3D magnetic resonance spectroscopic imaging reveals links between brain metabolites and multidimensional pain features in fibromyalgia

Citation:

Lee J, Andronesi OC, Torrado-Carvajal A, Ratai E-M, Loggia ML, Weerasekera A, Berry MP, Ellingsen D-M, Isaro L, Lazaridou A, Paschali M, Grahl A, Wasan AD, Edwards RR, Napadow V. 3D magnetic resonance spectroscopic imaging reveals links between brain metabolites and multidimensional pain features in fibromyalgia [Internet]. European Journal of Pain 2021;

Abstract:

Abstract Background Fibromyalgia is a centralized multidimensional chronic pain syndrome, but its pathophysiology is not fully understood. Methods We applied 3D magnetic resonance spectroscopic imaging (MRSI), covering multiple cortical and subcortical brain regions, to investigate the association between neuro-metabolite (e.g. combined glutamate and glutamine, Glx; myo-inositol, mIno; and combined (total) N-acetylaspartate and N-acetylaspartylglutamate, tNAA) levels and multidimensional clinical/behavioural variables (e.g. pain catastrophizing, clinical pain severity and evoked pain sensitivity) in women with fibromyalgia (N = 87). Results Pain catastrophizing scores were positively correlated with Glx and tNAA levels in insular cortex, and negatively correlated with mIno levels in posterior cingulate cortex (PCC). Clinical pain severity was positively correlated with Glx levels in insula and PCC, and with tNAA levels in anterior midcingulate cortex (aMCC), but negatively correlated with mIno levels in aMCC and thalamus. Evoked pain sensitivity was negatively correlated with levels of tNAA in insular cortex, MCC, PCC and thalamus. Conclusions These findings support single voxel placement targeting nociceptive processing areas in prior 1H-MRS studies, but also highlight other areas not as commonly targeted, such as PCC, as important for chronic pain pathophysiology. Identifying target brain regions linked to multidimensional symptoms of fibromyalgia (e.g. negative cognitive/affective response to pain, clinical pain, evoked pain sensitivity) may aid the development of neuromodulatory and individualized therapies. Furthermore, efficient multi-region sampling with 3D MRSI could reduce the burden of lengthy scan time for clinical research applications of molecular brain-based mechanisms supporting multidimensional aspects of fibromyalgia. Significance This large N study linked brain metabolites and pain features in fibromyalgia patients, with a better spatial resolution and brain coverage, to understand a molecular mechanism underlying pain catastrophizing and other aspects of pain transmission. Metabolite levels in self-referential cognitive processing area as well as pain-processing regions were associated with pain outcomes. These results could help the understanding of its pathophysiology and treatment strategies for clinicians.

Publisher's Version

Last updated on 07/27/2021