Publications

2018
Roberts JS, Robinson JO, Diamond PM, et al. Patient understanding of, satisfaction with, and perceived utility of whole-genome sequencing: findings from the MedSeq Project. Genet Med. 2018;20 (9) :1069-1076.Abstract
PURPOSE: To examine patients' experiences with clinical use of whole-genome sequencing (WGS). METHODS: A randomized trial compared primary care and cardiology patients receiving WGS and family health history (FH) information or FH information alone. 202 patients were surveyed before (BL) and up to 6 months after disclosure of results (6M). RESULTS: Patients (mean age = 55 years; 50% female; 81% college graduates) reported low levels of decisional regret (mean: 7.1/100) and high satisfaction with physicians' disclosure of results (median: 29/30). Compared with the FH-only arm, patients receiving WGS results were more likely to report learning accurate disease risk information (odds ratio = 7.45) and findings influential for medical treatment (odds ratio = 2.39). Sessions where WGS results were disclosed took longer (30 vs. 15 minutes), particularly for primary care patients. Patients' expected utility of sequencing at BL was higher than perceived utility at 6M in several domains, including impacting medical decision making (87% vs. 54%) and influencing medication choice (73% vs. 32%). CONCLUSION: Patients were satisfied with their physicians' communication of WGS results and perceived them as medically useful. Discrepancies in expected versus perceived utility of WGS results suggest a need to temper patients' expectations about its potential benefits.
Christensen KD, Uhlmann WR, Roberts SJ, et al. A randomized controlled trial of disclosing genetic risk information for Alzheimer disease via telephone. Genet Med. 2018;20 (1) :132-141.Abstract
PurposeTelephone disclosure of genetic test results can improve access to services. To date, studies of its impact have focused on return of Mendelian risk information, principally hereditary cancer syndromes.MethodsIn a multisite trial of Alzheimer disease genetic risk disclosure, asymptomatic adults were randomized to receive test results in person or via telephone. Primary analyses examined patient outcomes 12 months after disclosure.ResultsData from 257 participants showed that telephone disclosure occurred 7.4 days sooner and was 30% shorter, on average, than in-person disclosure (both P < 0.001). Anxiety and depression scores were well below cutoffs for clinical concern across protocols. Comparing telephone and in-person disclosure protocols, 99% confidence intervals of mean differences were within noninferiority margins on scales assessing anxiety, depression, and test-related distress, but inconclusive about positive impact. No differences were observed on measures of recall and subjective impact. Subanalyses supported noninferiority on all outcomes among apolipoprotein E (APOE) ɛ4-negative participants. Subanalyses were inconclusive for APOE ɛ4-positive participants, although mean anxiety and depression scores were still well below cutoffs for clinical concern.ConclusionTelephone disclosure of APOE results and risk for Alzheimer disease is generally safe and helps providers meet demands for services, even when results identify an increased risk for disease.
Christensen KD, Vassy JL, Phillips KA, et al. Short-term costs of integrating whole-genome sequencing into primary care and cardiology settings: a pilot randomized trial. Genet Med. 2018;20 (12) :1544-1553.Abstract
PURPOSE: Great uncertainty exists about the costs associated with whole-genome sequencing (WGS). METHODS: One hundred cardiology patients with cardiomyopathy diagnoses and 100 ostensibly healthy primary care patients were randomized to receive a family-history report alone or with a WGS report. Cardiology patients also reviewed prior genetic test results. WGS costs were estimated by tracking resource use and staff time. Downstream costs were estimated by identifying services in administrative data, medical records, and patient surveys for 6 months. RESULTS: The incremental cost per patient of WGS testing was $5,098 in cardiology settings and $5,073 in primary care settings compared with family history alone. Mean 6-month downstream costs did not differ statistically between the control and WGS arms in either setting (cardiology: difference = -$1,560, 95% confidence interval -$7,558 to $3,866, p = 0.36; primary care: difference = $681, 95% confidence interval -$884 to $2,171, p = 0.70). Scenario analyses showed the cost reduction of omitting or limiting the types of secondary findings was less than $69 and $182 per patient in cardiology and primary care, respectively. CONCLUSION: Short-term costs of WGS were driven by the costs of sequencing and interpretation rather than downstream health care. Disclosing additional types of secondary findings has a limited cost impact following disclosure.
