelers have worked to project future trends of COVID-19 and predict upcoming challenges and impacts of policy action. These models, alone or in aggregate, are influential for decision-makers at every level. Therefore, the method and documentation of COVID-19 models must be highly transparent to ensure that projections and consequential policies put forth have sound epistemological grounds. We evaluated 29 COVID-19 models receiving high attention levels within the scientific community and/or informing government responses. We evaluated these models against 27 transparency criteria. We found high levels of transparency in model documentation aspects such as reporting uncertainty analysis; however, about half of the models do not share code and a quarter do not report equations. These discrepancies underscore the need for transparency and reproducibility to be at the forefront of researchers’ priorities, especially during a global health crisis when stakes are critically high.
transparency_assessment_of_covid-19_models_preprint.pdf
Economic Evaluation in Opioids Modeling: Systematic Review
Economic Evaluation in Opioids Modeling: Systematic Review. Value in Health Forthcoming;
2020
The opioid crisis: need for systems science research
Jalali MS, Botticelli M, Hwang R, Koh HK, McHugh RK. The opioid crisis: need for systems science research. Health Research Policy and Systems 2020;18(88)Abstract
The opioid epidemic in the United States has had a devastating impact on millions of people as well as on their families and communities. The increased prevalence of opioid misuse, use disorder and overdose in recent years has highlighted the need for improved public health approaches for reducing the tremendous harms of this illness. In this paper, we explain and call for the need for more systems science approaches, which can uncover the complexities of the opioid crisis, and help evaluate, analyse and forecast the effectiveness of ongoing and new policy interventions. Similar to how a stream of systems science research helped policy development in infectious diseases and obesity, more systems science research is needed in opioids.
opioid_crisis_systems_science.pdf
How Telemedicine Integrated into China’s Anti-COVID-19 Strategies: Case from a National Referral Center
Li P, Liu X, Mason E, Hu G, Zhou Y, Li W, Jalali MS. How Telemedicine Integrated into China’s Anti-COVID-19 Strategies: Case from a National Referral Center. BMJ Health & Care Informatics 2020;(27):e100164.Abstract

Introduction We present the integration of telemedicine into the healthcare system of West China Hospital of Sichuan University (WCH), one of the largest hospitals in the world with 4300 inpatient beds, as a means for maximising the efficiency of healthcare delivery during the COVID-19 pandemic.

Methods Implemented on 22 January 2020, the telemedicine technology allowed WCH providers to conduct teleconsultations, telerounds, teleradiology and tele-intensive care unit, which in culmination provided screening, triage and treatment for COVID-19 and other illnesses. To encourage its adoption, the government and the hospital publicised the platform on social media and waived fees.

Discussion From 1 February to 1 April 2020, 10557 online COVID-19 consultations were conducted for 6662 individuals; meanwhile, 32676 patients without COVID completed virtual follow-ups. We discuss that high-quality, secure, affordable and user-friendly telemedical platforms should be integrated into global healthcare systems to help decrease the transmission of the virus and protect healthcare providers from infection.

 

telemedicine_china.pdf
Trends in Hospitalization Expenditures for Acute Exacerbations of COPD in Beijing from 2009 to 2017
Liang L, Shang Y, Xie W, Shi J, Tong Z, Jalali MS. Trends in Hospitalization Expenditures for Acute Exacerbations of COPD in Beijing from 2009 to 2017. International Journal of Chronic Obstructive Pulmonary Disease 2020;(15):1165-1175.Abstract
Background: Chronic obstructive pulmonary disease (COPD) is the cause of substantial economic and social burden. We investigated trends in hospitalizations for acute exacerbation of COPD in Beijing, China, from 2009 to 2017.
Patients and Methods: Investigations were conducted using data from the discharge records of inpatients that were given a primary diagnosis of acute exacerbation of COPD. The dataset was a retrospective review of information collected from electronic medical records and included 315,116 admissions (159,368 patients). Descriptive analyses and multivariate regressions were used to investigate trends in per admission and per capita expenditures, as well as other potential contributing factors.
Results: The mean per admission expenditures increased from 19,760 CNY ($2893, based on USD/CNY=6.8310) in 2009 to 20,118 CNY ($2980) in 2017 (a growth rate of 0.11%). However, the per capita expenditures increased from 23,716 CNY ($3472) in 2009 to 31,000 CNY ($4538) in 2017 (a growth rate of 1.7%). In terms of per admission expenditures, drug costs accounted for 52.9% of the total expenditures in 2009 and dropped to 39.4% in 2017 (P trend < 0.001). The mean length of stay (LOS) decreased from 16.0 days to 13.5 days (P trend < 0· 001). Age, gender, COPD type, LOS, and hospital level were all associated with per admission and per capita expenditures.
Interpretation: Relatively stable per admission expenditures along with the decline in drug costs and LOS reflect the effectiveness of cost containment on some indicators in China’s health care reform. However, the increase in hospitalization expenditures per capita calls for better policies for controlling hospitalizations, especially multiple admissions.
trends-in-hospitalization-expenditures-COPD.pdf
Patients’ Perceptions of Barriers and Facilitators to the Adoption of e-Hospitals: Cross-sectional Study in Western China
Li P, Luo Y, Yu X, Wen J, Mason E, Li W, Jalali MS. Patients’ Perceptions of Barriers and Facilitators to the Adoption of e-Hospitals: Cross-sectional Study in Western China. Journal of Medical Internet Research 2020;22(6):e17221.Abstract

