Electronic structure calculations of twisted multi-layer graphene superlattices


G. A. Tritsaris, S. Carr, Z. Zhu, Y. Xie, S. Torrisi, J. Tang, M.Mattheakis, D. Larson, and E. Kaxiras. 6/2020. “Electronic structure calculations of twisted multi-layer graphene superlattices.” 2D Materials, 7, Pp. 035028. Publisher's Version Copy at https://j.mp/2Rtp7gB
2001.11633.pdf6.85 MB


Quantum confinement endows two-dimensional (2D) layered materials with exceptional physics and novel properties compared to their bulk counterparts. Although certain two- and few-layer configurations of graphene have been realized and studied, a systematic investigation of the properties of arbitrarily layered graphene assemblies is still lacking. We introduce theoretical concepts and methods for the processing of materials information, and as a case study, apply them to investigate the electronic structure of multi-layer graphene-based assemblies in a high-throughput fashion. We provide a critical discussion of patterns and trends in tight binding band structures and we identify specific layered assemblies using low-dispersion electronic bands as indicators of potentially interesting physics like strongly correlated behavior. A combination of data-driven models for visualization and prediction is used to intelligently explore the materials space. This work more generally aims to increase confidence in the combined use of physics-based and data-driven modeling for the systematic refinement of knowledge about 2D layered materials, with implications for the development of novel quantum devices.


Read about this work from social media articles at Harvard News & Events, PhysOrg , GrapheneCouncil , printedElectronics, nanowerk

Last updated on 10/05/2020