2017
Guan Y, Roter DL, Erby LH, et al. Disclosing genetic risk of Alzheimer's disease to cognitively impaired patients and visit companions: Findings from the REVEAL Study. Patient Educ Couns. 2017;100 (5) :927-935.Abstract
OBJECTIVE: To describe the impact of genetic information on Alzheimer's disease (AD) risk communication to patients with mild cognitive impairment (MCI) and their visit companions. METHODS: Participants of the fourth REVEAL Study trial were randomized to receive AD risk assessments with or without genotype results. We coded 79 audio recorded risk disclosure sessions with the Roter Interaction Analysis System. Multilevel analyses explored differences in communication when disclosed risks were based on age and MCI diagnosis alone or in addition to APOE genotype status. RESULTS: The addition of genotype results diminished the patient-centered nature of the sessions (p<0.001). When ε4 positive relative to ε4 negative results were disclosed, visit companions were more verbally active (p<0.05), disclosed more medical information (p<0.05), were more positive verbally and non-verbally (p<0.05) and were more proactive in setting the visit agenda (p<0.05). CONCLUSIONS: Delivery of complex genetic risk information reduces the patient-centeredness of disclosure sessions. Visit companions are more actively engaged in session communication when patients are at increased genetic risk for AD. PRACTICE IMPLICATIONS: AD risk discussions can be improved by supporting the positive role of visit companions and addressing the challenges inherent in the delivery of complex genetic information in a patient-centered manner.
Vassy JL, Christensen KD, Schonman EF, et al. The Impact of Whole-Genome Sequencing on the Primary Care and Outcomes of Healthy Adult Patients: A Pilot Randomized Trial. Ann Intern Med. 2017;167 (3) :159-169.Abstract
Background: Whole-genome sequencing (WGS) in asymptomatic adults might prevent disease but increase health care use without clinical value. Objective: To describe the effect on clinical care and outcomes of adding WGS to standardized family history assessment in primary care. Design: Pilot randomized trial. (ClinicalTrials.gov: NCT01736566). Setting: Academic primary care practices. Participants: 9 primary care physicians (PCPs) and 100 generally healthy patients recruited at ages 40 to 65 years. Intervention: Patients were randomly assigned to receive a family history report alone (FH group) or in combination with an interpreted WGS report (FH + WGS group), which included monogenic disease risk (MDR) results (associated with Mendelian disorders), carrier variants, pharmacogenomic associations, and polygenic risk estimates for cardiometabolic traits. Each patient met with his or her PCP to discuss the report. Measurements: Clinical outcomes and health care use through 6 months were obtained from medical records and audio-recorded discussions between PCPs and patients. Patients' health behavior changes were surveyed 6 months after receiving results. A panel of clinician-geneticists rated the appropriateness of how PCPs managed MDR results. Results: Mean age was 55 years; 58% of patients were female. Eleven FH + WGS patients (22% [95% CI, 12% to 36%]) had new MDR results. Only 2 (4% [CI, 0.01% to 15%]) had evidence of the phenotypes predicted by an MDR result (fundus albipunctatus due to RDH5 and variegate porphyria due to PPOX). Primary care physicians recommended new clinical actions for 16% (CI, 8% to 30%) of FH patients and 34% (CI, 22% to 49%) of FH + WGS patients. Thirty percent (CI, 17% to 45%) and 41% (CI, 27% to 56%) of FH and FH + WGS patients, respectively, reported making a health behavior change after 6 months. Geneticists rated PCP management of 8 MDR results (73% [CI, 39% to 99%]) as appropriate and 2 results (18% [CI, 3% to 52%]) as inappropriate. Limitation: Limited sample size and ancestral and socioeconomic diversity. Conclusion: Adding WGS to primary care reveals new molecular findings of uncertain clinical utility. Nongeneticist providers may be able to manage WGS results appropriately, but WGS may prompt additional clinical actions of unclear value. Primary Funding Source: National Institutes of Health.
