Working Paper
Xiong K, Lancaster AK, Siegal ML, Masel J. Feed-forward regulation adaptively evolves via dynamics rather than topology when there is intrinsic noise [Internet]. bioRxiv Working Paper;:393884. Publisher's VersionAbstract
We develop a null model of the evolution of transcriptional regulatory networks, and use it to support an adaptive origin for a canonical "motif", a 3-node feed-forward loop (FFL) hypothesized to filter out short spurious signals by integrating information from a fast and a slow pathway. Our mutational model captures the intrinsically high prevalence of weak affinity transcription factor binding sites. We also capture stochasticity and delays in gene expression that distort external signals and intrinsically generate noise. Functional FFLs evolve readily under selection for the hypothesized function, but not in negative controls. Interestingly, a 4-node "diamond" motif also emerged as a short spurious signal filter. The diamond uses expression dynamics rather than path length to provide fast and slow pathways. When there is no external spurious signal to filter out, but only internally generated noise, only the diamond and not the FFL evolves.
Xiong K, Lancaster AK, Siegal ML, Masel J. Feed-forward regulation adaptively evolves via dynamics rather than topology when there is intrinsic noise. Nat Commun 2019;10(1):2418.Abstract
In transcriptional regulatory networks (TRNs), a canonical 3-node feed-forward loop (FFL) is hypothesized to evolve to filter out short spurious signals. We test this adaptive hypothesis against a novel null evolutionary model. Our mutational model captures the intrinsically high prevalence of weak affinity transcription factor binding sites. We also capture stochasticity and delays in gene expression that distort external signals and intrinsically generate noise. Functional FFLs evolve readily under selection for the hypothesized function but not in negative controls. Interestingly, a 4-node "diamond" motif also emerges as a short spurious signal filter. The diamond uses expression dynamics rather than path length to provide fast and slow pathways. When there is no idealized external spurious signal to filter out, but only internally generated noise, only the diamond and not the FFL evolves. While our results support the adaptive hypothesis, we also show that non-adaptive factors, including the intrinsic expression dynamics, matter.
McLellan CA, Vincent BM, Solis NV, Lancaster AK, Sullivan LB, Hartland CL, Youngsaye W, Filler SG, Whitesell L, Lindquist S. Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nat Chem Biol 2018;14(2):135-141.Abstract
The development of effective antifungal therapeutics remains a formidable challenge because of the close evolutionary relationship between humans and fungi. Mitochondrial function may present an exploitable vulnerability because of its differential utilization in fungi and its pivotal roles in fungal morphogenesis, virulence, and drug resistance already demonstrated by others. We now report mechanistic characterization of ML316, a thiohydantoin that kills drug-resistant Candida species at nanomolar concentrations through fungal-selective inhibition of the mitochondrial phosphate carrier Mir1. Using genetic, biochemical, and metabolomic approaches, we established ML316 as the first Mir1 inhibitor. Inhibition of Mir1 by ML316 in respiring yeast diminished mitochondrial oxygen consumption, resulting in an unusual metabolic catastrophe marked by citrate accumulation and death. In a mouse model of azole-resistant oropharyngeal candidiasis, ML316 reduced fungal burden and enhanced azole activity. Targeting Mir1 could provide a new, much-needed therapeutic strategy to address the rapidly rising burden of drug-resistant fungal infection.
Lancaster AK, Thessen AE, Virapongse A. A new paradigm for the scientific enterprise: nurturing the ecosystem. F1000Res 2018;7:803.Abstract
