Working Paper
Anastasopoulos, L. Jason. Working Paper. “An Algorithm for the Multidimensional Scaling of Business-Friendly Legislation”.
Anastasopoulos, Lefteris, et al. Working Paper. “Photographic home styles in Congress: a computer vision approach”. Publisher's VersionAbstract

While members of Congress now routinely communicate with constituents using images on a variety of internet platforms, little is known about how images are used as a means of strategic political communication. This is due primarily to computational limitations which have prevented large-scale, systematic analyses of image features. New developments in computer vision, however, are bringing the systematic study of images within reach. Here, we develop a framework for understanding visual political communication by extending Fenno's analysis of home style (Fenno 1978) to images and introduce "photographic" home styles. Using approximately 192,000 photographs collected from MCs Facebook profiles, we build machine learning software with convolutional neural networks and conduct an image manipulation experiment to explore how the race of people that MCs pose with shape photographic home styles. We find evidence that electoral pressures shape photographic home styles and demonstrate that Democratic and Republican members of Congress use images in very different ways.

Anastasopoulos, Lefteris, Tarek Masoud, and Tarek Masoud. Working Paper. “Thou Shalt Kill? Measuring Political Violence in the Bible and the Quran”.Abstract
The eruption of civil wars in Muslim-majority countries and a spate of acts of terrorism by Muslims in Western cities has brought renewed urgency to an age old question: is Islam more prone to violence than other religions? Specifically, does the Quran-which Muslims believe to be the actual word of God-sanction and encourage bloodshed, and does it do so more than do other holy texts? We answer this question using a supervised machine learning algorithm which allows us to score the violence propensity of each verse of the Qur'an, the Old Testament, and the New Testament and classify them into one of three categories: collective, interpersonal and self-directed violence. We find that the Quran and the Bible, taken as a whole, contain a roughly equal proportion of verses that reference interpersonal and collective violence. When we explore the promotion of each type of violence, we find that the Bible has a significantly higher proportion of verses which promote interpersonal violence while the Quran has a significantly higher proportion of verses which promote collective violence. We stress that these findings do not necessarily imply that the language of the Quran is a sufficient or even necessary condition to explain the greater current collective Muslim violence. First, the Christian world has arguably seen much more violence than the Muslin world. Second, alternative or complementary factors, such as an authoritarian regime or a weak state, may be major promoters of violence. Third, even if holy texts do help to enable violence, just a few passages might be sufficient. Such complementary and alternative explanations, not explored here, should be the subject of future work.
Anastasopoulos, Lefteris. Working Paper. “A formal model of segregation and political polarization.”.Abstract
Racially segregated cities tend to be politically polarized cities, leading to inequalities in public goods provision, political and social isolation, concentrated poverty and the perpetuation of a sense of hopelessness among many living in America’s urban centers. While the links between racial segregation and political polarization are well established, it is less clear why, or through what mechanism, both arise simultaneously. In this article, we derive a formal model which we demonstrate can partially account for this puzzle. This model allows us to derive “ideological tipping points”: changes in neighborhood demographics at which all members of one or more groups along the ideological spectrum (liberal, conservative, moderate) relocate. We then validate the model and demonstrate that racial segregation and political polarization consistently emerge in equilibrium under a wide variety of conditions by simulating movement of individuals between Census tracts in the largest 10 cities in the United States.
In Preparation
Anastasopoulos, L. Jason. In Preparation. Machine Learning for Social Science Research.
Anastasopoulos, Lefteris, and Maya Sen. In Preparation. “An Experiment on the Political Effects of Online Comments”.Abstract

There is growing concern among journalists and scholars about the remarkable influence of online commentators. Studies exploring the impacts of negative comments on scientific news stories find that they tend to undermine public knowledge about science and cause increased skepticism of well-established scientific facts (Anderson et al., 2014; Kanuka and Anderson, 2007; Coe, Kenski and Rains, 2014). In response to a growing sense that anonymous “trolling” has gotten out of hand, online magazines and newspapers such as have begun banning anonymous online posts (Diakopoulos, 2015). As more and more political discourse moves online and anonymous online discussion becomes the norm, understanding how anonymous commentary affects political views and interpretations of online content will become even more important. Indeed, we are seeing a massive shift in how Americans obtain information and acquire information—but how are these shifts affecting political opinions? This study aims to (1) conceptualize the political roles and functions of online comments and (2) use an online survey experiment to explore how the comments themselves can affect readers’ political attitudes.

Submitted. “Context as a Treatment: An Experiment on the Policy Effects of Immigrant Skin Tone”.Abstract

Innovative natural experiments, observational research and theories of racial threat suggest that skin tone is a determinant of nativist sentiment, yet experiments which include immigrant skin tone as a treatment find little connection between the two. We argue that these contradictory findings can be partially explained by experimental designs which exclude information about immigrant geographic context, an essential component of threat. To address these issues, we design a survey experiment in which geographic context and immigrant skin tone are randomly manipulated. We find that skin tone has potent effects on support for anti-immigration policy when geographic context is included but has no effects when context is excluded. We argue that these results suggest that geographic context should be considered in future experiments which seek to measure the effects of immigrant skin tone on policy outcomes.