Christensen KD, Savage SK, Huntington NL, et al. Preferences for the Return of Individual Results From Research on Pediatric Biobank Samples. J Empir Res Hum Res Ethics. 2017;12 (2) :97-106.Abstract
Discussions about disclosing individual genetic research results include calls to consider participants' preferences. In this study, parents of Boston Children's Hospital patients set preferences for disclosure based on disease preventability and severity, and could exclude mental health, developmental, childhood degenerative, and adult-onset disorders. Participants reviewed hypothetical reports and reset preferences, if desired. Among 661 participants who initially wanted all results (64%), 1% reset preferences. Among 336 participants who initially excluded at least one category (36%), 38% reset preferences. Participants who reset preferences added 0.9 categories, on average; and their mean satisfaction on 0 to 10 scales increased from 4.7 to 7.2 ( p < .001). Only 2% reduced the number of categories they wanted disclosed. Findings demonstrate the benefits of providing examples of preference options and the tendency of participants to want results disclosed. Findings also suggest that preference-setting models that do not provide specific examples of results could underestimate participants' desires for information.
Jamal L, Robinson JO, Christensen KD, et al. When bins blur: Patient perspectives on categories of results from clinical whole genome sequencing. AJOB Empir Bioeth. 2017;8 (2) :82-88.Abstract
BACKGROUND: Clinical genome and exome sequencing (CGES) is being used in an expanding range of clinical settings. Most approaches to offering patients choices about learning CGES results classify results according to expert definitions of clinical actionability. Little is known about how patients conceptualize different categories of CGES results. METHODS: The MedSeq Project is a randomized controlled trial studying the use of whole-genome sequencing (WGS) in primary care and cardiology. We surveyed 202 patient-participants about different kinds of WGS results and conducted qualitative interviews with 49 of these participants. Interview data were analyzed both inductively and deductively using thematic content analysis. RESULTS: Participants demonstrated high levels of study understanding and genetic literacy. A small majority of participants wanted to learn all of their WGS results (n = 123, 61%). Qualitative data provided a deeper understanding of participants' perspectives about different types of WGS results. Participants did not have the same views about which WGS results would be actionable or upsetting to learn. They conceptualized variants of uncertain significance (VUS) in a variety of different ways. Many participants expressed optimism that the uncertainty associated with VUS results could be reduced over time. CONCLUSIONS: Proposals to determine which WGS/CGES results to disclose by soliciting patient preferences may fail to appreciate the complex ways patients think about disease and the information WGS/CGES can produce. Our findings challenge prevailing methods of facilitating patient choice and assessing the benefits and harms related to the return of WGS/CGES results, which mostly rely on expert definitions of clinical utility to categorize the kinds of results patients can learn.
2016
Baptista NM, Christensen KD, Carere DA, et al. Adopting genetics: motivations and outcomes of personal genomic testing in adult adoptees. Genet Med. 2016;18 (9) :924-32.Abstract
PURPOSE: American adult adoptees may possess limited information about their biological families and turn to direct-to-consumer personal genomic testing (PGT) for genealogical and medical information. We investigated the motivations and outcomes of adoptees undergoing PGT using data from the Impact of Personal Genomics (PGen) Study. METHODS: The PGen Study surveyed new 23andMe and Pathway Genomics customers before and 6 months after receiving PGT results. Exploratory analyses compared adoptees' and nonadoptees' PGT attitudes, expectations, and experiences. We evaluated the association of adoption status with motivations for testing and postdisclosure actions using logistic regression models. RESULTS: Of 1,607 participants, 80 (5%) were adopted. As compared with nonadoptees, adoptees were more likely to cite limited knowledge of family health history (OR = 10.1; 95% CI = 5.7-19.5) and the opportunity to learn genetic disease risks (OR = 2.7; 95% CI = 1.6-4.8) as strong motivations for PGT. Of 922 participants who completed 6-month follow-up, there was no significant association between adoption status and PGT-motivated health-care utilization or health-behavior change. CONCLUSION: PGT allows adoptees to gain otherwise inaccessible information about their genetic disease risks and ancestry, helping them to fill the void of an incomplete family health history.Genet Med 18 9, 924-932.