The institutions of science are in a state of flux. Declining public funding for basic science, the increasingly corporatized administration of universities, increasing "adjunctification" of the professoriate and poor academic career prospects for postdoctoral scientists indicate a significant mismatch between the reality of the market economy and expectations in higher education for science. Solutions to these issues typically revolve around the idea of fixing the career "pipeline", which is envisioned as being a pathway from higher-education training to a coveted permanent position, and then up a career ladder until retirement. In this paper, we propose and describe the term "ecosystem" as a more appropriate way to conceptualize today's scientific training and the professional landscape of the scientific enterprise. First, we highlight the issues around the concept of "fixing the pipeline". Then, we articulate our ecosystem metaphor by describing a series of concrete design patterns that draw on peer-to-peer, decentralized, cooperative, and commons-based approaches for creating a new dynamic scientific enterprise.
Lancaster AK. How do we build a human-centered open science? [Internet]. 2016. Publisher's VersionAbstract
Open science hit the mainstream of discourse in the scientific community in 2016. Here I examine the emerging criticisms leveled against how we publish and disseminate science and argues it may be time to reframe the open science project. Rather than relying on instrumentalist language of “carrot-and-sticks” and “rewards-and-incentives” we should, instead, focus on the actual working conditions for scientists and the political economy in which they are embedded.
Vincent BM, Langlois J-B, Srinivas R, Lancaster AK, Scherz-Shouval R, Whitesell L, Tidor B, Buchwald SL, Lindquist S. A Fungal-Selective Cytochrome bc Inhibitor Impairs Virulence and Prevents the Evolution of Drug Resistance. Cell Chem Biol 2016;23(8):978-991.Abstract
To cause disease, a microbial pathogen must adapt to the challenges of its host environment. The leading fungal pathogen Candida albicans colonizes nutrient-poor bodily niches, withstands attack from the immune system, and tolerates treatment with azole antifungals, often evolving resistance. To discover agents that block these adaptive strategies, we screened 300,000 compounds for inhibition of azole tolerance in a drug-resistant Candida isolate. We identified a novel indazole derivative that converts azoles from fungistatic to fungicidal drugs by selective inhibition of mitochondrial cytochrome bc. We synthesized 103 analogs to optimize potency (half maximal inhibitory concentration 0.4 ?M) and fungal selectivity (28-fold over human). In addition to reducing azole resistance, targeting cytochrome bc prevents C. albicans from adapting to the nutrient-deprived macrophage phagosome and greatly curtails its virulence in mice. Inhibiting mitochondrial respiration and restricting metabolic flexibility with this synthetically tractable chemotype provides an attractive therapeutic strategy to limit both fungal virulence and drug resistance.
Chakrabortee S, Kayatekin C, Newby GA, Mendillo ML, Lancaster A, Lindquist S. Luminidependens (LD) is an Arabidopsis protein with prion behavior [Internet]. Proceedings of the National Academy of Sciences 2016;113(21):6065-6070. Publisher's VersionAbstract
Prion proteins provide a unique mode of biochemical memory through self-perpetuating changes in protein conformation and function. They have been studied in fungi and mammals, but not yet identified in plants. Using a computational model, we identified candidate prion domains (PrDs) in nearly 500 plant proteins. Plant flowering is of particular interest with respect to biological memory, because its regulation involves remembering and integrating previously experienced environmental conditions. We investigated the prion-forming capacity of three prion candidates involved in flowering using a yeast model, where prion attributes are well defined and readily tested. In yeast, prions heritably change protein functions by templating monomers into higher-order assemblies. For most yeast prions, the capacity to convert into a prion resides in a distinct prion domain. Thus, new prion-forming domains can be identified by functional complementation of a known prion domain. The prion-like domains (PrDs) of all three of the tested proteins formed higher-order oligomers. Uniquely, the Luminidependens PrD (LDPrD) fully replaced the prion-domain functions of a well-characterized yeast prion, Sup35. Our results suggest that prion-like conformational switches are evolutionarily conserved and might function in a wide variety of normal biological processes.
Souilmi Y*, Lancaster AK*, Jung J-Y, Hawkins JB, Powles R, Rizzo E, Tonellato P, Wall DP. Scalable and cost-effective NGS genotyping in the cloud [Internet]. BMC Medical Genomics 2015;8:64. Publisher's VersionAbstract


