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ECONOMETRIC ANALYSIS OF REALIZED COVARIATION: HIGH
FREQUENCY BASED COVARIANCE, REGRESSION, AND

CORRELATION IN FINANCIAL ECONOMICS

BY OLE E. BARNDORFF-NIELSEN AND NEIL SHEPHARD1

This paper analyses multivariate high frequency financial data using realized covari-
ation. We provide a new asymptotic distribution theory for standard methods such as
regression, correlation analysis, and covariance. It will be based on a fixed interval of
time (e.g., a day or week), allowing the number of high frequency returns during this
period to go to infinity. Our analysis allows us to study how high frequency correlations,
regressions, and covariances change through time. In particular we provide confidence
intervals for each of these quantities.

KEYWORDS: Power variation, realized correlation, realized covolatility, realized re-
gression, realized variance, semimartingales, covolatility.

1. INTRODUCTION

1.1. Motivation and Definitions

THIS PAPER PROVIDES a set of probabilistic laws for the analysis of the covari-
ation between asset returns. Based on a fixed interval of time (e.g., a trading
day or a calendar month), the number of high frequency returns during this
period is assumed to go to infinity. We are able to derive an asymptotic distrib-
utional analysis of realized covariation—the sum of outer products of high fre-
quency vectors of returns. The new theory allows us to study how covariances,
correlations, and regression coefficients change through time by carrying out
inference on these quantities over sequences of nonoverlapping intervals of
time.

Our theoretical development is motivated by the advent of complete records
of quotes or transaction prices for many financial assets. Although market mi-
crostructure effects (e.g., discreteness of prices, bid/ask bounce, irregular trad-
ing, etc.) mean that there is a mismatch between asset pricing theory based on
semimartingales and the data at very fine time intervals, it does suggest the de-
sirability of establishing an asymptotic distribution theory for estimators as we
use more and more highly frequent observations.

1Ole E. Barndorff-Nielsen’s work is supported by CAF (www.caf.dk), which is funded by the
Danish Social Science Research Council, and by MaPhySto (www.maphysto.dk), which is funded
by the Danish National Research Foundation. Neil Shephard’s research is supported by the UK’s
ESRC through the grant “High Frequency Financial Econometrics Based upon Power Variation.”
All the calculations made in this paper are based on software written by the authors using the
Ox language of Doornik (2001). We thank Torben Andersen, Tim Bollerslev, Clive Bowsher,
Frank Gerhard, and Nour Meddahi for very helpful conversations on this topic. Finally, we thank
the co-editor and referees for their detailed and constructive comments on earlier revisions of
this paper.
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Let the log-price of a q dimensional vector of assets be written as y∗(t) for
t ≥ 0. Here t represents continuous time. The starred superscript is used to
denote the fact that later we will assume that y∗ is an integrated process in
continuous time. Next, consider a fixed interval of time of length � > 0. For
concreteness we typically refer to � as representing a day. Traditional daily
returns are computed as

yi = y∗(i�)− y∗((i− 1)�) (i= 1�2� � � �)�

where i indexes the day. However, our focus will be on the case where we
additionally haveM equally spaced intra-� high frequency observations during
each � time period. The jth intra-� return for the ith period (e.g., if � is a day
andM = 1440, then this is the return for the jth minute on the ith day) will be
calculated as

yj�i = y∗
(
(i− 1)� + �j

M

)
(1)

− y∗
(
(i− 1)� + �(j − 1)

M

)
(j = 1� � � � �M)�

High frequency returns allow us to compute

[y∗
M]i =

M∑
j=1

yj�iy
′
j�i�(2)

the realized covariation matrix for the ith day. In this introductory section we
will see that [y∗

M]i is, in a sense that will be made precise in (8) and (9), an
ex-post estimator of the covariability of the unpredictable part of y∗ over the
interval of time from (i − 1)� to i�. The notation [y∗

M]i is designed to reflect
that this matrix is based on the y∗ process using M intra-� observations and
computed on the ith day. The reason for the use of the square brackets will
become clearer in a moment when we recall the idea of quadratic variation.

The realized covariation matrix is clearly different from the empirical covari-
ance matrix of high frequency returns

1
M

M∑
j=1

yj�iy
′
j�i −

(
1
M

M∑
j=1

yj�i

)(
1
M

M∑
j=1

yj�i

)′

= 1
M

M∑
j=1

yj�iy
′
j�i −

1
M2

yiy
′
i �

In high frequency finance this quantity does not make sense for it will converge
in probability to a matrix of zeros as M → ∞. Realized covariation is roughly
M times the empirical covariance of returns, the difference being that realized
covariation ignores the (1/M)yiy ′

i term as it is stochastically of smaller order
than

∑M

j=1 yj�iy
′
j�i.
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The properties of the realized covariation matrix are the main topic of our
paper. We will establish the asymptotic distribution of [y∗

M]i as M → ∞, thus
providing a guide to its behavior for a finite value ofM . The result is important
in its own right, but it also implies a distribution theory for quantities derived
from [y∗

M]i. Examples of this include realized regression and realized correla-
tion.

1.2. Quadratic Variation and Semimartingales

The probability limit of [y∗
M]i is well known when we assume y∗ is a semi-

martingale (SM) by using the theory of quadratic variation. Here we briefly
review this material before going beyond it to develop the corresponding as-
ymptotic distribution theory.

Recall if y∗ ∈ SM, then it can be decomposed as

y∗(t)= α∗(t)+m∗(t)�(3)

where α∗, a drift term, is a process with finite variation (FV) paths and m∗ is
a local martingale (Mloc). For a very accessible discussion of probabilistic as-
pects of this, see Protter (1990), while its attraction from an economic view-
point is discussed by Back (1991). We will sometimes restrict various classes of
processes to those with continuous sample paths. We generically denote this
with superscripts c; e.g., Mc

loc stands for the class of continuous local martin-
gales.

For all y∗ ∈ SM the quadratic variation (QV) or covariation process can be
defined as

[y∗](t)= p− lim
M→∞

M−1∑
j=0

{y∗(tj+1)− y∗(tj)}{y∗(tj+1)− y∗(tj)}′�(4)

for any sequence of partitions t0 = 0< t1 < · · ·< tM = t with supj{tj+1 − tj} → 0
for M → ∞. Here p− lim denotes the probability limit of the sum. Thus QV
can be thought of as the sum of outer products of return vectors computed
over infinitesimal time intervals calculated during the period from time 0 up
to time t. In general (e.g., Jacod and Shiryaev (1987, p. 55)) if y∗ ∈ SM and
α∗ ∈FV c, then it can be shown that [y∗](t)= [m∗](t), which holds irrespective
of the presence of jumps in the local martingale component.