Christensen KD, Vassy JL, Jamal L, et al. Are physicians prepared for whole genome sequencing? a qualitative analysis. Clin Genet. 2016;89 (2) :228-34.Abstract
Although the integration of whole genome sequencing (WGS) into standard medical practice is rapidly becoming feasible, physicians may be unprepared to use it. Primary care physicians (PCPs) and cardiologists enrolled in a randomized clinical trial of WGS received genomics education before completing semi-structured interviews. Themes about preparedness were identified in transcripts through team-based consensus-coding. Data from 11 PCPs and 9 cardiologists suggested that physicians enrolled in the trial primarily to prepare themselves for widespread use of WGS in the future. PCPs were concerned about their general genomic knowledge, while cardiologists were concerned about how to interpret specific types of results and secondary findings. Both cohorts anticipated preparing extensively before disclosing results to patients by using educational resources with which they were already familiar, and both cohorts anticipated making referrals to genetics specialists as needed. A lack of laboratory guidance, time pressures, and a lack of standards contributed to feeling unprepared. Physicians had specialty-specific concerns about their preparedness to use WGS. Findings identify specific policy changes that could help physicians feel more prepared, and highlight how providers of all types will need to become familiar with interpreting WGS results.
Robinson CL, Jouni H, Kruisselbrink TM, et al. Disclosing genetic risk for coronary heart disease: effects on perceived personal control and genetic counseling satisfaction. Clin Genet. 2016;89 (2) :251-7.Abstract
We investigated whether disclosure of coronary heart disease (CHD) genetic risk influences perceived personal control (PPC) and genetic counseling satisfaction (GCS). Participants (n = 207, age: 45-65 years) were randomized to receive estimated 10-year risk of CHD based on a conventional risk score (CRS) with or without a genetic risk score (GRS). Risk estimates were disclosed by a genetic counselor who also reviewed how GRS altered risk in those randomized to CRS+GRS. Each participant subsequently met with a physician and then completed surveys to assess PPC and GCS. Participants who received CRS+GRS had higher PPC than those who received CRS alone although the absolute difference was small (25.2 ± 2.7 vs 24.1 ± 3.8, p = 0.04). A greater proportion of CRS+GRS participants had higher GCS scores (17.3 ± 5.3 vs 15.9 ± 6.3, p = 0.06). In the CRS+GRS group, PPC and GCS scores were not correlated with GRS. Within both groups, PPC and GCS scores were similar in patients with or without family history (p = NS). In conclusion, patients who received their genetic risk of CHD had higher PPC and tended to have higher GCS. Our findings suggest that disclosure of genetic risk of CHD together with conventional risk estimates is appreciated by patients. Whether this results in improved outcomes needs additional investigation.
Christensen KD, Roberts SJ, Whitehouse PJ, et al. Disclosing Pleiotropic Effects During Genetic Risk Assessment for Alzheimer Disease: A Randomized Trial. Ann Intern Med. 2016;164 (3) :155-63.Abstract
BACKGROUND: Increasing use of genetic testing raises questions about disclosing secondary findings, including pleiotropic information. OBJECTIVE: To determine the safety and behavioral effect of disclosing modest associations between apolipoprotein E (APOE) genotype and coronary artery disease (CAD) risk during APOE-based genetic risk assessments for Alzheimer disease (AD). DESIGN: Randomized, multicenter equivalence clinical trial. (ClinicalTrials.gov: NCT00462917). SETTING: 4 teaching hospitals. PARTICIPANTS: 257 asymptomatic adults were enrolled, 69% of whom had 1 AD-affected first-degree relative. INTERVENTION: Disclosure of genetic risk information about AD and CAD (AD+CAD) or AD only (AD-only). MEASUREMENTS: Primary outcomes were Beck Anxiety Inventory (BAI) and Center for Epidemiologic Studies Depression Scale (CES-D) scores at 12 months. Secondary outcomes were all measures at 6 weeks and 6 months and test-related distress and health behavior changes at 12 months. RESULTS: At 12 months, mean BAI scores were 3.5 in both the AD-only and AD+CAD groups (difference, 0.0 [95% CI, -1.0 to 1.0]), and mean CES-D scores were 6.4 and 7.1 in the AD-only and AD+CAD groups, respectively (difference, 0.7 [CI, -1.0 to 2.4]). Both confidence bounds fell within the equivalence margin of ±5 points. Among carriers of the APOE ε4 allele, distress was lower in the AD+CAD groups (difference, -4.8 [CI, -8.6 to -1.0]) (P = 0.031 for the interaction between group and APOE genotype). Participants in the AD+CAD groups also reported more health behavior changes, regardless of APOE genotype. LIMITATIONS: Outcomes were self-reported by volunteers without severe anxiety, severe depression, or cognitive problems. Analyses omitted 33 randomly assigned participants. CONCLUSION: Disclosure of pleiotropic information did not increase anxiety or depression and may have decreased distress among persons at increased risk for 2 conditions. Providing risk modification information about CAD improved health behaviors. Findings highlight the potential benefits of disclosure of secondary genetic findings when options exist for decreasing risk. PRIMARY FUNDING SOURCE: National Human Genome Research Institute.
