Transcriptomic analysis reveals transgenerational effect of hypoxia on the neural control of testicular functions

Citation:

Keng Po Lai, Jing Woei Li, Simon Yuan Wang, Miles Teng Wan, Ting Fung Chan, Wing Yee Lui, Doris Wai-Ting Au, Rudolf Shiu-Sun Wu, and Richard Yuen-Chong Kong. 2/2018. “Transcriptomic analysis reveals transgenerational effect of hypoxia on the neural control of testicular functions.” Aquatic Toxicology (IF=3.884), 195, Pp. 41-48. Publisher's Version

Abstract:

There are over 400 hypoxic zones in the ocean worldwide. Both laboratory and field studies have shown that hypoxia causes endocrine disruption and reproductive impairments in vertebrates. More importantly, our recent study discovered that parental (F0) hypoxia exposure resulted in the transgenerational impairment of sperm quality in the F2 generation through the epigenetic regulation of germ cells. In the present study, we aim to test the hypothesis that the brain, as the major regulator of the brain-pituitary-gonad (BPG) axis, is also involved in the observed transgenerational effect. Using comparative transcriptomic analysis on brain tissues of marine medaka Oryzias melastigma, 45 common differentially expressed genes caused by parental hypoxia exposure were found in the hypoxic group of the F0 and F2 generations, and the transgenerational groups of the F2 generation. The bioinformatic analysis on this deregulated gene cluster further highlighted the possible involvement of the brain in the transgenerational effect of hypoxia on testicular structure, including abnormal morphologies of the epididymis and the seminal vesicle, and degeneration of the seminiferous tubule. This finding is concordant to the result of hematoxylin and eosin staining, which showed the reduction of testicular lobular diameter in the F0 and F2 generations. Our study demonstrated for the first time the involvement of the brain in the transgenerational effect of hypoxia.
Last updated on 05/21/2019