The definition of QV immediately implies that for all y∗ ∈ SM and as
M → ∞,

[y∗
M]i p→[y∗](�i)− [y∗](�(i− 1))= [y∗]i�

meaning realized covariation, [y∗
M]

i, consistently estimates increments of QV,
[y∗]i.
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In the univariate case the connection between realized covariation and
quadratic variation is discussed in the econometric literature by independent
and concurrent work by Comte and Renault (1998), Barndorff-Nielsen and
Shephard (2001), and Andersen and Bollerslev (1998). It was later developed
and applied in some empirical work by Andersen, Bollerslev, Diebold, and
Labys (2001). See also Barndorff-Nielsen and Shephard (2001) and Andersen,
Bollerslev, Diebold, and Labys (2003) for a discussion of the multivariate case
and Andersen, Bollerslev, and Diebold (2004) for an incisive survey of this
area. Andersen, Bollerslev, Diebold, and Ebens (2001) discuss the use of the
multivariate theory in the context of equity prices.

1.3. Continuous Stochastic Volatility Semimartingales

The above theoretical framework is too general for us to be able to derive
a distribution theory for [y∗

M]i − [y∗]i, the difference between the realized co-
variation and its probability limit. As a result we have had to specialize. We do
this by imposing more structure on y∗.

DEFINITION 1: A continuous stochastic volatility semimartingale (the class of
such semimartingales will be denoted SVSMc) is a vector semimartingale
y∗ = α∗ +m∗ satisfying the following two additional conditions:

(a) that α∗ ∈FV c and α∗(0)= 0;
(b) that m∗ is a multivariate stochastic volatility (SV) process

m∗(t)=
∫ t

0
Θ(u)dw(u)�(5)

where Θ, the instantaneous or spot covolatility process, has elements that are
all càdlàg and w is a vector standard Brownian motion. We also define the spot
covariance as

Σ(t)=Θ(t)Θ(t)′�
and assume that (for all t <∞)∫ t

0
Σkk(u)du<∞ (k= 1� � � � � q)�(6)

where Σkl(t) is the notation for the (k� l)th element of the Σ(t) process.

REMARK 1: (i) Assumption (b) means that m∗ ∈ Mc
loc. All continuous lo-

cal martingales with absolutely continuous QV can be written in the form of
assumption (b). This result, which is due to Doob (1953), is discussed in, for
example, Karatzas and Shreve (1991, pp. 170–172). In the univariate case, us-
ing the Dambis–Dubins–Schwartz theorem, we know that the difference be-
tween the entire Mc

loc class and those given in Assumption (b) are the local
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martingales that have only continuous, not absolutely continuous, QV.2 Hence
SVSMc is only a slightly smaller class than SMc .

(ii) If y∗ = α∗ +m∗ is a semimartingale with m∗ ∈ Mc
loc and α∗ ∈ FV and if

α∗ is additionally predictable, then if we impose a lack of arbitrage opportu-
nities, α∗ ∈ FV c . This result is discussed in, for example, Back (1991, p. 380).
Hence, in the context of financial economics, Assumption (a) follows from (b)
when we assume α∗ is predictable. In fact a stronger result holds. Under these
assumptions α∗ is absolutely continuous (Karatzas and Shreve (1998, p. 3) and
Andersen, Bollerslev, Diebold, and Labys (2003, p. 583)).

(iii) Although Σ can exhibit jumps, the implied y∗ ∈ SMc . The unusual
technical càdlàg assumption (rather than the standard càglàd condition) on Θ
will be discussed in some detail in the next section where we will note that it is
of no consequence from a modelling viewpoint.

(iv) Overall, for y∗ ∈ SVSMc,

y∗(t)= α∗(t)+
∫ t

0
Θ(u)dw(u)� y∗(0)= 0�(7)

A key feature of this model class is

Σ∗(t)=
∫ t

0
Σ(u)du�

the integrated covariance matrix. It plays a central role in the analysis of
SV models (e.g., Ghysels, Harvey, and Renault (1996)). An example of α∗ is
α∗(t)= µt+Σ∗(t)β, linking the drift process to the covariance (see Bollerslev,
Engle, and Wooldridge (1988) for discussions of the related ARCH-M mod-
els).

Importantly, if y∗ ∈ SVSMc , then writing F as the natural filtration of y∗

we have that

α∗(t)=
∫ t

0
E(dy∗(u)|F(u))�(8)

the integral of the expected instantaneous returns and

[y∗](t)= Σ∗(t)=
∫ t

0
Cov(dy∗(u)|F(u))=

∫ t

0
Cov(dm∗(u)|F(u))�

2An example of a continuous local martingale that has no SV representation is a time change
Brownian motion where the time change takes the form of the so-called “devil’s staircase,” which
is continuous and nondecreasing but not absolutely continuous (see, e.g., Munroe (1953, Sec-
tion 27)). This relates to the work of, for example, Calvet and Fisher (2002) on multifractals.
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This implies that

[y∗
M]i p→

∫
�i

�(i−1)
Σ(u)du=

∫
�i

�(i−1)
Cov(dm∗(u)|F(u))�(9)

Thus [y∗
M]i consistently estimates the integral of the conditional covariance of

the increments of the local martingale component of y∗ over the interval from
time �(i−1) to �i. Much economic theory is postulated in terms of increments
of these types of quantities, e.g., the work of Chamberlain (1988) and Back
(1991). We call

∫
�i

�(i−1) Σ(u)du the actual covariance matrix of the local mar-
tingale component. Under stronger conditions Andersen, Bollerslev, Diebold,
and Labys (2003) relate [y∗

M]i to the variability of yi, conditioning on a variety of
information sets, while Foster and Nelson (1996) develop estimators for Σ(t),
the spot covariability. We will discuss the latter paper in more detail in a mo-
ment.

1.4. The Literature

In the special case of y∗ being univariate (q = 1), we call [y∗
M]i the realized

variance (reserving
√[y∗

M]i for the realized volatility). In that case Barndorff-
Nielsen and Shephard (2002b) have considerably strengthened the univariate
consistency result implied by (4). They showed that if y∗ ∈ SVSMc , and obeys
some regularity assumptions discussed in the next section, the following three
results hold. The first is that√

M
�

{[y∗
M]i −

∫
�i

�(i−1) Σ(u)du
}√

2
∫

�i

�(i−1) Σ
2(u)du

L→N(0�1)�(10)

The second result is that

[y∗
M]i −

∫
�i

�(i−1) Σ(u)du√
2
3

∑M

j=1 y
4
j�i

L→N(0�1)�(11)

These two limit theorems are linked together by the third result, which is that

M

3�

M∑
j=1

y4
j�i

p→
∫

�i

�(i−1)
Σ2(u)du�(12)

The result (11) is statistically feasible (i.e., except for the unknown integral∫
�i

�(i−1) Σ(u)du, it can be computed directly from the data and so can be used

to, for example, construct confidence intervals for
∫

�i

�(i−1) Σ(u)du), while (10) is
perhaps more informative from a theoretical viewpoint.