Background: As an innovative approach to providing web-based health care services from physical hospitals to patients at a distance, e-hospitals (ie, extended care hospitals through the internet) have been extensively developed in China. This closed health care delivery chain was developed by combining e-hospitals with physical hospitals; treatment begins with web-based consultation and registration, and then, patients are diagnosed and treated in a physical hospital. This approach is promising in its ability to improve accessibility, efficiency, and quality of health care. However, there is limited research on end users’ acceptance of e-hospitals and the effectiveness of strategies aimed to prompt the adoption of e-hospitals in China.

Objective: This study aimed to provide insights regarding the adoption of e-hospitals by investigating patients’ willingness to use e-hospitals and analyzing the barriers and facilitators to the adoption of this technology.

Methods: We used a pretested self-administered questionnaire and performed a cross-sectional analysis in 1032 patients across three hierarchical hospitals in West China from June to August 2019. Patients’ sociodemographic characteristics, medical history, current disease status, proficiency with electronic devices, previous experience with web-based health services, willingness to use e-hospitals, and perceived facilitators and barriers were surveyed. Multiple significance tests were employed to examine disparities across four age groups, as well as those between patients who were willing to use e-hospitals and those who were not. Multivariate logistic regression was also performed to identify the potential predictors of willingness to use e-hospitals.

Results: Overall, it was found that 65.6% (677/1032) of participants were willing to use e-hospitals. The significant predictors of willingness to use e-hospitals were employment status (P=.02), living with children (P<.001), education level (P=.046), information technology skills (P<.001), and prior experience with web-based health care services (P<.001), whereas age, income, medical insurance, and familiarity with e-hospitals were not predictors. Additionally, the prominent facilitators of e-hospitals were convenience (641/677, 94.7%) and accessibility to skilled medical experts (489/677, 72.2%). The most frequently perceived barrier varied among age groups; seniors most often reported their inability to operate technological devices as a barrier (144/166, 86.7%), whereas young participants most often reported that they avoided e-hospital services because they were accustomed to face-to-face consultation (39/52, 75%).

Conclusions: We identified the variables, facilitators, and barriers that play essential roles in the adoption of e-hospitals. Based on our findings, we suggest that efforts to increase the adoption of e-hospitals should focus on making target populations accustomed to web-based health care services while maximizing ease of use and providing assistance for technological inquiries.

ehospitals_adoption.pdf
Why Employees (Still) Click on Phishing Links: Investigation in Hospitals
Jalali MS, Bruckes M, Westmattelmann D, Schewe G. Why Employees (Still) Click on Phishing Links: Investigation in Hospitals. Journal of Medical Internet Research 2020;22(1):e16775.Abstract

Background: Hospitals have been one of the major targets for phishing attacks. Despite efforts to improve information security compliance, hospitals still significantly suffer from such attacks, impacting the quality of care and the safety of patients.

Objective: This study aimed to investigate why hospital employees decide to click on phishing emails by analyzing actual clicking data.

Methods: We first gauged the factors that influence clicking behavior using the theory of planned behavior (TPB) and integrating trust theories. We then conducted a survey in hospitals and used structural equation modeling to investigate the components of compliance intention. We matched employees’ survey results with their actual clicking data from phishing campaigns.