While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS will not be realized until robust and routine whole genome sequencing data can be accurately rendered to medically actionable reports within a time window of hours and at scales of economy in the 10’s of dollars.


We take a step towards addressing this challenge, by using COSMOS, a cloud-enabled workflow management system, to develop GenomeKey, an NGS whole genome analysis workflow. COSMOS implements complex workflows making optimal use of high-performance compute clusters. Here we show that the Amazon Web Service (AWS) implementation of GenomeKey via COSMOS provides a fast, scalable, and cost-effective analysis of both public benchmarking and large-scale heterogeneous clinical NGS datasets.


Our systematic benchmarking reveals important new insights and considerations to produce clinical turn-around of whole genome analysis optimization and workflow management including strategic batching of individual genomes and efficient cluster resource configuration.

Souilmi Y, Jung J-Y, Lancaster AK, Gafni E, Amzazi S, Ghazal H, Wall D, Tonellato P. COSMOS: cloud enabled NGS analysis [Internet]. BMC Bioinformatics 2015;16:A2. Publisher's Version
Jarosz DF *, Lancaster AK *, Brown JCS, Lindquist S. An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists [Internet]. Cell 2014;158(5):1072-1082. Publisher's VersionAbstract

* = co-first author

[GAR+] is a protein-based element of inheritance that allows yeast (Saccharomyces cerevisiae) to circumvent a hallmark of their biology: extreme metabolic specialization for glucose fermentation. When glucose is present, yeast will not use other carbon sources. [GAR+] allows cells to circumvent this “glucose repression.” [GAR+] is induced in yeast by a factor secreted by bacteria inhabiting their environment. We report that de novo rates of [GAR+] appearance correlate with the yeast’s ecological niche. Evolutionarily distant fungi possess similar epigenetic elements that are also induced by bacteria. As expected for a mechanism whose adaptive value originates from the selective pressures of life in biological communities, the ability of bacteria to induce [GAR+] and the ability of yeast to respond to bacterial signals have been extinguished repeatedly during the extended monoculture of domestication. Thus, [GAR+] is a broadly conserved adaptive strategy that links environmental and social cues to heritable changes in metabolism.

Jarosz DF, Brown JCS, Walker GA, Datta MS, Ung LW, Lancaster AK, Rotem A, Chang A, Newby GA, Weitz DA, Bisson LF, Lindquist S. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism [Internet]. Cell 2014;158(8):1083-1093. Publisher's VersionAbstract

In experimental science, organisms are usually studied in isolation, but in the wild, they compete and cooperate in complex communities. We report a system for cross-kingdom communication by which bacteria heritably transform yeast metabolism. An ancient biological circuit blocks yeast from using other carbon sources in the presence of glucose. [GAR+], a protein-based epigenetic element, allows yeast to circumvent this “glucose repression” and use multiple carbon sources in the presence of glucose. Some bacteria secrete a chemical factor that induces [GAR+]. [GAR+] is advantageous to bacteria because yeast cells make less ethanol and is advantageous to yeast because their growth and long-term viability is improved in complex carbon sources. This cross-kingdom communication is broadly conserved, providing a compelling argument for its adaptive value. By heritably transforming growth and survival strategies in response to the selective pressures of life in a biological community, [GAR+] presents a unique example of Lamarckian inheritance.

Gafni E, Luquette LJ, Lancaster AK, Hawkins JB, Jung J-Y, Souilmi Y, Wall DP, Tonellato PJ. COSMOS: Python library for massively parallel workflows. Bioinformatics 2014;Abstract

Efficient workflows to shepherd clinically-generated genomic data through the multiple stages of a next-generation sequencing (NGS) pipeline is of critical importance in translational biomedical science. Here we present COSMOS, a Python library for workflow management that allows formal description of pipelines and partitioning of jobs. In addition, it includes a user-interface for tracking the progress of jobs, abstraction of the queuing system and fine-grained control over the workflow. Workflows can be created on traditional computing clusters as well as cloud-based services. Availability and implementation: Source code is available for non-commercial purposes, in addition to documentation. Links to both are provided at and

Clarke T, Garb JE, Hayashi CY, Haney R, Lancaster AK, Corbett S, Ayoub N. Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit [Internet]. BMC Genomics 2014;15:365. Publisher's VersionAbstract

Background: Spiders (Order Araneae) are essential predators in every terrestrial ecosystem largely because they have evolved potent arsenals of silk and venom. Spider silks are high performance materials made almost entirely of proteins, and thus represent an ideal system for investigating genome level evolution of novel protein functions. However, genomic level resources remain limited for spiders.
Results: We de novo assembled a transcriptome for the Western black widow (Latrodectus hesperus) from deeply sequenced cDNAs of three tissue types. Our multi-tissue assembly contained ~100,000 unique transcripts, of which > 27,000 were annotated by homology. Comparing transcript abundance among the different tissues, we identified 647 silk gland-specific transcripts, including the few known silk fiber components (e.g. six spider fibroins, spidroins). Silk gland specific transcripts are enriched compared to the entire transcriptome in several functions, including protein degradation, inhibition of protein degradation, and oxidation-reduction. Phylogenetic analyses of 37 gene families containing silk gland specific transcripts demonstrated novel gene expansions within silk glands, and multiple co-options of silk specific expression from paralogs expressed in other tissues.
Conclusions: We propose a transcriptional program for the silk glands that involves regulating gland specific synthesis of silk fiber and glue components followed by protecting and processing these components into functional fibers and glues. Our black widow silk gland gene repertoire provides extensive expansion of resources for biomimetic applications of silk in industry and medicine. Furthermore, our multi-tissue transcriptome facilitates evolutionary analysis of arachnid genomes and adaptive protein systems

