Nicole Carey, Catherine Smith, Helen Dickinson, and Gemma Carey. Forthcoming. “Care robots in Australia and New Zealand: developing an ethical research roadmap.” In 2nd Workshop on Social Robots in Therapy and Care (Human-Robot Interaction 2019). Daegu, South Korea.
Daniel Calovi, Paul Bardunias, Nicole Carey, Scott J Turner, Radhika Nagpal, and Justin Werfel. Forthcoming. “Surface curvature guides early construction activity in mound-building termites .” Philosophical Transactions of the Royal Society B.
H. Dickinson, C. Smith, N. Carey, and G. Carey. 11/9/2018. Robots and the delivery of care services: What is the role for government in stewarding disruptive innovation? . ANZSOG Research Reports. Melbourne: Australia and New Zealand School of Government. Publisher's VersionAbstract
In the last two decades there has been significant reform in terms of what governments do, and how they work, as a result of the digital revolution. In some areas, governments have embraced these technologies and worked to enhance their effectiveness and efficiency. However, there have also been many cautionary tales of what can go wrong when technologies are inappropriately adopted or unintended consequences have emerged as a result of introducing disruptive innovations. This report focuses on one particular area of technological development – robots – and their governance. It explores the roles that robots should and, even more critically, should not play in care delivery, and the role that government has as a steward in shaping these roles.
Paul Bardunias, Nicole Carey, Daniel Calovi, Rupert Soar, J.S. Turner, Radhika Nagpal, and Justin Werfel. 8/5/2018. “Construction in the Macrotermitinae is governed by a stigmergically created humidity template.” In Proceedings of the International Union for the Study of Social Insects. Guarujá, Brazil.
Nicole Carey, Radhika Nagpal, and Justin Werfel. 5/15/2017. “Fast, Accurate, Small-Scale 3D Scene Capture Using a Low-Cost Depth Sensor.” Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, Pp. 1268-1276. Publisher's VersionAbstract
Commercially available depth sensing devices are primarily designed for domains that are either macroscopic, or static. We develop a solution for fast microscale 3D reconstruction, using off-the-shelf components. By the addition of lenses, precise calibration of camera internals and positioning, and development of bespoke software, we turn an infrared depth sensor designed for human-scale motion and object detection into a device with mm-level accuracy capable of recording at up to 30Hz.
Gutierrez E. Hernandez J. McLendon R. Paterson A.C. Carey N. Dusek J. Nagpal R. Low Cost 2017 A and Engelstad, K. 2017. “A Low Cost Agile Robot for Outdoor Collectives.” In SCCUR 2017. Southern California Conferences for Undergraduate Research.
Gemma Carey, Brad Crammond, Eleanor Malbon, and Nicole Carey. 11/2015. “Adaptive Policies for Reducing Inequalities in the Social Determinants of Health.” Int J Health Policy Manag, 4, 11, Pp. 763–767. Publisher's VersionAbstract
Inequalities in the social determinants of health (SDH), which drive avoidable health disparities between different individuals or groups, is a major concern for a number of international organisations, including the World Health Organization (WHO). Despite this, the pathways to changing inequalities in the SDH remain elusive. The methodologies and concepts within system science are now viewed as important domains of knowledge, ideas and skills for tackling issues of inequality, which are increasingly understood as emergent properties of complex systems. In this paper, we introduce and expand the concept of adaptive policies to reduce inequalities in the distribution of the SDH. The concept of adaptive policy for health equity was developed through reviewing the literature on learning and adaptive policies. Using a series of illustrative examples from education and poverty alleviation, which have their basis in real world policies, we demonstrate how an adaptive policy approach is more suited to the management of the emergent properties of inequalities in the SDH than traditional policy approaches. This is because they are better placed to handle future uncertainties. Our intention is that these examples are illustrative, rather than prescriptive, and serve to create a conversation regarding appropriate adaptive policies for progressing policy action on the SDH.
Gemma Carey, Eleanor Malbon, Nicole Carey, Andrew Joyce, Brad Crammond, and Alan Carey. 2015. “Systems science and systems thinking for public health: a systematic review of the field.” BMJ Open, 5, 12. Publisher's VersionAbstract
This paper reports on findings from a systematic review designed to investigate the state of systems science research in public health. The objectives were to: (1) explore how systems methodologies are being applied within public health and (2) identify fruitful areas of activity.
Nicole Carey and Wolfgang Stürzl. 1/16/2012. “An Insect-Inspired Omnidirectional Vision System including UV-Sensitivity and Polarisation.” Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, Pp. 312-319. Publisher's VersionAbstract
A major difference between insect vision and that of humans or standard computer vision systems is that insects are sensitive to the polarisation pattern of skylight, and also to the near-UV range of the electromagnetic spectrum. In this paper, we describe a bio-inspired imaging system that allows us to assess to what extent these features could potentially be used for autonomous robot navigation. We first establish that a low-resolution omnidirectional system incorporating a near-UV camera and a linear polariser - a simulacrum of the dorsal rim area of the insect compound eye - can resolve the clear sky natural polarisation pattern with sufficient accuracy to allow its use as a navigational tool. We then extend the bio-mimicry by incorporating an additional RGB camera, allowing us to utilise the full range of the insect's visual spectrum. This enables us to capture and investigate the visual cues insects are employing for flight control and navigation, and paves the way for incorporating a similar system in an autonomous mobile robot. Additionally, we present a robust method for estimating sun position based on the polarisation pattern and thus confirm the utility of the system as a sky compass.
Wolfgang Stürzl and Nicole Carey. 2012. “A Fisheye Camera System for Polarisation Detection on UAVs.” Lecture Notes in Computer Science (ECCV 2012), 7584, Pp. 431-440. Publisher's VersionAbstract
We present a light-weight polarisation sensor that consists of four synchronised cameras equipped with differently oriented polarisers and fisheye lenses allowing us to image the whole sky hemisphere. Due to its low weight and compact size it is well-suited as a biomimetic sensor on-board a UAV. We describe efficient methods for reconstruction of the full-sky polarisation pattern and estimation of sun position. In contrast to state-of-the art polarisation systems for UAVs that estimate sun azimuth only, our approach can determine sun elevation as well, even in the presence of clouds and for significant pitch and roll angles of the UAV. The calibration and registration of the four fisheye cameras is achieved by extending an existing omni-directional calibration toolbox to multi-camera calibration. We present examples of full-sky reconstruction of the polarisation pattern as well as an analysis of the error in the sun position estimate. In addition, we performed a preliminary test on-board a quadcopter.