REALIZED COVARIATION 891

The following points can be made about this analysis.

REMARK 2: (i) [y∗
M]i converges to

∫
�i

�(i−1) Σ(u)du at rate
√
M .

(ii) Knowledge of the volatility dynamics is not required in order to use (11).
(iii) Σ(t) can be nonstationary, have long-memory, jumps, no moments, and

include intra-day effects.
(iv) [y∗

M]i −
∫

�i

�(i−1) Σ(u)du has a mixed Gaussian limit and so will generally
have heavier tails than a normal.

We should note that Bai, Russell, and Tiao (2000), Meddahi (2002),
Meddahi (2003), and Andreou and Ghysels (2002) have some interesting ad-
ditional insights into the accuracy of [y∗

M]i. Barndorff-Nielsen and Shephard
(2004a) have studied the finite sample behavior of (11). Following Barndorff-
Nielsen and Shephard (2002b), Meddahi (2001) has studied the first two
moments of the difference between elements of the multivariate [y∗

M]i and∫
�i

�(i−1) Σ(u)du. This is the only other paper of which we know that has dis-
cussed the properties of [y∗

M]i −
∫

�i

�(i−1) Σ(u)du.
As we have already briefly mentioned, these results are also related to the

work of Foster and Nelson (1996) (note also the contributions of Genon-
Catalot, Laredo, and Picard (1992) and Hansen (1995)). They provided an as-
ymptotic distribution theory for an estimator of Σ(t), the spot (not integrated)
covariance. Their idea was to compute a local covariance from the lagged data,
e.g.,

Σ̂(t)= �
−1

M∑
j=1

{
y∗
(
t − �j

M

)
− y∗

(
t − �(j − 1)

M

)}

×
{
y∗
(
t − �j

M

)
− y∗

(
t − �(j − 1)

M

)}′
�

They then studied its behavior as M → ∞ and � ↓ 0 under various assump-
tions. This “double asymptotics” yields a Gaussian limit theory so long as � ↓ 0
and M → ∞ at the correct, related rates. They extended their analysis to pro-
vide a distributional theory for estimators of the spot regression coefficients.
In the univariate case, Andreou and Ghysels (2002) have used the distribution
theory for the estimator of the spot covariance to assess the distribution of the
difference between the realized variance and quadratic variation. It would be
informative to try to establish links between our results and those of Foster and
Nelson (1996) in the multivariate case.

1.5. Contribution of This Paper

In this paper we extend the univariate results in (10), (11), and (12) to cover
the multivariate case. The contributions of the paper will be as follows:
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(i) Our main result is that as M → ∞, assuming that (α∗�Σ) is independent
of w,3 and conditioning on the path of α∗ and Σ,√

M

�

{
vech([y∗

M]i)− vech
(∫

�i

�(i−1)
Σ(u)du

)}
L→N(0�Πi)�(13)

where Πi will be given explicitly in Section 2. Recall that the vech notation
stacks the (unique) lower triangular elements of the columns of a matrix into
a vector (e.g., Lutkepohl (1996, Chapter 7)). The matrix Πi is a function of the
path ofΣ and so, as we argue conditionally onΣ,Πi is deterministic. Moreover,
defining xj�i = vech(yj�iy ′

j�i) and

Gi =
M∑
j=1

xj�ix
′
j�i −

1
2

M−1∑
j=1

(xj�ix
′
j+1�i + xj+1�ix

′
j�i)�(14)

we have that M�
−1Gi , which is positive semi-definite, converges in probability

to Πi. Unconditionally (that is averaging over paths of α∗ and Σ) this yields
a feasible, mixed Gaussian limit theory. In the univariate version of (13) our
assumptions are substantially weaker than those used in Barndorff-Nielsen
and Shephard (2002b). Further, of course, our result covers the multivari-
ate extension. These issues will be explicitly spelled out in Section 2. Further,
(14) is a different feasible estimator than that used in Barndorff-Nielsen and
Shephard (2002b), even in the univariate case (given in (12)). This is because it
uses lags of returns. We will see that the direct application of the feasible strat-
egy developed by Barndorff-Nielsen and Shephard (2002b) for the univariate
case does not work in the multivariate situation.

(ii) In the bivariate case we derive the asymptotic distribution of the realized
regression estimator. When we take one of the assets as a market portfolio we
can regard the regression as a high frequency estimate of a beta.

(iii) We derive the asymptotic distribution of the realized correlation between
two assets. Realized correlations have been previously studied empirically by
Andersen, Bollerslev, Diebold, and Labys (2001) but no distributional theory
has been available to allow us to assess the precision of the realized correla-
tions.

The structure of the paper is as follows. In Section 2 we will give two the-
orems concerning the asymptotic distribution of realized covariation. In Sec-
tion 3 we transform the asymptotic theory to give us a theory for measuring
correlation and performing regression using high frequency data. Section 4
performs some Monte Carlo experiments to assess the accuracy of the theory

3Since this paper was accepted for publication, we have been able to lift this restriction;
see Barndorff-Nielsen and Shephard (2004c). The substantial feasible results considered in the
present paper continue to hold in this more general setting.
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for finite values ofM . Section 5 illustrates the use of this theory on some finan-
cial data. Section 6 concludes, while two Appendices contain the proofs of the
theorems given in the paper.

2. ASYMPTOTIC THEORY FOR REALIZED COVARIATION

2.1. Main Results

This section will present the three main results of the paper. Our first
theorem derives the asymptotic distribution of [y∗

M]i, regarding the paths of
α∗ and Σ as fixed. Corollary 1 generalizes this to the case where these processes
are random. Theorem 2 shows how to feasibly estimate the asymptotic covari-
ance matrix that appears in the distribution theory.

The results are dependent on the log-prices obeying the SVSMc structure4

y∗(t)= α∗(t)+
∫ t

0
Θ(u)dw(u) and Σ(t)=Θ(t)Θ(t)′�

Often we will use the index k= 1�2� � � � � q, to denote the kth asset, e.g., α∗
(k) de-

notes the drift process of the kth asset, while its log-price will be written as y∗
(k).