Lancaster AK, Nutter-Upham A, Lindquist S, King OD. PLAAC: a web and command-line application to identify proteins with Prion-Like Amino Acid Composition [Internet]. Bioinformatics 2014; Publisher's VersionAbstract

Prions are self-templating protein aggregates that stably perpetuate distinct biological states and are of keen interest to researchers in both evolutionary and biomedical science. The best understood prions are from yeast and have a prion-forming domain with strongly biased amino acid composition, most notably enriched for Q or N. PLAAC is a web application that scans protein sequences for domains with Prion-Like Amino Acid Composition. Users can upload sequence files, or paste sequences directly into a textbox. PLAAC ranks the input sequences by several summary scores and allows scores along sequences to be visualized. Text output files can be downloaded for further analyses, and visualizations saved in PDF and PNG formats. Availability and Implementation: The Ruby-based web framework, and the command-line software (implemented in Java, with visualization routines in R) are available at: under the MIT license. All software can be run under OS X, Windows, and Unix.

Tardiff DF, Jui NT, Khurana V, Tambe MA, Thompson ML, Chung CY, Kamadurai HB, Kim HT, Lancaster AK, Caldwell KA, Caldwell GA, Rochet J-C, Buchwald SL, Lindquist S. Yeast Reveal a "Druggable" Rsp5/Nedd4 Network that Ameliorates α-Synuclein Toxicity in Neurons. Science 2013;Abstract
α-synuclein (α-syn) is a small lipid binding protein implicated in several neurodegenerative diseases, including Parkinson's disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell-types from α-syn toxicity. Three chemical genetic screens in wild-type yeast cells established that NAB promoted endosomal transport events dependent on the E3 ubiquitin ligase, Rsp5/Nedd4. These same steps were perturbed by α-syn itself. Thus, NAB identifies a druggable node in the biology of α-syn that can correct multiple aspects of its underlying pathology, including dysfunctional endosomal and ER-to-Golgi vesicle trafficking.
Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. Fitness trade-offs restrict the evolution of resistance to amphotericin B [Internet]. PLoS Biology 2013;11(10):e1001692. PLOS BiologyAbstract
The evolution of drug resistance in microbial pathogens provides a paradigm for investigating evolutionary dynamics with important consequences for human health. Candida albicans, the leading fungal pathogen of humans, rapidly evolves resistance to two major antifungal classes, the triazoles and echinocandins. In contrast, resistance to the third major antifungal used in the clinic, amphotericin B (AmB), remains extremely rare despite 50 years of use as monotherapy. We sought to understand this long-standing evolutionary puzzle. We used whole genome sequencing of rare AmB-resistant clinical isolates as well as laboratory-evolved strains to identify and investigate mutations that confer AmB resistance in vitro. Resistance to AmB came at a great cost. Mutations that conferred resistance simultaneously created diverse stresses that required high levels of the molecular chaperone Hsp90 for survival, even in the absence of AmB. This requirement stemmed from severe internal stresses caused by the mutations, which drastically diminished tolerance to external stresses from the host. AmB-resistant mutants were hypersensitive to oxidative stress, febrile temperatures, and killing by neutrophils and also had defects in filamentation and tissue invasion. These strains were avirulent in a mouse infection model. Thus, the costs of evolving resistance to AmB limit the emergence of this phenotype in the clinic. Our work provides a vivid example of the ways in which conflicting selective pressures shape evolutionary trajectories and illustrates another mechanism by which the Hsp90 buffer potentiates the emergence of new phenotypes. Developing antibiotics that deliberately create such evolutionary constraints might offer a strategy for limiting the rapid emergence of drug resistance.
Holmes DL, Lancaster AK, Lindquist S, Halfmann R. Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 2013;153(1):153-65.Abstract
Prion proteins undergo self-sustaining conformational conversions that heritably alter their activities. Many of these proteins operate at pivotal positions in determining how genotype is translated into phenotype. But the breadth of prion influences on biology and their evolutionary significance are just beginning to be explored. We report that a prion formed by the Mot3 transcription factor, [MOT3(+)], governs the acquisition of facultative multicellularity in the budding yeast Saccharomyces cerevisiae. The traits governed by [MOT3(+)] involved both gains and losses of Mot3 regulatory activity. [MOT3(+)]-dependent expression of FLO11, a major determinant of cell-cell adhesion, produced diverse lineage-specific multicellular phenotypes in response to nutrient deprivation. The prions themselves were induced by ethanol and eliminated by hypoxia-conditions that occur sequentially in the natural respiro-fermentative cycles of yeast populations. These data demonstrate that prions can act as environmentally responsive molecular determinants of multicellularity and contribute to the natural morphological diversity of budding yeast.
