Rifampicin and rifabutin resistance in 1000 Mycobacterium tuberculosis clinical isolates


Farhat MR, Sixsmith J, Calderon R, Hicks N, Fortune S, and Murray M. 2019. “Rifampicin and rifabutin resistance in 1000 Mycobacterium tuberculosis clinical isolates.” Journal of Antimicrobial Chemotherapy. Publisher's Version



Drug-resistant TB remains a public health challenge. Rifamycins are among the most potent anti-TB drugs. They are known to target the RpoB subunit of RNA polymerase; however, our understanding of how rifamycin resistance is genetically coded remains incomplete. Here we investigated rpoB genetic diversity and cross-resistance between the two rifamycin drugs rifampicin and rifabutin. 


We performed WGS of 1003 Mycobacterium tuberculosis clinical isoltes and determined MICs of both rifamycin agents on 7H10 agar using the indirect proportion method. We generated rpoB mutants in a laboratory strain and measured their antibiotic susceptibility using the alamarBlue reduction assay. 


Of the 1003 isolates, 766 were rifampicin resistant and 210 (27%) of these were ribabutin susceptible; j102/210 isolates had the rpoB mutation D435V (Escherichia coli D516V). Isolates with discordant resistance were 17.2 times more likely to harbour a D435V mutation than those resistant to both agents (OR 17.2, 95% CI 10.5-27.9, P value <10−40). Compared with WT, the D435V in vitro mutant had an increased IC50 of both rifamycins; however, in both cases to a lesser degree than the S450L (E. coli S531L) mutation.


The observation that the rpoB D435V mutation produces an increase in the IC50 of both drugs contrasts with findings from previous smaller studies that suggested that isolates with the D435V mutation remain rifabutin susceptible despite being rifampicin resistant. Our finding thus suggests that the recommended critical testing concentration for rifabutin should be revised. 


Last updated on 03/18/2020