We bracket k in the subscript in order to make it distinct from the other sub-
scripts i and j. A similar style of bracketing notation is used by Foster and
Nelson (1996). Then the high frequency returns, on the ith day for the kth
asset, will be written as

y∗
(k)i�j for j = 1�2� � � � �M� k= 1�2� � � � � q�

THEOREM 1: Let y∗ ∈ SVSMc, δ = �/M , and suppose the following condi-
tions are satisfied:

(a) For every k= 1� � � � � q and i= 1�2� � � � � I, the quantities

δ−1

∫
�(i−1)+δj

�(i−1)+δ(j−1)
Σkk(u)du(15)

are bounded away from 0 and infinity, uniformly in j and δ.
(b) For every k = 1� � � � � q, the mean process α∗

(k) satisfies ( pathwise), as
δ→ 0,

δ−3/4 max
1≤j≤M

∣∣α∗
(k)(�(i− 1)+ jδ)− α∗

(k)(�(i− 1)+ (j− 1)δ)
∣∣= o(1)�(16)

4From the viewpoint of the general semimartingale theory it would be technically correct to
start with the martingale component of y∗ in Definition 1 being m∗(t)= ∫ t0 Θ(u−)dw(u), where
we have written Θ(u−) as Θ is only assumed to be càdlàg, which means Θ(u−) is càglàd and
so predictable. Predictability is usually needed in the context of stochastic integrals with respect
to semimartingales to ensure that m∗ is a local martingale. It turns out that this is of no conse-
quence here, for we are integrating with respect to the continuous Brownian motion w. Hence
m∗ becomes m∗(t)= ∫ t0 Θ(u)dw(u), which still means that m∗ is a local martingale.
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(c) The processes α∗ and Σ are jointly independent of the Brownian motion w.
Then, conditionally on (α∗�Σ), the realized covariation matrix,

[y∗
M]i =

M∑
j=1

yj�iy
′
j�i =

{
M∑
j=1

y(k)j�iy(l)j�i

}
k�l=1�2�����q

�(17)

follows asymptotically, as M → ∞, the normal law with q× q matrix of means

Σi =
∫

�i

�(i−1)
Σ(u)du�

The asymptotic covariance of√
M

�

{
[y∗
M]i −

∫
�i

�(i−1)
Σ(u)du

}
is Ωi, a q2 × q2 array with elements

Ωi =
{∫

�i

�(i−1)
{Σkk′(u)Σll′(u)+Σkl′(u)Σlk′(u)}du

}
k�k′�l�l′=1�����q

�(18)

COROLLARY 1: Suppose y∗ ∈ SVSMc and conditions (a)–(c) of Theorem 1
hold; then the asymptotic law of√

M

�

{
[y∗
M]i −

∫
�i

�(i−1)
Σ(u)du

}
(19)

is mixed normal with mean 0 and random covariance matrix Ωi.

Taking these two results together a number of points can be made.

REMARK 3: (i) Condition (a) in Theorem 1 essentially means that, on any
bounded interval, Σkk(t) itself is bounded away from 0 and infinity. This is the
case, for instance, for the CIR process (due to it having a reflecting barrier
at zero) and the OU volatility process considered in Barndorff-Nielsen and
Shephard (2001). Condition (b) implies that α∗ is continuous but is less strong
than it being differentiable.5

5In Remark 1(ii) to the definition of the SMSVc class we noted that predictability of α∗
k,

assumption (b) of that definition, plus a lack of arbitrage, imply α∗
k is absolutely continuous.

Recall this means that we can then write α∗
k(t) = ∫ t0 αk(u)du. A sufficient condition for (16)

to hold is that αk is bounded. However, the condition of absolute continuity is not on its own
enough to ensure that (16) holds. An example outside the scope of Assumption (b) is where
α∗
k(t)= tη/(1 + tη), where η ∈ (0�3/4) for t ≥ 0.



REALIZED COVARIATION 895

(ii) The rate of convergence is
√
M for all components of the realized co-

variation.
(iii) The limit theorem is mixed Gaussian, that is Ωi is a stochastic ma-

trix. Recall that in general mixed Gaussian variables are heavier tailed than
Gaussian variables.

(iv) The k�k′� l� l′element of Ωi corresponds to the asymptotic covariance
between the k� lth and the k′� l′th elements of√

M

�

{
[y∗
M]i −

∫
�i

�(i−1)
Σ(u)du

}
�

Inevitably the matrixΩi is singular, due to the symmetric nature of [y∗
M]i andΣi.

Later we will write the theory in terms of the identifying elements of these ma-
trices, by employing vech transformations. However for the moment we prefer
to maintain the general structure as this makes the result more transparent and
eases the proof since it can be carried out using standard tensor notation.

(v) In the univariate case Theorem 1 represents a more general result
than that proved by Barndorff-Nielsen and Shephard (2002b). They assumed
that Σ(t) was of finite variation and that α∗(t) = µt + β

∫ t
0 Σ(u)du. Relaxing

both of these assumptions represents an important widening of the applica-
bility of the theory. Of course this previous paper also did not deal with the
multivariate case, which is the main contribution of the present paper. Condi-
tion (b) is related to, but not the same as, that calledA(i) in Foster and Nelson
(1996).

(vi) The results of Theorem 1 and Corollary 1 are proved under the
assumption that (α∗�Σ) are jointly independent from w. This no leverage as-
sumption is a very important limitation of the result. Lengthy simulations re-
ported in Barndorff-Nielsen and Shephard (2002a) suggested that the feasible
limit theory is rather robust to relaxing this assumption; however formally de-
veloping the relevant theory for this case is demanding. A discussion of what is
known from a theoretical viewpoint in the univariate case is given in Barndorff-
Nielsen, Graversen, and Shephard (2004).

(vii) In many cases

Ωi =
{∫

�i

�(i−1)
{Σkk′(u)Σll′(u)+Σkl′(u)Σlk′(u)}du

}
k�k′�l�l′=1�����q

will have an unconditional mean

E(Ωi)=
{∫

�i

�(i−1)

[
E{Σkk′(u)Σll′(u)}

+E{Σkl′(u)Σlk′(u)}]du}
k�k′�l�l′=1�����q

�
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This expectation is the asymptotic unconditional covariance matrix of√
M

�

{
[y∗
M]i −

∫
�i

�(i−1)
Σ(u)du

}
�

One would expect this to exist if the fourth moments of the returns exist. Pre-
viously Meddahi (2001) has studied this covariance quantity, but using very
different methods. Importantly he proved that this result is independent of the
no leverage assumption in the case where volatility is a stationary diffusion.

UnfortunatelyΩi is not known and so the result in Corollary 1 is statistically
infeasible. However, the following theorem means that Ωi can be replaced by
a consistent, positive semi-definite estimator, thus providing a feasible theory.

