The effects of thermodynamic stability on wind properties in different low mass black hole binary states


Chakravorty S, Lee JC, Neilsen J. The effects of thermodynamic stability on wind properties in different low mass black hole binary states. Monthly Notices of the Royal Astronomical Society [Internet]. 2013;436 :560-569.


We present a systematic theory-motivated study of the thermodynamic stability condition as an explanation for the observed accretion disk wind signatures in different states of low mass black hole binaries (BHB). The variability in observed ions is conventionally explained either by variations in the driving mechanisms or the changes in the ionizing flux or due to density effects, whilst thermodynamic stability considerations have been largely ignored. It would appear that the observability of particular ions in different BHB states can be accounted for through simple thermodynamic considerations in the static limit. Our calculations predict that in the disk dominated soft thermal and intermediate states, the wind should be thermodynamically stable and hence observable. On the other hand, in the powerlaw dominated spectrally hard state the wind is found to be thermodynamically unstable for a certain range of 3.55 <= log \xi <= 4.20. In the spectrally hard state, a large number of the He-like and H-like ions (including e.g. Fe XXV, Ar XVIII and S XV) have peak ion fractions in the unstable ionization parameter (\xi) range, making these ions undetectable. Our theoretical predictions have clear corroboration in the literature reporting differences in wind ion observability as the BHBs transition through the accretion states Lee et al. 2002; Miller et al. 2008; Neilsen & Lee 2009; Blum et al. 2010; Ponti et al. 2012; Neilsen & Homan 2012). While this effect may not be the only one responsible for the observed gradient in the wind properties as a function of the accretion state in BHBs, it is clear that its inclusion in the calculations is crucial to understanding the link between the environment of the compact object and its accretion

Publisher's Version

Last updated on 02/09/2018