McLellan CA, Whitesell L, King OD, Lancaster AK, Mazitschek R, Lindquist S. Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem Biol 2012;7(9):1520-8.Abstract
In fungi, the anchoring of proteins to the plasma membrane via their covalent attachment to glycosylphosphatidylinositol (GPI) is essential and thus provides a valuable point of attack for the development of antifungal therapeutics. Unfortunately, studying the underlying biology of GPI-anchor synthesis is difficult, especially in medically relevant fungal pathogens because they are not genetically tractable. Compounding difficulties, many of the genes in this pathway are essential in Saccharomyces cerevisiae. Here, we report the discovery of a new small molecule christened gepinacin (for GPI acylation inhibitor) which selectively inhibits Gwt1, a critical acyltransferase required for the biosynthesis of fungal GPI anchors. After delineating the target specificity of gepinacin using genetic and biochemical techniques, we used it to probe key, therapeutically relevant consequences of disrupting GPI anchor metabolism in fungi. We found that, unlike all three major classes of antifungals in current use, the direct antimicrobial activity of this compound results predominantly from its ability to induce overwhelming stress to the endoplasmic reticulum. Gepinacin did not affect the viability of mammalian cells nor did it inhibit their orthologous acyltransferase. This enabled its use in co-culture experiments to examine Gwt1's effects on host-pathogen interactions. In isolates of Candida albicans, the most common fungal pathogen in humans, exposure to gepinacin at sublethal concentrations impaired filamentation and unmasked cell wall β-glucan to stimulate a pro-inflammatory cytokine response in macrophages. Gwt1 is a promising antifungal drug target, and gepanacin is a useful probe for studying how disrupting GPI-anchor synthesis impairs viability and alters host-pathogen interactions in genetically intractable fungi.
Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 2012;482(7385):363-8.Abstract
The self-templating conformations of yeast prion proteins act as epigenetic elements of inheritance. Yeast prions might provide a mechanism for generating heritable phenotypic diversity that promotes survival in fluctuating environments and the evolution of new traits. However, this hypothesis is highly controversial. Prions that create new traits have not been found in wild strains, leading to the perception that they are rare 'diseases' of laboratory cultivation. Here we biochemically test approximately 700 wild strains of Saccharomyces for [PSI(+)] or [MOT3(+)], and find these prions in many. They conferred diverse phenotypes that were frequently beneficial under selective conditions. Simple meiotic re-assortment of the variation harboured within a strain readily fixed one such trait, making it robust and prion-independent. Finally, we genetically screened for unknown prion elements. Fully one-third of wild strains harboured them. These, too, created diverse, often beneficial phenotypes. Thus, prions broadly govern heritable traits in nature, in a manner that could profoundly expand adaptive opportunities.
Lancaster AK, Bardill PJ, True HL, Masel J. The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system. Genetics 2010;184(2):393-400.Abstract
Epigenetically inherited aggregates of the yeast prion [PSI+] cause genomewide readthrough translation that sometimes increases evolvability in certain harsh environments. The effects of natural selection on modifiers of [PSI+] appearance have been the subject of much debate. It seems likely that [PSI+] would be at least mildly deleterious in most environments, but this may be counteracted by its evolvability properties on rare occasions. Indirect selection on modifiers of [PSI+] is predicted to depend primarily on the spontaneous [PSI+] appearance rate, but this critical parameter has not previously been adequately measured. Here we measure this epimutation rate accurately and precisely as 5.8 x 10(-7) per generation, using a fluctuation test. We also determine that genetic "mimics" of [PSI+] account for up to 80% of all phenotypes involving general nonsense suppression. Using previously developed mathematical models, we can now infer that even in the absence of opportunities for adaptation, modifiers of [PSI+] are only weakly deleterious relative to genetic drift. If we assume that the spontaneous [PSI+] appearance rate is at its evolutionary optimum, then opportunities for adaptation are inferred to be rare, such that the [PSI+] system is favored only very weakly overall. But when we account for the observed increase in the [PSI+] appearance rate in response to stress, we infer much higher overall selection in favor of [PSI+] modifiers, suggesting that [PSI+]-forming ability may be a consequence of selection for evolvability.