Skip to main content

Extreme Waves and Branching Flows in Optical Media

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 221))

Abstract

We address light propagation properties in complex media consisting of random distributions of lenses that have specific focusing properties. We present both analytical and numerical techniques that can be used to study emergent properties of light organization in these media. As light propagates, it experiences multiple scattering leading to the formation of light bundles in the form of branches; these are random yet occur systematically in the medium, particularly in the weak scattering limit. On the other hand, in the strong scattering limit we find that coalescence of branches may lead to the formation of extreme waves of the “rogue wave” type. These waves appear at specific locations and arise in the linear as well as in the nonlinear regimes. We present both the weak and strong scattering limit and show that these complex phenomena can be studied numerically and analytically through simple models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15(6), 060201 (2013)

    Google Scholar 

  2. Andrews, L.C., Phillips, R.L., Hopen, C.Y., Al-Habash, M.A.: Theory of optical scintillation. J. Opt. Soc. Am. A 16(6), 1417–1429 (1999)

    Article  Google Scholar 

  3. Bacha, M., Boukhalfa, S., Tribeche, M.: Ion-acoustic rogue waves in a plasma with a q-nonextensive electron velocity distribution. Astrophys. Space Sci. 341(2), 591–595 (2012)

    Google Scholar 

  4. Barkhofen, S., Metzger, J.J., Fleischmann, R., Kuhl, U., Stöckmann, H.J.: Experimental observation of a fundamental length scale of waves in random media. Phys. Rev. Lett. 111(18), 183902 (2013)

    Google Scholar 

  5. Blanc-Benon, P., Juvé, D., Comte-Bellot, G.: Occurrence of caustics for high-frequency acoustic waves propagating through turbulent fields. Theor. Comp. Fluid Dyn. 2(5–6), 271–278 (1991)

    Article  Google Scholar 

  6. Born, M., Wolf, E.: Principles of Optics. Pergamon, Oxford (1980)

    Google Scholar 

  7. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics, 8, 755–764 (2014)

    Google Scholar 

  8. Elgin, J.N.: The Fokker-Planck equation: methods of solution and applications. J. Mod. Opt. 31(11), 1206–1207 (1984)

    Google Scholar 

  9. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Berlin (1986)

    Google Scholar 

  10. Heller, E.J., Kaplan, L., Dahlen, A.: Refraction of a Gaussian seaway. J. Geophys. Res.-Oceans 113(C9) (2008)

    Google Scholar 

  11. Höhmann, R., Kuhl, U., Stöckmann, H.J., Kaplan, L., Heller, E.J.: Freak waves in the linear regime: a microwave study. Phys. Rev. Lett. 104(9), 093901 (2010)

    Google Scholar 

  12. Kaplan, L.: Statistics of branched flow in a weak correlated random potential. Phys. Rev. Lett. 89(18), 184103 (2002)

    Google Scholar 

  13. Kline, M.: Electromagnetic theory and geometrical optics. In: Tech. Rep. EM-171, Courant Institute of Mathematical Sciences, New York University (1962)

    Google Scholar 

  14. Klyatskin, V.I.: Caustics in random media. Wave Random Media 3(2), 93–100 (1993)

    Article  Google Scholar 

  15. Lakshminarayanan, V., Ghatak, A., Thyagarajan, K.: Lagrangian Optics. Springer, New York (2002)

    Book  Google Scholar 

  16. Luneburg, R.K.: Mathematical Theory of Optics. University of California Press (1966)

    Google Scholar 

  17. Maluckov, A., Hadžievski, Lj., Lazarides, N., Tsironis, G.P.: Extreme events in discrete nonlinear lattices. Phys. Rev. E 79(2), 025601 (2009)

    Google Scholar 

  18. Maluckov, A., Lazarides, N., Tsironis, G.P., Hadžievski, Lj.: Extreme events in two-dimensional disordered nonlinear lattices. Physica D 252, 59–64 (2013)

    Google Scholar 

  19. Mattheakis, M.: Electromagnetic wave propagation in gradient index metamaterials, plasmonic systems and optical fiber networks. In: Ph.D. Thesis, University of Crete, Department of Physics, Greece (2014)

    Google Scholar 

  20. Mattheakis, M.M., Tsironis, G.P., Kovanis, V.I.: Luneburg lens waveguide networks. J. Opt. 14(11), 114006 (2012)

    Google Scholar 

  21. Metzger, J.J.: Branched flow and caustics in two-dimensional random potentials and magnetic fields. In: Ph.D. Thesis, Max-Planck Institut für Dynamik und Selbstorganisation, Göttingen, Germany (2010)

    Google Scholar 

  22. Metzger, J.J., Fleischmann, R., Geisel, T.: Universal statistics of branched flows. Phys. Rev. Lett. 105(2), 020601 (2010)