THEOREM 2: Suppose y∗ ∈ SVSMc and conditions (a)–(c) of Theorem 1
hold; then defining

xj�i = vec(yj�iy ′
j�i)�

where the vec notation stacks the columns of a matrix into a vector, there exists
a random q2 × q2 positive semi-definite matrix

Hi =
M∑
j=1

xj�ix
′
j�i −

1
2

M−1∑
j=1

(xj�ix
′
j+1�i + xj+1�ix

′
j�i)�(20)

such that (M/�)Hi→pΩi as M → ∞.

REMARK 4: (i) The feasible theory does not require knowledge of the drift
or volatility processes.

(ii) In the univariate case

Hi =
M∑
j=1

y4
j�i −

M−1∑
j=1

y2
j�iy

2
j+1�i

has the property that

M

�
Hi

p→Ωi = 2
∫

�i

�(i−1)
Σ2(u)du�

Thus this feasible limit theory is asymptotically equivalent to, but not equal
to, that developed in Barndorff-Nielsen and Shephard (2002b) whose result is
stated in (11). In particular the new feasible theory gives, in the univariate case,

[y∗
M]i −Σi√∑M

j=1 y
4
j�i −

∑M−1
j=1 y

2
j�iy

2
j+1�i

L→N(0�1)�(21)
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(iii) The obvious multivariate generalization of Barndorff-Nielsen and
Shephard (2002b) is to use M�

−1
∑M

j=1 xj�ix
′
j�i to estimate Ωi but this converges

to a q2 × q2 array with elements{∫
�i

�(i−1)

{
Σkk′(u)Σll′(u)+Σkl′(u)Σlk′(u)

+Σkl(u)Σk′l′(u)
}
du

}
k�k′�l�l′=1�����q

�

This cannot be scaled to deliver Ωi except in special cases (e.g., the univariate
case). Hence we need to use the more sophisticated estimator Hi.

(iv) Limit theories for sums of arbitrary powers of absolute returns have
been recently studied by Barndorff-Nielsen and Shephard (2003b) and
Barndorff-Nielsen and Shephard (2003a). Examples of such sums are, in the
univariate case,

∑M

j=1 |yj�i|r for r > 0.
(v) It is clear from the proof of Theorem 2 that we can replace the subscript

j+ 1 with j+q where q is any positive but finite integer. Of course, in practice,
if q is large, then the generalized version of (20) is likely to have a large finite
sample bias.

2.2. Avoiding Singular Covariance Matrices

It is sometimes convenient to avoid the symmetric replication in the realized
covariation matrix by employing a vech transformation. Then the limit theory
can be written as follows.

COROLLARY 2: As M → ∞, conditionally on (α∗�Σ),√
M

�

{
vech([y∗

M]i)− vech
(∫

�i

�(i−1)
Σ(u)du

)}
L→N(0�Πi)�(22)

while, defining xj�i = vech(yj�iy ′
j�i) and

Gi =
M∑
j=1

xj�ix
′
j�i −

1
2

M−1∑
j=1

(xj�ix
′
j+1�i + xj+1�ix

′
j�i)�(23)

we have that

M

�
Gi

p→Πi�(24)

REMARK 5: (i) The matrix Gi is still only guaranteed to be positive semi-
definite. The positive semi-definiteness follows from the property of the first-
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order serial correlation coefficient that its square is less than or equal to one.
More specifically, for any conformable vector c,

c′Gic =
M∑
j=1

(c′xj�i)2 −
M−1∑
j=1

(c′xj�i)(c′xj+1�i)≥ 0�

Of course, Gi is likely to be positive definite in practice.
(ii) We can write, using the elimination matrix L (e.g., Magnus (1988)),

vech(yj�iy ′
j�i) = L vec(yj�iy ′

j�i), and so Gi = LHiL
′. Likewise Πi = LΩiL

′. Sim-
ilarly we can express Hi =DGiD

′ andΩi =DΠiD
′, whereD is the duplication

matrix.

2.3. The Bivariate Case

The general results are quite compact. It is helpful to focus on the bivariate
case in order to gain further understanding. We will look at results for assets
k and l, whose log-prices will be written as y∗

(k) and y∗
(l) respectively. Then the

high frequency returns, on the ith day, will be

y∗
(k)i�j and y∗

(l)i�j for j = 1�2� � � � �M�

In that case Theorem 1 tells us that the joint asymptotic distribution for iden-
tifying elements of realized covariation becomes

√
M

�


∑M

j=1 y
2
(k)j�i −

∫
�i

�(i−1) Σkk(u)du∑M

j=1 y(k)j�iy(l)j�i −
∫

�i

�(i−1) Σkl(u)du∑M

j=1 y
2
(l)j�i −

∫
�i

�(i−1) Σll(u)du

(25)

L→N

[
0�
∫

�i

�(i−1)

{
2Σ2

kk(u) 2Σkk(u)Σkl(u) 2Σ2
kl(u)

2Σkk(u)Σkl(u) Σkk(u)Σll(u)+Σ2
kl(u) 2Σll(u)Σkl(u)

2Σ2
kl(u) 2Σll(u)Σkl(u) 2Σ2

ll(u)

}
du

]
�(26)

The result on realized variances
∑M

j=1 y
2
(k)j�i and

∑M

j=1 y
2
(l)j�i was first derived in

Barndorff-Nielsen and Shephard (2002b). The result on the marginal distribu-
tion of realized covariance as M → ∞ is that√

M
�

{∑M

j=1 y(k)j�iy(l)j�i −
∫

�i

�(i−1) Σkl(u)du
}√∫

�i

�(i−1){Σkk(u)Σll(u)+Σ2
kl(u)}du

L→N(0�1)�(27)

which seems new, as does the joint distribution. The corresponding feasible
limit theory for the realized covariance is∑M

j=1 y(k)j�iy(l)j�i −
∫

�i

�(i−1) Σkl(u)du√∑M

j=1 y
2
(k)j�iy

2
(l)j�i −

∑M−1
j=1 y(k)j�iy(l)j�iy(k)j+1�iy(l)j+1�i

L→N(0�1)�(28)
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Notice that when the spot correlation is zero, then Σ is diagonal and so the
asymptotic covariance in (25) becomes

∫
�i

�(i−1)

2Σ2
kk(u) 0 0
0 Σkk(u)Σll(u) 0
0 0 2Σ2

ll(u)

 du�
When Σkk(t)= Σll(t), then the asymptotic covariance becomes

∫
�i

�(i−1)
Σ2
kk(s)


2 2ρ(kl)(u) 2ρ2

(kl)(u)
2ρ(kl)(u) (1 + ρ2

(kl)(u)r) 2ρ(kl)(u)
2ρ2

(kl)(u) 2ρ(kl)(u) 2

du�
where

ρkl(u)= Σkl(u)√
Σkk(u)Σll(u)

�

This last result is a generalization of that given in Anderson (1984, p. 121)
on the asymptotic joint distribution in the case of independent and identically
distributed multivariate Gaussian random variables.

