Homogenization of plasmonic crystals: Seeking the epsilon-near-zero behavior

Citation:

M. Maier, M.Mattheakis, E. Kaxiras, M. Luskin, and D. Margetis. 10/2019. “Homogenization of plasmonic crystals: Seeking the epsilon-near-zero behavior.” Proceedings of the Royal Society A, 475, 2230. Publisher's Version Copy at http://j.mp/2HSTtSm

Abstract:

By using an asymptotic analysis and numerical simulations, we derive and investigate a system of homogenized Maxwell's equations for conducting material sheets that are periodically arranged and embedded in a heterogeneous and anisotropic dielectric host.  This structure is motivated by the need to design plasmonic crystals that enable the propagation of electromagnetic waves with no phase delay (epsilon-near-zero effect). Our microscopic model incorporates the surface conductivity of the two-dimensional (2D) material of each sheet and a corresponding line charge density through a line conductivity along possible edges of the sheets. Our analysis generalizes averaging principles inherent in previous Bloch-wave approaches. We investigate physical implications of our findings. In particular, we emphasize the role of the vector-valued corrector field, which expresses microscopic modes of surface waves on the 2D material. By using a Drude model for the surface conductivity of the sheet, we construct a Lorentzian function that describes the effective dielectric permittivity tensor of the plasmonic crystal as a function of frequency.
Last updated on 10/09/2019