    Google Scholar 

  23. Montina, A., Bortolozzo, U., Residori, S., Arecchi, F.T.: Non-gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett. 103(17), 173901 (2009)

    Google Scholar 

  24. Ni, X., Wang, W.X., Lai, Y.C.: Origin of branched wave structures in optical media and long-tail algebraic intensity distribution. Europhys. Lett. 96(4), 44002 (2011)

    Google Scholar 

  25. Ockendon, H., Ockendon, J.R.: Waves and Compressible Flow. Springer, New York (2004)

    Google Scholar 

  26. Orefice, A., Giovanelli, R., Ditto, D.: Complete Hamiltonian description of wave-like features in classical and quantum physics. Found. Phys. 39(3), 256–272 (2009)

    Article  Google Scholar 

  27. Perakis, F., Mattheakis, M., Tsironis, G.P.: Small-world networks of optical fiber lattices. J. Opt. 16(10), 102003 (2014)

    Google Scholar 

  28. Riboli, F., Caselli, N., Vignolini, S., Intonti, F., Vynck, K., Barthelemy, P., Gerardino, A., Balet, L., Li, L.H., Fiore, A., Gurioli, M., Wiersma D.S.: Engineering of light confinement in strongly scattering disordered media. Nature materials, 13, 720–725 (2014)

    Google Scholar 

  29. Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446(7131), 52–55 (2007)

    Article  Google Scholar 

  30. Segev, M., Silberberg, Y., Christodoulides, D.N.: Anderson localization of light. Nat. Photonics 7(3), 197–204 (2013)

    Article  Google Scholar 

  31. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Google Scholar 

  32. Smolyaninova, V.N., Lahneman, D., Adams, T., Gresock, T., Zander, K., Jensen, C., Smolyaninov, I.I.: Experimental demonstration of Luneburg waveguides. Photonics 2(2), 440–448 (2015)

    Google Scholar 

  33. Stavroudis, O.N.: The Mathematics of Geometrical and Physical Optics: The k-function and Its Ramifications. Wiley (2006)

    Google Scholar 

  34. Sullivan, D.: Electromagnetic Simulation Using the FDTD Method, Second Edition, New York, IEEE Press/John Wiley, (2013)

    Google Scholar 

  35. Taflove, A.: Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problem. IEEE Transactions on Electromagnetic Compatibility 22(3) 191–202 (1980)

    Google Scholar 

  36. Toroğlu, G., Sevgi, L.: Finite-Difference Time-Domain (FDTD) MATLAB codes for first- and second-order EM differential equations. IEEE Antennas and Propagation Magazine, 56(2), 221–239(2014)

    Google Scholar 

  37. Topinka, M.A., LeRoy, B.J., Westervelt, R.M., Shaw, S.E.J., Fleischmann, R., Heller, E.J., Maranowski, K.D., Gossard, A.C.: Coherent branched flow in a two-dimensional electron gas. Nature 410(6825), 183–186 (2001)

    Article  Google Scholar 

  38. Wang, Y.Y., Li, J.T., Dai, C.Q., Chen, X.F., Zhang, J.F.: Solitary waves and rogue waves in a plasma with nonthermal electrons featuring Tsallis distribution. Phys. Lett. A 377(34), 2097–2104 (2013)

    Article  Google Scholar 

  39. Wolfson, M.A., Tappert, F.D.: Study of horizontal multipaths and ray chaos due to ocean mesoscale structure. J. Opt. Soc. Am. 107(1), 154–162 (2000)

    Google Scholar 

  40. Wolfson, M.A., Tomsovic, S.: On the stability of long-range sound propagation through a structured ocean. J. Opt. Soc. Am. 109(6), 2693–2703 (2001)

    Google Scholar 

  41. Ying, L.H., Zhuang, Z., Heller, E.J., Kaplan, L.: Linear and nonlinear rogue wave statistics in the presence of random currents. Nonlinearity 24(11), 67 (2011)

    Article  Google Scholar 

  42. Zaitsev, V.F., Polyanin, A.D.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press (2002)

    Google Scholar 

  43. Zhen-Ya, Y.: Financial rogue waves. Commun. Theor. Phys. 54(5), 947 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge useful discussions with J.J. Metzger, R. Fleischmann and G. Neofotistos. This work was supported in part by the European Union program FP7-REGPOT-2012-2013-1 under grant agreement 316165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Mattheakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mattheakis, M., Tsironis, G.P. (2015). Extreme Waves and Branching Flows in Optical Media. In: Archilla, J., Jiménez, N., Sánchez-Morcillo, V., García-Raffi, L. (eds) Quodons in Mica. Springer Series in Materials Science, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-21045-2_18

Download citation

Publish with us

Policies and ethics