3. ASYMPTOTIC THEORY FOR REGRESSION AND CORRELATION

3.1. Realized Regression

In this section we will study the asymptotic properties of some statistics that
are transformations of the realized covariation matrix. The focus will be on
realized regression and realized correlation. We start with the regression case.

Regression plays a central role both in theoretical and empirical financial
economics (e.g., see Cochrane (2001, Chapter 12) and Campbell, Lo, and
MacKinlay (1997, Chapter 5)). In this subsection we use our distribution the-
ory for realized covariation to derive a theory for univariate regression. Again
this will be based on fixed intervals of time allowing the number of high fre-
quency observations to go to infinity within that interval. Although these mea-
sures are informative, it is important to understand that much of the financial
theory based on time varying covariances directly connects to conditional spot
regression and correlation quantities rather than the integrated quantities that
are our focus. An interesting paper that attempts to directly estimate such spot
quantities is Foster and Nelson (1996).

We regress variable l on variable k, to obtain the realized regression

β̂(lk)�i =
∑M

j=1 y(k)j�iy(l)j�i∑M

j=1 y
2
(k)j�i

�(29)
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Notice this realized regression does not employ an intercept for the same rea-
sons as the realized covariation matrix does not subtract sample means. This
realized regression involves just elements of the realized covariation and so
we can use the asymptotic theory of the previous section to derive its asymp-
totic distribution. The probability limit for the regression case follows from the
theory of QV. In particular if y∗ ∈ SM, then

β̂(lk)�i
p→ [y∗

(k)� y
∗
(l)]i

[y∗
(k)]i

= β(lk)�i�(30)

where [y∗
(k)� y

∗
(l)]i is the (k� l)th element of [y∗]i while [y∗

(k)]i denotes the cor-
responding (k�k)th element. The above result for regression is discussed at
some length in, for example, Back (1991) and Andersen, Bollerslev, Diebold,
and Labys (2001). Empirical estimates of regression parameters using high
frequency data have been computed by, for example, Andersen, Bollerslev,
Diebold, and Ebens (2001). Here we extend the theoretical results to derive
the asymptotic distribution. When y∗ ∈ SVSMc , then β(lk)�i has the simpler
form

β(lk)�i =
∫

�i

�(i−1) Σkl(u)du∫
�i

�(i−1) Σkk(u)du
�(31)

The asymptotic distribution can be derived using standard linearization
methods. It yields the following result.

PROPOSITION 1: Under the conditions given in Theorem 1, as M → ∞, so√
M
�
(β̂(lk)�i −β(lk)�i)√(∫

�i

�(i−1) Σkk(u)du
)−2
g(lk)�i

L→N(0�1)�(32)

Here

g(lk)�i = d′
(lk)�iΨ(lk)�id(lk)�i�

where

Ψ(lk)�i =
∫

�i

�(i−1)

{
Σkk(u)Σll(u)+Σ2

kl(u) 2Σkk(u)Σkl(u)
2Σkk(u)Σkl(u) 2Σ2

kk(u)

}
du

and

d(lk)�i =
(

1
−β(lk)�i

)
�
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EXAMPLE 1: When Σkl(u)= 0 and so β(lk)�i = 0, we have that√
M
�
β̂(lk)�i√(∫

�i

�(i−1) Σkk(u)du
)−2 ∫ �i

�(i−1) Σkk(u)Σll(u)du

L→N(0�1)�(33)

In practice we have to replaceΨ(lk) and d(lk) by estimators to make the above
regression theory feasible. Theorem 2 from the previous section implies that
this is straightforward. In particular, we can state the following proposition.

PROPOSITION 2: Under the conditions given in Theorem 1, as M → ∞, so

β̂(lk)�i −β(lk)�i√(∑M

j=1 y
2
(k)j�i

)−2
ĝ(lk)�i

L→N(0�1)�(34)

Here

ĝ(lk)�i =
M∑
j=1

x2
j�i −

M−1∑
j=1

xj�ixj+1�i

and

xj�i = y(k)j�iy(l)j�i − β̂(lk)y2
(k)j�i�

An attractive feature of this theory is that all of the required terms are
straightforward to compute.

3.2. Realized Correlation

The same strategy can be used to derive the asymptotic distribution of the
realized correlation coefficient. It is defined as

ρ̂(lk)�i =
∑M

j=1 y(k)j�iy(l)j�i√∑M

j=1 y
2
(k)j�i

∑M

j=1 y
2
(l)j�i

�(35)

The probability limit of the realized correlation is known by the theory
of QV. If y∗ ∈ SM, then

ρ̂(lk)�i
p→ [y∗

(k)� y
∗
(l)]i√[y∗

(k)]i[y∗
(l)]i

= ρ(lk)�i�(36)

a result that is discussed at some length in Andersen, Bollerslev, Diebold, and
Labys (2001). Here we extend this result to derive the asymptotic distribution,
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under our additional assumptions given above. In the case where y∗ ∈ SVSMc ,
then

ρ(lk)�i =
∫

�i

�(i−1) Σkl(u)du√∫
�i

�(i−1) Σkk(u)du
∫

�i

�(i−1) Σll(u)du
�(37)

The asymptotic distribution can be derived using standard linearization
methods. It yields the following infeasible result.

PROPOSITION 3: Under the conditions given in Theorem 1, as M → ∞, so√
M
�
(ρ̂(lk)�i − ρ(lk)�i)√(∫

�i

�(i−1) Σkk(u)du
∫

�i

�(i−1) Σll(u)du
)−1
g(l�k)�i

L→N(0�1)�(38)

Here

g(lk)�i = d′
(lk)�iΠ(lk)�id(lk)�i�

where

Π(lk)�i =
∫

�i

�(i−1)

{
2Σ2

kk(u) 2Σkk(u)Σkl(u) 2Σ2
kl(u)

2Σkk(u)Σkl(u) Σkk(u)Σll(u)+Σ2
kl(u) 2Σll(u)Σkl(u)

2Σ2
k2(u) 2Σll(u)Σkl(u) 2Σ2

ll(u)

}
du

and

d(lk)�i =
− 1

2β(lk)�i

1
− 1

2β(kl)�i

 �
Further, β(lk)�i is the population regression of the lth variable on the kth, defined
in (31), while β(kl)�i is the regression of the kth on the lth.