Conway-Pearson LS, Christensen KD, Savage SK, et al. Family health history reporting is sensitive to small changes in wording. Genet Med. 2016;18 (12) :1308-1311.Abstract
PURPOSE: Family health history is often collected through single-item queries that ask patients whether their family members are affected by certain conditions. The specific wording of these queries may influence what individuals report. METHODS: Parents of Boston Children's Hospital patients were invited to participate in a Web-based survey about the return of individual genomic research results regarding their children. Participants reported whether 11 types of medical conditions affected them or their family. Randomization determined whether participants were specifically instructed to consider their extended family. RESULTS: Family health history was reported by 2,901 participants. Those asked to consider their extended family were more likely to report a positive family history for 8 of 11 medical conditions. The largest differences were observed for cancer (65.1 vs. 45.7%; P < 0.001), cardiovascular conditions (72.5 vs. 56.0%; P < 0.001), and endocrine/hormonal conditions (50.9 vs. 36.7%; P < 0.001). CONCLUSIONS: Small alterations to the way family health history queries are worded can substantially change patient responses. Clinicians and researchers need to be sensitive about patients' tendencies to omit extended family from health history reporting unless specifically asked to consider them.Genet Med 18 12, 1308-1311.
Robinson JO, Carroll TM, Feuerman LZ, et al. Participants and Study Decliners' Perspectives About the Risks of Participating in a Clinical Trial of Whole Genome Sequencing. J Empir Res Hum Res Ethics. 2016;11 (1) :21-30.Abstract
An increasing number of individuals are being recruited to whole genome sequencing (WGS) research. When asked hypothetically, the majority of the public express willingness to participate in this type of research, yet little is known about how many individuals will actually consent to research participation or what they perceive the risks to be. The MedSeq Project is a clinical trial exploring WGS in clinical care. We documented primary reason(s) for declining participation and reviewed audio-recorded informed consent sessions to identify participants' concerns. Of 514 individuals recruited, 173 (34%) actively declined, 205 (40%) enrolled, and the remaining 136 (26%) were ineligible, unresponsive or waitlisted. Although the majority of active decliners cited logistical barriers, 40% cited risks related to the ethical, legal, and social implications (ELSI) of WGS research. Participants similarly discussed ELSI-related concerns but felt the potential benefits of participation outweighed the risks. Findings provide insight into the perspectives of potential WGS research participants and identify potential barriers to participation.
Lupo PJ, Robinson JO, Diamond PM, et al. Patients' perceived utility of whole-genome sequencing for their healthcare: findings from the MedSeq project. Per Med. 2016;13 (1) :13-20.Abstract
AIM: To evaluate patients' expectations regarding the perceived utility of whole-genome sequencing (WGS). MATERIALS & METHODS: We used latent class analysis to characterize individuals enrolled in the MedSeq Project based on their perceived utility of WGS. Multinomial logistic regression was used to evaluate associations between participant characteristics and latent classes. RESULTS: Findings characterized participants into one of three perceived utility groups: enthusiasts, who had a high probability of agreement with all utility items (23%); health conscious, who perceived utility in medically related areas (60%) or skeptics, who had a low probability of agreement with utility items (17%). Trust significantly predicted latent class. CONCLUSION: Understanding differences in perceived utility of WGS may inform strategies for uptake of this technology.
