Bauer CM, Zajac LE, Koo B-B, Killiany RJ, Merabet LB.
Age-related changes in structural connectivity are improved using subject-specific thresholding. J Neurosci Methods. 2017;288 :45-56.
AbstractBACKGROUND: Deterministic diffusion tractography obtained from high angular resolution diffusion imaging (HARDI) requires user-defined quantitative anisotropy (QA) thresholds. Most studies employ a common threshold across all subjects even though there is a strong degree of individual variation within groups. We sought to explore whether it would be beneficial to use individual thresholds in order to accommodate individual variance. To do this, we conducted two independent experiments.
METHOD: First, tractography of the arcuate fasciculus and network connectivity measures were examined in a sample of 14 healthy participants. Second, we assessed the effects of QA threshold on group differences in network connectivity measures between healthy young (n=19) and old (n=14) individuals.
RESULTS: The results of both experiments were significantly influenced by QA threshold. Common thresholds set too high failed to produce sufficient reconstructions in most subjects, thus decreasing the likelihood of detecting meaningful group differences. On the other hand, common thresholds set too low resulted in spurious reconstructions, providing deleterious results.
COMPARISON WITH EXISTING METHODS: Subject specific thresholds acquired using our QA threshold selection method (QATS) appeared to provide the most meaningful networks while ensuring that data from all subjects contributed to the analyses.
CONCLUSIONS: Together, these results support the use of a subject-specific threshold to ensure that data from all subjects are included in the analyses being conducted.
Ferrari C, Vecchi T, Merabet LB, Cattaneo Z.
Blindness and social trust: The effect of early visual deprivation on judgments of trustworthiness. Conscious Cogn. 2017;55 :156-164.
AbstractInvestigating the impact of early visual deprivation on evaluations related to social trust has received little attention to date. This is despite consistent evidence suggesting that early onset blindness may interfere with the normal development of social skills. In this study, we investigated whether early blindness affects judgments of trustworthiness regarding the actions of an agent, with trustworthiness representing the fundamental dimension in the social evaluation. Specifically, we compared performance between a group of early blind individuals with that of sighted controls in their evaluation of trustworthiness of an agent after hearing a pair of two positive or two negative social behaviors (impression formation). Participants then repeated the same evaluation following the presentation of a third (consistent or inconsistent) behavior regarding the same agent (impression updating). Overall, blind individuals tended to give similar evaluations compared to their sighted counterparts. However, they also valued positive behaviors significantly more than sighted controls when forming their impression of an agent's trustworthiness. Moreover, when inconsistent information was provided, blind individuals were more prone to revise their initial evaluation compared to controls. These results suggest that early visual deprivation may have a dramatic effect on the evaluation of social factors such as trustworthiness.
Kim JS, Kanjlia S, Merabet LB, Bedny M.
Development of the Visual Word Form Area Requires Visual Experience: Evidence from Blind Braille Readers. J Neurosci. 2017;37 (47) :11495-11504.
AbstractLearning to read causes the development of a letter- and word-selective region known as the visual word form area (VWFA) within the human ventral visual object stream. Why does a reading-selective region develop at this anatomical location? According to one hypothesis, the VWFA develops at the nexus of visual inputs from retinotopic cortices and linguistic input from the frontotemporal language network because reading involves extracting linguistic information from visual symbols. Surprisingly, the anatomical location of the VWFA is also active when blind individuals read Braille by touch, suggesting that vision is not required for the development of the VWFA. In this study, we tested the alternative prediction that VWFA development is in fact influenced by visual experience. We predicted that in the absence of vision, the "VWFA" is incorporated into the frontotemporal language network and participates in high-level language processing. Congenitally blind (n = 10, 9 female, 1 male) and sighted control (n = 15, 9 female, 6 male), male and female participants each took part in two functional magnetic resonance imaging experiments: (1) word reading (Braille for blind and print for sighted participants), and (2) listening to spoken sentences of different grammatical complexity (both groups). We find that in blind, but not sighted participants, the anatomical location of the VWFA responds both to written words and to the grammatical complexity of spoken sentences. This suggests that in blindness, this region takes on high-level linguistic functions, becoming less selective for reading. More generally, the current findings suggest that experience during development has a major effect on functional specialization in the human cortex.SIGNIFICANCE STATEMENT The visual word form area (VWFA) is a region in the human cortex that becomes specialized for the recognition of written letters and words. Why does this particular brain region become specialized for reading? We tested the hypothesis that the VWFA develops within the ventral visual stream because reading involves extracting linguistic information from visual symbols. Consistent with this hypothesis, we find that in congenitally blind Braille readers, but not sighted readers of print, the VWFA region is active during grammatical processing of spoken sentences. These results suggest that visual experience contributes to VWFA specialization, and that different neural implementations of reading are possible.
Merabet LB, Mayer LD, Bauer CM, Wright D, Kran BS.
Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment. Semin Pediatr Neurol. 2017;24 (2) :83-91.
AbstractCortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition.
Occelli V, Lacey S, Stephens C, Merabet LB, Sathian K.
Enhanced verbal abilities in the congenitally blind. Exp Brain Res. 2017;235 (6) :1709-1718.
AbstractNumerous studies have found that congenitally blind individuals have better verbal memory than their normally sighted counterparts. However, it is not known whether this reflects superiority of verbal or memory abilities. In order to distinguish between these possibilities, we tested congenitally blind participants and normally sighted control participants, matched for age and education, on a range of verbal and spatial tasks. Congenitally blind participants were significantly better than sighted controls on all the verbal tasks but the groups did not differ significantly on the spatial tasks. Thus, the congenitally blind appear to have superior verbal, but not spatial, abilities. This may reflect greater reliance on verbal information and the involvement of visual cortex in language processing in the congenitally blind.