Results: Our analysis (N=397) reveals that TPB factors (attitude, subjective norms, and perceived behavioral control), as well as collective felt trust and trust in information security technology, are positively related to compliance intention. However, compliance intention is not significantly related to compliance behavior. Only the level of employees’ workload is positively associated with the likelihood of employees clicking on a phishing link.

Conclusions: This is one of the few studies in information security and decision making that observed compliance behavior by analyzing clicking data rather than using self-reported data. We show that, in the context of phishing emails, intention and compliance might not be as strongly linked as previously assumed; hence, hospitals must remain vigilant with vulnerabilities that cannot be easily managed. Importantly, given the significant association between workload and noncompliance behavior (ie, clicking on phishing links), hospitals should better manage employees’ workload to increase information security. Our findings can help health care organizations augment employees’ compliance with their cybersecurity policies and reduce the likelihood of clicking on phishing links.

phishing investigation.pdf
Adoption of new medical technologies: The effects of insurance coverage vs continuing medical education
Namin AT, Vahdat V, DiGennaro C, Amid R, Jalali MS. Adoption of new medical technologies: The effects of insurance coverage vs continuing medical education. Health Policy and Technology 2020;9(1):31-41.Abstract

Medical technologies innovate rapidly and responsively to patient needs, but the adoption of the latest technologies in practice can be delayed by lack of knowledge and ability to pay. Customized individually made (CIM) knee implants potentially provide an option for individuals to maintain moderate to high activity levels with fewer surgical revisions following a total knee replacement, however they are costlier upfront. Not only is the technology more expensive, but insurance typically covers around 50% (versus 90% for older off-the-shelf knee implants). We used a recent simulation model and analyzed the effects on overall adoption of CIM through 2026 and found that continuing medical education (CME)—a common intervention to increase the adoption of new medical technologies through increasing practitioner knowledge and comfort with the new technologies—can increase the adoption of CIM to 48% in the short term, but increasing insurance coverage to be equal to OTS knee replacement coverage increases the adoption to 87% in the sustained long term. Efforts to implement CME are well-placed and will increase the rate of adoption, however the combination of CME and increased insurance coverage provides the most benefit, with the technology reaching 80% of the population undergoing total knee replacement by 2021.

adoption of medical technologies, insurance vs education.pdf
The opioid crisis: a contextual, social-ecological framework
Jalali MS, Botticelli M, Hwang R, Koh HK, McHugh RK. The opioid crisis: a contextual, social-ecological framework. Health Research Policy and Systems 2020;18(87)Abstract

The prevalence of opioid use and misuse has provoked a staggering number of deaths over the past two and a half decades. Much attention has focused on individual risks according to various characteristics and experiences. However, broader social and contextual domains are also essential contributors to the opioid crisis such as interpersonal relationships and the conditions of the community and society that people live in. Despite efforts to tackle the issue, the rates of opioid misuse and non-fatal and fatal overdose remain high. Many call for a broad public health approach, but articulation of what such a strategy could entail has not been fully realised. In order to improve the awareness surrounding opioid misuse, we developed a social-ecological framework that helps conceptualise the multivariable risk factors of opioid misuse and facilitates reviewing them in individual, interpersonal, communal and societal levels. Our framework illustrates the multi-layer complexity of the opioid crisis that more completely captures the crisis as a multidimensional issue requiring a broader and integrated approach to prevention and treatment.

opioid_crisis_social_ecological_framework.pdf
2019
The Adoption of New Medical Technologies: The Case of Customized Individually Made Knee Implants
Namin AT, Jalali MS, Vahdat V, Bedair HS, O’Connor MI, Kamarthi S, Isaacs JA. The Adoption of New Medical Technologies: The Case of Customized Individually Made Knee Implants [Internet]. Value in Health 2019;22(4):423-430. Online simulatorAbstract

Objectives: To investigate the impact of insurance coverage on the adoption of customized individually made (CIM) knee implants, and to compare patient outcomes and cost-effectiveness of off-the-shelf (OTS) and CIM implants.

Study Design: A system dynamics simulation model is developed to study adoption dynamics of CIM and meet the research objectives.

Methods: The model reproduced the historical data on primary and revision knee replacement implants obtained from the literature and the Nationwide Inpatient Sample. Then, the dynamics of adoption of CIM implants were simulated from 2018 to 2026. The rate of 90-day readmission, 3-year revision surgery, recovery period, time savings in operating rooms, and the associated cost within three years of primary knee replacement implants were used as performance metrics.

