Publications by Year: 2022

2022
Mattia Angelia, Georgios Neofotistos, Marios Mattheakis, and Efthimios Kaxiras. 1/2022. “Modeling the effect of the vaccination campaign on the Covid-19 pandemic.” Chaos, Solitons and Fractals, 154, Pp. 111621. Publisher's VersionAbstract

Population-wide vaccination is critical for containing the SARS-CoV-2 (Covid-19) pandemic when combined with restrictive and prevention measures. In this study we introduce SAIVR, a mathematical model able to forecast the Covid-19 epidemic evolution during the vaccination campaign. SAIVR extends the widely used Susceptible-Infectious-Removed (SIR) model by considering the Asymptomatic (A) and Vaccinated (V) compartments. The model contains sev- eral parameters and initial conditions that are estimated by employing a semi-supervised machine learning procedure. After training an unsupervised neural network to solve the SAIVR differ- ential equations, a supervised framework then estimates the optimal conditions and parameters that best fit recent infectious curves of 27 countries. Instructed by these results, we performed an extensive study on the temporal evolution of the pandemic under varying values of roll-out daily rates, vaccine efficacy, and a broad range of societal vaccine hesitancy/denial levels. The concept of herd immunity is questioned by studying future scenarios which involve different vaccination efforts and more infectious Covid-19 variants.

2108.13908.pdf
Anwesh Bhattacharya, Marios Mattheakis, and Pavlos Protopapas. 2022. “Encoding Involutory Invariance in Neural Networks.” In IJCNN at IEEE World Congress on Computational Intelligence. Publisher's VersionAbstract

In certain situations, Neural Networks (NN) are trained upon data that obey underlying physical symmetries. However, it is not guaranteed that NNs will obey the underlying symmetry unless embedded in the network structure. In this work, we explore a special kind of symmetry where functions are invariant with respect to involutory linear/affine transformations up to parity p = ±1. We develop mathe- matical theorems and propose NN architectures that ensure invariance and universal approximation properties. Numerical experiments indicate that the proposed mod- els outperform baseline networks while respecting the imposed symmetry. An adaption of our technique to convolutional NN classification tasks for datasets with inherent horizontal/vertical reflection symmetry has also been proposed.

2106.12891.pdf
Henry Jin, Marios Mattheakis, and Pavlos Protopapas. 2022. “Physics-Informed Neural Networks for Quantum Eigenvalue Problems.” In IJCNN at IEEE World Congress on Computational Intelligence. Publisher's VersionAbstract
Eigenvalue problems are critical to several fields of science and engineering. We expand on the method of using unsupervised neural networks for discovering eigenfunctions and eigenvalues for differential eigenvalue problems. The obtained solutions are given in an analytical and differentiable form that identically satisfies the desired boundary conditions. The network optimization is data-free and depends solely on the predictions of the neural network. We introduce two physics-informed loss functions. The first, called ortho-loss, motivates the network to discover pair-wise orthogonal eigenfunctions. The second loss term, called norm-loss, requests the discovery of normalized eigenfunctions and is used to avoid trivial solutions. We find that embedding even or odd symmetries to the neural network architecture further improves the convergence for relevant problems. Lastly, a patience condition can be used to automatically recognize eigenfunction solutions. This proposed unsupervised learning method is used to solve the finite well, multiple finite wells, and hydrogen atom eigenvalue quantum problems.
2022_pinn_quantum.pdf