Baptista NM, Christensen KD, Carere DA, et al. Adopting genetics: motivations and outcomes of personal genomic testing in adult adoptees. Genet Med. 2016;18 :924-32.Abstract
Genet Med advance online publication 28 January 2016
Christensen KD, Roberts JS, Whitehouse PJ, et al. Disclosing pleiotropic effects during genetic risk assessment for Alzheimer disease. A randomized trial. Annals of Internal Medicine. 2016;164 :155-163.Abstract
Background: Increasing use of genetic testing raises questions about disclosing secondary findings, including pleiotropic information.Objective: To determine the safety and behavioral effect of disclosing modest associations between apolipoprotein E (APOE) genotype and coronary artery disease (CAD) risk during APOE-based genetic risk assessments for Alzheimer disease (AD).Design: Randomized, multicenter equivalence clinical trial. (ClinicalTrials.gov: NCT00462917)Setting: 4 teaching hospitals.Participants: 257 asymptomatic adults were enrolled, 69% of whom had 1 AD-affected first-degree relative.Intervention: Disclosure of genetic risk information about AD and CAD (AD+CAD) or AD only (AD-only).Measurements: Primary outcomes were Beck Anxiety Inventory (BAI) and Center for Epidemiologic Studies Depression Scale (CES-D) scores at 12 months. Secondary outcomes were all measures at 6 weeks and 6 months and test-related distress and health behavior changes at 12 months.Results: At 12 months, mean BAI scores were 3.5 in both the AD-only and AD+CAD groups (difference, 0.0 [95% CI, −1.0 to 1.0]), and mean CES-D scores were 6.4 and 7.1 in the AD-only and AD+CAD groups, respectively (difference, 0.7 [CI, −1.0 to 2.4]). Both confidence bounds fell within the equivalence margin of ±5 points. Among carriers of the APOE ε4 allele, distress was lower in the AD+CAD groups (difference, −4.8 [CI, −8.6 to −1.0]) (P = 0.031 for the interaction between group and APOE genotype). Participants in the AD+CAD groups also reported more health behavior changes, regardless of APOE genotype.Limitations: Outcomes were self-reported by volunteers without severe anxiety, severe depression, or cognitive problems. Analyses omitted 33 randomly assigned participants.Conclusion: Disclosure of pleiotropic information did not increase anxiety or depression and may have decreased distress among persons at increased risk for 2 conditions. Providing risk modification information about CAD improved health behaviors. Findings highlight the potential benefits of disclosure of secondary genetic findings when options exist for decreasing risk.Primary Funding Source: National Human Genome Research Institute.
2015
Christensen KD, Dukhovny D, Siebert U, Green RC. Assessing the Costs and Cost-Effectiveness of Genomic Sequencing. J Pers Med. 2015;5 (4) :470-86.Abstract
Despite dramatic drops in DNA sequencing costs, concerns are great that the integration of genomic sequencing into clinical settings will drastically increase health care expenditures. This commentary presents an overview of what is known about the costs and cost-effectiveness of genomic sequencing. We discuss the cost of germline genomic sequencing, addressing factors that have facilitated the decrease in sequencing costs to date and anticipating the factors that will drive sequencing costs in the future. We then address the cost-effectiveness of diagnostic and pharmacogenomic applications of genomic sequencing, with an emphasis on the implications for secondary findings disclosure and the integration of genomic sequencing into general patient care. Throughout, we ground the discussion by describing efforts in the MedSeq Project, an ongoing randomized controlled clinical trial, to understand the costs and cost-effectiveness of integrating whole genome sequencing into cardiology and primary care settings.
