Discovery of an Ultraviolet Counterpart to an Ultrafast X-Ray Outflow in the Quasar PG 1211+143

Citation:

Kriss GA, Lee JC, Danehkar A, Nowak MA, Fang T, Hardcastle MJ;, Neilsen J, Young A. Discovery of an Ultraviolet Counterpart to an Ultrafast X-Ray Outflow in the Quasar PG 1211+143. The Astrophysical Journal [Internet]. 2018;853 (2) :166.

Abstract:

We observed the quasar PG 1211+143 using the Cosmic Origins Spectrograph on the Hubble Space Telescope in 2015 April as part of a joint campaign with the Chandra X-ray Observatory and the Jansky Very Large Array. Our ultraviolet spectra cover the wavelength range 912–2100 Å. We find a broad absorption feature (∼ 1080 {km} {{{s}}}-1) at an observed wavelength of 1240 Å. Interpreting this as H I Lyα, in the rest frame of PG 1211+143 (z = 0.0809), this corresponds to an outflow velocity of ‑16,980 {km} {{{s}}}-1 (outflow redshift {z}{out}∼ -0.0551), matching the moderate ionization X-ray absorption system detected in our Chandra observation and reported previously by Pounds et al. With a minimum H I column density of {log} {N}{{H}{{I}}}> 14.5, and no absorption in other UV resonance lines, this Lyα absorber is consistent with arising in the same ultrafast outflow as the X-ray absorbing gas. The Lyα feature is weak or absent in archival ultraviolet spectra of PG 1211+143, strongly suggesting that this absorption is transient, and intrinsic to PG 1211+143. Such a simultaneous detection in two independent wavebands for the first time gives strong confirmation of the reality of an ultrafast outflow in an active galactic nucleus.

Publisher's Version