Results: The simulation results indicate that, by 2026, an adoption rate of 90% for CIM implants can reduce the number of readmissions and revision surgeries by 62% and 39%, respectively, and can save hospitals and surgeons 6% on procedure time, and cut down cumulative healthcare costs by approximately $38 billion.

Conclusions: CIM implants have the potential to deliver high-quality care while decreasing overall healthcare costs, but their adoption requires the expansion of current insurance coverage. This work presents a first systematic study to understand the dynamics of adoption of CIM knee implants and instrumentation. More broadly, the current modeling approach and systems thinking perspective could be utilized to consider the adoption of any emerging customized therapies for personalized medicine.

The Adoption of New Medical Technologies.pdf supporting information.pdf modeling documentation and instruction for reproducibility.pdf
Dynamics of intervention adoption, implementation, and maintenance inside organizations: The case of an obesity prevention initiative
Jalali MS, Rahmandad H, Bullock SL, Lee-Kwan SH, Gittelsohn J, Ammerman A. Dynamics of intervention adoption, implementation, and maintenance inside organizations: The case of an obesity prevention initiative. Social Science & Medicine 2019;224:67-76.Abstract
Overall impact of public health prevention interventions relies not only on the average efficacy of an intervention, but also on the successful adoption, implementation, and maintenance (AIM) of that intervention. In this study, we aim to understand the dynamics that regulate AIM of organizational level intervention programs. We focus on two well-documented obesity prevention interventions, implemented in food carry-outs and stores in low-income urban areas of Baltimore, Maryland, which aimed to improve dietary behaviour for adults by providing access to healthier foods and point-of-purchase promotions. Building on data from field observations, in-depth interviews, and data discussed in previous publications, as well as the strategy and organizational behaviour literature, we developed a system dynamics model of the key processes of AIM. With simulation analysis, we show several reinforcing mechanisms that span stakeholder motivation, communications, and implementation quality and costs can turn small changes in the process of AIM into big difference in the overall impact of the intervention. Specifically, small changes in the allocation of resources to communication with stakeholders of intervention could have a nonlinear long-term impact if those additional resources can turn stakeholders into allies of the intervention, reducing the erosion rates and enhancing sustainability. We present how the dynamics surrounding communication, motivation, and erosion can create significant heterogeneity in the overall impact of otherwise similar interventions. Therefore, careful monitoring of how those dynamics unfold, and timely adjustments to keep the intervention on track are critical for successful implementation and maintenance.
dynamics of intervention adoption.pdf Vensim Files
Health Care and Cybersecurity: Bibliometric Analysis of the Literature
Jalali MS, Razak S, Gordon W, Perakslis E, Madnick S. Health Care and Cybersecurity: Bibliometric Analysis of the Literature. Journal of Medical Internet Research 2019;21(2):e12644.Abstract

Background: Over the past decade, clinical care has become globally dependent on information technology. The cybersecurity of health care information systems is now an essential component of safe, reliable, and effective health care delivery.
Objective: The objective of this study was to provide an overview of the literature at the intersection of cybersecurity and health care delivery.
Methods: A comprehensive search was conducted using PubMed and Web of Science for English-language peer-reviewed articles. We carried out chronological analysis, domain clustering analysis, and text analysis of the included articles to generate a high-level concept map composed of specific words and the connections between them.
Results: Our final sample included 472 English-language journal articles. Our review results revealed that majority of the articles were focused on technology: Technology–focused articles made up more than half of all the clusters, whereas managerial articles accounted for only 32% of all clusters. This finding suggests that nontechnological variables (human–based and organizational aspects, strategy, and management) may be understudied. In addition, Software Development SecurityBusiness Continuity, and Disaster Recovery Planning each accounted for 3% of the studied articles. Our results also showed that publications on Physical Security account for only 1% of the literature, and research in this area is lacking. Cyber vulnerabilities are not all digital; many physical threats contribute to breaches and potentially affect the physical safety of patients.
Conclusions: Our results revealed an overall increase in research on cybersecurity and identified major gaps and opportunities for future work.

cybersecurity in healthcare.pdf
The Internet of Things Promises New Benefits and Risks: A Systematic Analysis of Adoption Dynamics of IoT Products
Jalali MS, Kaiser JP, Siegel M, Madnick S. The Internet of Things Promises New Benefits and Risks: A Systematic Analysis of Adoption Dynamics of IoT Products. IEEE Security and privacy 2019;17(2):39-48. Adoption_dynamics_of_IoT_products.pdf

Pages