Christensen KD, Roberts SJ, Zikmund-Fisher BJ, et al. Associations between self-referral and health behavior responses to genetic risk information. Genome Med. 2015;7 (1) :10.Abstract
BACKGROUND: Studies examining whether genetic risk information about common, complex diseases can motivate individuals to improve health behaviors and advance planning have shown mixed results. Examining the influence of different study recruitment strategies may help reconcile inconsistencies. METHODS: Secondary analyses were conducted on data from the REVEAL study, a series of randomized clinical trials examining the impact of genetic susceptibility testing for Alzheimer's disease (AD). We tested whether self-referred participants (SRPs) were more likely than actively recruited participants (ARPs) to report health behavior and advance planning changes after AD risk and APOE genotype disclosure. RESULTS: Of 795 participants with known recruitment status, 546 (69%) were self-referred and 249 (31%) had been actively recruited. SRPs were younger, less likely to identify as African American, had higher household incomes, and were more attentive to AD than ARPs (all P < 0.01). They also dropped out of the study before genetic risk disclosure less frequently (26% versus 41%, P < 0.001). Cohorts did not differ in their likelihood of reporting a change to at least one health behavior 6 weeks and 12 months after genetic risk disclosure, nor in intentions to change at least one behavior in the future. However, interaction effects were observed where ε4-positive SRPs were more likely than ε4-negative SRPs to report changes specifically to mental activities (38% vs 19%, p < 0.001) and diets (21% vs 12%, p = 0.016) six weeks post-disclosure, whereas differences between ε4-positive and ε4-negative ARPs were not evident for mental activities (15% vs 21%, p = 0.413) or diets (8% versus 16%, P = 0.190). Similarly, ε4-positive participants were more likely than ε4-negative participants to report intentions to change long-term care insurance among SRPs (20% vs 5%, p < 0.001), but not ARPs (5% versus 9%, P = 0.365). CONCLUSIONS: Individuals who proactively seek AD genetic risk assessment are more likely to undergo testing and use results to inform behavior changes than those who respond to genetic testing offers. These results demonstrate how the behavioral impact of genetic risk information may vary according to the models by which services are provided, and suggest that how participants are recruited into translational genomics research can influence findings. TRIAL REGISTRATION: ClinicalTrials.gov NCT00089882 and NCT00462917.
Besser AG, Sanderson SC, Roberts SJ, et al. Factors affecting recall of different types of personal genetic information about Alzheimer's disease risk: the REVEAL study. Public Health Genomics. 2015;18 (2) :78-86.Abstract
METHODS: Data were obtained through a multisite clinical trial in which different types of genetic risk-related information were disclosed to individuals (n = 246) seeking a risk assessment for Alzheimer's disease. RESULTS: Six weeks after disclosure, 83% of participants correctly recalled the number of risk-increasing APOE alleles they possessed, and 74% correctly recalled their APOE genotype. While 84% of participants recalled their lifetime risk estimate to within 5 percentage points, only 51% correctly recalled their lifetime risk estimate exactly. Correct recall of the number of APOE risk-increasing alleles was independently associated with higher education (p < 0.001), greater numeracy (p < 0.05) and stronger family history of Alzheimer's disease (p < 0.05). Before adjustments for confounding, correct recall of APOE genotype was also associated with higher education, greater numeracy and stronger family history of Alzheimer's disease, as well as with higher comfort with numbers and European American ethnicity (all p < 0.05). Correct recall of the lifetime risk estimate was independently associated only with younger age (p < 0.05). CONCLUSIONS: Recall of genotype-specific information is high, but recall of exact risk estimates is lower. Incorrect recall of numeric risk may lead to distortions in understanding risk. Further research is needed to determine how best to communicate different types of genetic risk information to patients, particularly to those with lower educational levels and lower numeracy. Health-care professionals should be aware that each type of genetic risk information may be differentially interpreted and retained by patients and that some patient subgroups may have more problems with recall than others.
Khan CM, Rini C, Bernhardt BA, et al. How can psychological science inform research about genetic counseling for clinical genomic sequencing?. J Genet Couns. 2015;24 (2) :193-204.Abstract
Next generation genomic sequencing technologies (including whole genome or whole exome sequencing) are being increasingly applied to clinical care. Yet, the breadth and complexity of sequencing information raise questions about how best to communicate and return sequencing information to patients and families in ways that facilitate comprehension and optimal health decisions. Obtaining answers to such questions will require multidisciplinary research. In this paper, we focus on how psychological science research can address questions related to clinical genomic sequencing by explaining emotional, cognitive, and behavioral processes in response to different types of genomic sequencing information (e.g., diagnostic results and incidental findings). We highlight examples of psychological science that can be applied to genetic counseling research to inform the following questions: (1) What factors influence patients' and providers' informational needs for developing an accurate understanding of what genomic sequencing results do and do not mean?; (2) How and by whom should genomic sequencing results be communicated to patients and their family members?; and (3) How do patients and their families respond to uncertainties related to genomic information?

Pages