Anastasopoulos, Lefteris. Submitted. “An Agent-Based Model Simulating Political Migration and Geographic Polarization”.Abstract

In this paper I simulate neighborhood level political migration dynamics following a change in neighborhood racial composition using SimPolSeg, an original agent-based modeling software program. SimPolSeg simulates agent behavior according to the Migration-Polarization (MP) theory of partisan sort- ing (Anastasopoulos 2015a). Dynamic simulations using SimPolSeg demon- strate how non-white migration and conservative ight lead to racially and ideologically segregated urban neighborhoods.

Working Paper (PDF)
Anastasopoulos, L. Jason. 2016. “Institute for Artificial Intelligence Talk. Presented at the University of Georgia Institute for Artificial Intelligence.”. ai-talk.pdf
Anastasopoulos, L. Jason. 2016. “Photographic home styles in Congress: a computer vision approach. Presented at the NYU Center for Data Science, December 7, 2015.”. photographic-homestyle-NYU-CDS.pdf
Anastasopoulos, L. Jason. 2016. “Georgia Informatics Institute Talk. Presented at the first meeting of the Georgia Informatics Institute.”. anastasopoulos-gii-talk-intro.pdf
Anastasopoulos, Lefteris. 2016. “Estimating the gender penalty in House of Representative elections using a regression discontinuity design”. Electoral Studies. Publisher's VersionAbstract

While the number of female candidates running for office in U.S. House of Representative elections has increased considerably since the 1980s, women continue to account for about only 20\% of House members. Whether this gap in female representation can be explained by a gender penalty female candidates face as the result of discrimination on the part of voters or campaign donors remains uncertain. In this paper, I estimate the gender penalty in U.S. House of Representative general elections using a regression discontinuity design (RDD). Using this RDD, I am able to assess whether chance nomination of female candidates to run in the general election affected the amount of campaign funds raised, general election vote share and probability of victory in House elections between 1982-2012. I find no evidence of a gender penalty using these measures. These results suggest that the deficit of female representation in the House is more likely the result of barriers to entering politics as opposed to overt gender discrimination by voters and campaign donors.

Anastasopoulos, Lefteris, Phil Tetlock, and Gregory Mitchell. 2013. “Detecting and Punishing Unconscious Bias”. Journal of Legal Studies 42 (1) : 83-110.
Anastasopoulos, Lefteris. 2013. UC Berkeley Department of Political Science “Essays on the Politics of Diversity in Modern America: A Causal Inference Approach”. Publisher's VersionAbstract

Using methods of causal inference, computational social science and careful qualitative analysis, this thesis examines the roles that race and gender play in three key areas of modern American political life: political polarization, immigration policy and political participation.

In the first essay entitled “The Big Sort(s): Diversity, White Flight and Polarization in Neighborhoods and Cities,” I develop the Migration-Flight-Polarization (MFP) hypothesis to explain how changes in diversity brought about by internal migration and immigration hold the key to understanding the connection between residential choice decisions and geographic polarization along partisan and ideological lines. Using an original agent-based modeling simulation and Hurricane Katrina evacuee data collected from schools and neighborhoods in Houston, Texas, I demonstrate that changes in diversity and “white flight” responses to these changes are responsible for the growing partisan divide in Houston neighborhoods and the City of Houston as a whole.

My second essay entitled “Not in My Backyard: The Effect of Immigrant Race and Proximity on Immigration Policy Preferences,” examines the extent to which immigrant race and proximity to a respondent informs immigration policy opinion. Using a survey experiment which employs blurry images of a fictional undocumented Mexican immigrant and respondent Internet Protocol addresses, I randomly manipulate immigrant skin tone and perceived distance between respondents and the immigrant. I find that the effect of race on immigration policy opinion depends upon the perceived distance between the immigrant and respondents. When respondents believe that the immigrant lives nearby, the darker immigrant elicits more anti-immigration responses to immigration policy questions. Conversely, when no immigrant location is provided, the darker immigrant elicits greater pro-immigration responses to the same questions. I also find that attitude polarization on immigration policy increases when respondents believe that the immigrant lives near them. These findings help explain the paradoxical divide between support for pro-immigration policies at the national level and anti-immigration policies at the state level.

My third essay with Morris Levy entitled “Estimating the Gender Penalty in the House: A Regression Discontinuity Approach,” brings a novel regression discontinuity design to bear on the question of whether net voter bias against female candidates for office can help explain the limited growth of female election to the House of Representatives. Using house primary vote share as a forcing variable, we estimate the causal effect of a major party nominee's gender on that candidate's general election vote share. Our period of study encompasses all Congressional elections since 1982. Our findings suggest that female Republican candidates that barely win two-person House primaries against males receive a substantial boost in general election vote share. A similar effect among female winners of close Democratic primaries is not found.