The following example illustrates the theory.

EXAMPLE 2: When Σkl(s)= 0, we have that β(lk)�i = β(kl)�i = 0 and ρ(lk)�i = 0,
so √

M
�
ρ̂(lk)�i√(∫

�i

�(i−1) Σkk(u)du
∫

�i

�(i−1) Σll(u)du
)−1(∫ �i

�(i−1) Σkk(u)Σll(u)du
)(39)

L→N(0�1)�

Thus, in this case, we have a very explicit expression for g(lk)�i. Notice the as-
ymptotic variance of this quantity is unaffected by the scaling of any of the
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assets. This is potentially a useful property given the degree of time varying
volatility observed in some financial markets.

The infeasible results can be used in practice by employing the following
proposition.

PROPOSITION 4: Under the conditions given in Theorem 1, as M → ∞, so

ρ̂(lk)�i − ρ(lk)�i√(∑M

j=1 y
2
(k)j�i

∑M

j=1 y
2
(l)j�i

)−1
ĝ(lk)�i

L→N(0�1)�(40)

Here

ĝ(lk)�i =
M∑
j=1

x2
j�i −

M−1∑
j=1

xj�ixj+1�i� where

xj = y(k)j�iy(l)j�i − 1
2
β̂(lk)�iy

2
(k)j�i −

1
2
β̂(kl)�iy

2
(l)j�i

= 1
2
y(k)j�i

(
y(l)j�i − β̂(lk)�iy(k)j�i

)+ 1
2
y(l)j�i

(
y(k)j�i − β̂(kl)�iy(l)j�i

)
�

Here we recall β̂(lk)�i is defined in (29).

4. SMALL SAMPLE EFFECTIVENESS OF THE LIMIT THEORY

4.1. Simulation Design

In this section we document some Monte Carlo experiments that assess the
finite sample performance of our asymptotic theory for realized covariation.
Throughout we work with a bivariate SV model and � = 1, which we think of
as a day. In particular we assume that

dy∗(t)=Θ(t)dw(t)� Σ(t)=Θ(t)Θ(t)′�
where

Σ(t)=
(
Σ11 (t) Σ12 (t)
Σ12 (t) Σ22 (t)

)
=
(
σ 2

1 (t) σ1�2 (t)
σ1�2 (t) σ

2
2 (t)

)
and σ1�2(t) is σ1(t)σ2(t)ρ(t).

Our model for σ 2
1 is derived from some empirical work reported in

Barndorff-Nielsen and Shephard (2002b) who used realized variances to fit
the variance of the DM/Dollar rate from 1986 to 1996 by the sum of two un-
correlated processes

σ 2
1 (t)= σ 2(1)

1 (t)+ σ 2(2)
1 (t)�
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Their results are compatible with using CIR processes for the σ 2(1)
1 and σ 2(2)

1
processes. In particular we will write these, for s= 1�2, as

dσ 2(s)
1 (t)= −λs

{
σ 2(s)

1 (t)− ξs
}
dt +ωsσ

(s)(t)dbs(λst)� ξs ≥ω2
s /2�(41)

where b is a vector of standard Brownian motions, independent from w. The
process (41) has a gamma marginal distribution

σ 2(s)
1 (t)∼ Ga(2ω−2

s ξs�2ω−2
s )= Ga(νs� as)� νs ≥ 1�

with a mean of νs/as and a variance of νs/a2
s . The parameters ωs, λs , and ξs

were calibrated by Barndorff-Nielsen and Shephard (2002b) as follows. Setting
p1 +p2 = 1, they estimated

E(σ 2(s)
1 )= ps �509, Var(σ 2(s)

1 )= ps �461, s= 1�2�

with

p1 = �218, p2 = �782, λ1 = �0429, and λ2 = 3�74�

which means the first, smaller component of the variance process is slowly re-
verting with a half-life of around 16 days while the second has a half-life of
around 4 hours. Bollerslev and Zhou (2002) have found similar results using
a shorter span of this type of exchange rate data.

Our model for σ 2
2 is taken from Andersen and Bollerslev (1998). They cali-

brated the parameters of a GARCH diffusion from the fit of a GARCH(1�1)
model to daily returns for the DM/Dollar from 1987 until 1992 using the
temporal aggregation results in Drost and Nijman (1993). These parameters
have been used in Monte Carlo studies by Andreou and Ghysels (2002) and
Andersen, Bollerslev, and Meddahi (2004). The model takes on the form

dσ 2
2 (t)= −�035{σ 2

2(t)− �636}dt + �236σ 2
2(t)db3(t)�

Although we are calibrating both σ 2
1 and σ 2

2 to DM/Dollar data, it turns out
these two variance processes have very different dynamic properties.

Finally, we specify an ad hoc model for ρ(t), roughly matching the patterns
in correlations we have observed in empirical data, as

ρ(t)= e2x(t) − 1
e2x(t) + 1

�

where x follows the GARCH diffusion

dx(t)= −�03{x(t)− �64}dt + �118x(t)db4(t)�

To produce an impression of this bivariate process we have drawn Figure 1.
It reports results based on M = 48, simulating up to 200 complete days. Fig-
ure 1(a) shows the first 10 days of the sample, plotting the bivariate 30 minute
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FIGURE 1.—Simulated bivariate SV model usingM = 48: (a) 30 minute returns y(1)j�i and y(2)j�i
for i= 1� � � � �10; (b) daily returns

∑M
j=1 y(1)j�i and

∑M
j=1 y(2)j�i; (c) realized volatility

√∑
y2
(1)j�i and

actual volatility for asset 1; (d) realized and actual volatility for asset 2.

high frequency return data y(1)j�i and y(2)j�i. The x-axis represents days in this
picture. Figure 1(b) shows the daily returns

∑M

j=1 y(1)j�i and
∑M

j=1 y(2)j�i drawn
against i. This indicates that the variability of the second asset increased in
the middle of the sample, before falling back. Figure 1(c) shows the real-

ized volatility
√∑M

j=1 y
2
(1)j�i for asset 1 together with the corresponding actual

volatility
√∫

�i

�(i−1) σ
2
1 (u)du. These are very jagged time series, reflecting the

fast mean-reverting component in this process. The corresponding results for
asset 2, given in Figure 1(d), show pronounced and quite persistent movements
in the level of volatility through time. Of course, there are often quite large dif-
ferences between the realized and actual quantities in these pictures.

