Non-random segregation of sister chromosomes in Escherichia coli


Martin A White, John K Eykelenboom, Manuel A Lopez-Vernaza, Emily Wilson, and David RF Leach. 2008. “Non-random segregation of sister chromosomes in Escherichia coli.” Nature, 455, 7217, Pp. 1248-50.


It has long been known that the 5' to 3' polarity of DNA synthesis results in both a leading and lagging strand at all replication forks. Until now, however, there has been no evidence that leading or lagging strands are spatially organized in any way within a cell. Here we show that chromosome segregation in Escherichia coli is not random but is driven in a manner that results in the leading and lagging strands being addressed to particular cellular destinations. These destinations are consistent with the known patterns of chromosome segregation. Our work demonstrates a new level of organization relating to the replication and segregation of the E. coli chromosome.