Search

Search results

    Bordalo, Pedro, Nicola Gennaioli, Andrei Shleifer, and Stephen J. Terry. Working Paper. “Real Credit Cycles”. Abstract
    Recent empirical work has revived the Minsky hypothesis of boom-bust credit cycles driven by uctuations in investor optimism. To quantitatively assess this hypothesis, we incorporate diagnostic expectations into an otherwise standard business cycle model with heterogeneous firms and risky debt. Diagnostic expectations are a psychologically founded, forward-looking model of belief formation that captures over-reaction to news. We calibrate the diagnosticity parameter using microdata on the forecast errors of managers of listed firms in the US. The model generates countercyclical credit spreads and default rates, while the rational expectations version generates the opposite pattern. Diagnostic expectations also offer a good fit of three patterns that have been empirically documented: systematic reversals of credit spreads, systematic reversals of aggregate investment, and predictability of future bond returns. Crucially, diagnostic expectations also generate a strong fragility or sensitivity to small bad news after steady expansions. The rational expectations version of the model can account for the rst pattern but not the others. Diagnostic expectations offer a parsimonious account of major credit cycles facts, underscoring the promise of realistic expectation formation for applied business cycle modeling.
    Bordalo, Pedro, Katherine Coffman, Nicola Gennaioli, Frederik Schwerter, and Andrei Shleifer. Working Paper. “Memory and Representativeness”. Abstract

    We explore the idea that judgment by representativeness reflects the workings of episodic memory, especially interference. In a new laboratory experiment on cued recall, participants are shown two groups of images with different distributions of colors. We find that i) decreasing the frequency of a given color in one group significantly increases the recalled frequency of that color in the other group, ii) for a fixed set of images, different cues for the same objective distribution entail different interference patterns and different probabilistic assessments. Selective retrieval and interference may offer a foundation for the representativeness heuristic, but more generally for understanding the formation of probability judgments from experienced statistical associations.

    Bordalo, Pedro, Nicola Gennaioli, Spencer Yongwook Kwon, and Andrei Shleifer. Forthcoming. “Diagnostic Bubbles.” Journal of Financial Economics . Abstract
    We introduce diagnostic expectations into a standard setting of price formation in which investors learn about the fundamental value of an asset and trade it. We study the interaction of diagnostic expectations with two well-known mechanisms: learning from prices and speculation (buying for resale). With diagnostic (but not with rational) expectations, these mechanisms lead to price paths exhibiting three phases: initial underreaction, followed by overshooting (the bubble), and finally a crash. With learning from prices, the model generates price extrapolation as a byproduct of fast moving beliefs about fundamentals, which lasts only as the bubble builds up. When investors speculate, even mild diagnostic distortions generate substantial bubbles.
    Bordalo, Pedro, Katie Coffman, Nicola Gennaioli, and Andrei Shleifer. 2019. “Beliefs about Gender.” American Economic Review 109 (3): 739-773. Abstract
    We conduct laboratory experiments that explore how gender stereotypes shape beliefs about ability of oneself and others in different categories of knowledge. The data reveal two patterns. First, men’s and women’s beliefs about both oneself and others exceed observed ability on average, particularly in difficult tasks. Second, overestimation of ability by both men and women varies across categories. To understand these patterns, we develop a model that separates gender stereotypes from mis-estimation of ability related to the difficulty of the task. We find that stereotypes contribute to gender gaps in self-confidence, assessments of others, and behavior in a cooperative game.
    Bordalo, Pedro, Nicola Gennaioli, Yueran Ma, and Andrei Shleifer. Working Paper. “Overreaction in Macroeconomic Expectations”. Abstract
    We examine the rationality of individual and consensus professional forecasts of macroeconomic and financial variables using the methodology of Coibion and Gorodnichenko (2015), which focuses on the predictability of forecast errors from earlier forecast revisions. We document two principal findings: forecasters typically over-react to information individual level, while consensus forecasts exhibit under-reaction. To reconcile these findings, we combine the diagnostic expectations model of belief formation from Bordalo, Gennaioli, and Shleifer (2018) with Woodford’s (2003) noisy information model of belief aggregation. The model accounts for the findings, but also yields a number of new implications related to the forward looking nature of diagnostic expectations, which we also test and confirm. Finally, we compare our model to mechanical extrapolation, rational inattention, and natural expectations.
    Bordalo, Pedro, Nicola Gennaioli, Rafael LaPorta, and Andrei Shleifer. 2019. “Diagnostic Expectations and Stock Returns.” Journal of Finance 74 (6): 2839-2874. Abstract

    We revisit La Porta's finding that returns on stocks with the most optimistic analyst long‐term earnings growth forecasts are lower than those on stocks with the most pessimistic forecasts. We document the joint dynamics of fundamentals, expectations, and returns of these portfolios, and explain the facts using a model of belief formation based on the representativeness heuristic. Analysts forecast fundamentals from observed earnings growth, but overreact to news by exaggerating the probability of states that have become more likely. We find support for the model's predictions. A quantitative estimation of the model accounts for the key patterns in the data.

    Barberis, Nicholas, Robin Greenwood, Lawrence Jin, and Andrei Shleifer. 2018. “Extrapolation and Bubbles.” Journal of Financial Economics 129 (2): 203-227.
    Greenwood, Robin, Andrei Shleifer, and Yang You. 2019. “Bubbles for Fama.” Journal of Financial Economics 131 (1): 20-43. Abstract

    We evaluate Eugene Fama’s claim that stock prices do not exhibit price bubbles. Based on US industry returns 1926-2014 and international sector returns 1985-2014, we present four findings: (1) Fama is correct in that a sharp price increase of an industry portfolio does not, on average, predict unusually low returns going forward; (2) such sharp price increases predict a substantially heightened probability of a crash; (3) attributes of the price run-up, including volatility, turnover, issuance, and the price path of the run-up can all help forecast an eventual crash and future returns; and (4) some of these characteristics can help investors earn superior returns by timing the bubble. Results hold similarly in US and international samples.

Pages