Figure 2 gives the corresponding results for the measures of dependence
between the two sets of asset returns. Figure 2(a) depicts

M∑
j=1

y(1)j�iy(2)j�i and
∫

�i

�(i−1)
Σ12(u)du�

the realized and actual covariances, drawn against i. It shows that realized co-
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FIGURE 2.—Simulation of measures of dependence, using M = 48: (a) realized covariance
and actual covariance; (b) realized and actual correlations; (c) realized and actual regressions of
returns on asset 1 on asset 2; (d) same as (c) but asset 2 on asset 1.

variance is quite a noisy estimator, with the size of the errors being large when
the level of covariance is high. The dependence structure of the data is much
clearer in Figure 2(b), which draws∑M

j=1 y(1)j�iy(2)j�i√∑M

j=1 y
2
(1)j�i

∑M

j=1 y
2
(2)j�i

and

∫
�i

�(i−1) Σ12(u)du√∫
�i

�(i−1) Σ11(u)du
∫

�i

�(i−1) Σ22(u)du
�

the realized and actual correlations amongst the two series. The estimation er-
rors seem to have a long left-hand tail. A less stable picture appears in Figures
2(c) and (d), which report∑M

j=1 y(1)j�iy(2)j�i∑M

j=1 y
2
(2)j�i

�

∫
�i

�(i−1) Σ12(u)du∫
�i

�(i−1) Σ22(u)du
�

and ∑M

j=1 y(1)j�iy(2)j�i∑M

j=1 y
2
(1)j�i

�

∫
�i

�(i−1) Σ12(u)du∫
�i

�(i−1) Σ11(u)du
�
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the realized and actual regression of asset 1 on asset 2 and the correspond-
ing regressions for asset 2 on asset 1. Here the magnitude of the difference
between these two quantities seems to vary quite significantly through time.

4.2. Assessing the Performance of the Feasible Asymptotic Theory

4.2.1. Realized Covariance

Our asymptotic theory for the realized covariance tells us that the normal-
ized estimator error∑M

j=1 y(1)j�iy(2)j�i −
∫

�i

�(i−1) Σ12(u)du√∑M

j=1 y
2
(1)j�iy

2
(2)j�i −

∑M−1
j=1 y(1)j�iy(2)j�iy(1)j+1�iy(2)j+1�i

L→N(0�1)�(42)

How close to normality is this ratio for small and moderate values
of M? Figure 3 plots the realized covariance errors,

∑M

j=1 y(1)j�iy(2)j�i minus∫
�i

�(i−1) Σ21(u)du, against i for the Monte Carlo design discussed in the pre-

FIGURE 3.—Realized covariance. Top line: the realized covariance errors and their 95% con-
fidence intervals. Bottom line: normal QQ plots for the standardized errors. Recall QQ plots:
y-axis, the ranked observed standardized errors; x-axis, corresponding expected quantities under
N(0�1), left to right M increases through 24, 144, 288.
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vious section. As we move from the left-hand side across the page we increase
the value of M and we can see the decrease in the spread of these errors. The
figure also gives 95% confidence intervals for the errors generated using the
feasible limit theory (42). These also quickly contract with M . An important
feature of the confidence intervals is that they vary dramatically, sometimes
being quite small, other times being large. This reflects the changing volatility
in the series.

The coverage of the limit theory is assessed by the normal QQ plots given
in the lower three plots in Figure 3. These are based on 2,000 simulated daily
observations. They are quite poor for small values of M , but improve as M in-
creases. The degree of improvement is modest when M is high, although this
may be because the sample size has only doubled.

4.2.2. Realized Regression

The limit theory for the normalized estimation error for realized regression
of the returns of asset one on asset two has

β̂(12)i −β(12)i√(∑M

j=1 y
2
(2)j�i

)−2{∑M

j=1 x
2
j�i −

∑M−1
j=1 xj�ixj+1�i

} L→N(0�1)�(43)

where xj�i is y(1)j�iy(2)j�i − β̂(12)iy
2
(2)j�i. The graphs in the top half of Figure 4 show

the regression errors, β̂(12)i minus β(12)i, plotted against time together with as-
ymptotically valid 95% confidence intervals for these errors based on (43).
They show that the confidence intervals are more stable through time than
was the case for the realized covariance. This is caused by the stablizing
(
∑M

j=1 y
2
(2)j�i)

−2, which appears in the denominator of (43). This means realized
regression is less sensitive to changes in the volatility of asset 2.

Figure 4 also shows the corresponding QQ plots for the standardized regres-
sion errors using 2,000 simulated days. They indicate that the theory provides
a reasonable basis for inference when M is beyond 100.

4.2.3. Realized Correlation

The feasible limit theory for correlation of the returns of asset one and asset
two is

ρ̂(12)i − ρ(12)i√(∑M

j=1 y
2
(1)j�i

∑M

j=1 y
2
(2)j�i

)−1(∑M

j=1 x
2
j�i −

∑M−1
j=1 xj�ixj+1�i

) L→N(0�1)�(44)

where xj�i is y(1)j�iy(2)j�i − 1
2 β̂(12)iy

2
(2)j�i − 1

2 β̂(21)iy
2
(1)j�i. Here

β̂(12)i =
∑M

j=1 y(1)j�iy(2)j�i∑M

j=1 y
2
(2)j�i

and β̂(21)i =
∑M

j=1 y(1)j�iy(2)j�i∑M

j=1 y
2
(1)j�i

�
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FIGURE 4.—Realized regression. Top line: the realized regression of asset 1 on asset 2. Bottom
line: the corresponding QQ plots.

Importantly the scaling (
∑M

j=1 y
2
(1)j�i

∑M

j=1 y
2
(2)j�i)

−1 adjusts the denominator
in (44) to make it invariant as we scale either of the asset returns within each
time period. This suggests it should be less sensitive to changes in the level of
volatility in either of the assets.

Figure 5 shows the realized correlation error, ρ̂(12)i minus ρ(12)i, plotted
against i, together with 95% asymptotic confidence intervals. The precision
of the estimators now does not vary as much with i. This conclusion is rein-
forced as M increases. However, for small values of M there are some very
large negative errors, suggesting the estimator has a small sample downward
bias.

The bottom plots in Figure 5 give QQ plots for the simulations of the realized
correlation based on the asymptotic theory. They suggest the asymptotic theory
is a poor guide for small values of M , but for moderate to large values of M it
is reasonably accurate.

One possible way of improving the finite sample behavior of the asymptotic
distribution of ρ̂i(12) is by using the Fisher (1921) z transformation (e.g., see
the exposition in Anderson (1984, pp. 122–124) and Gourieroux, Renault, and
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FIGURE 5.—Realized correlations. Top line: the realized correlation errors of asset 1 and as-
set 2 together with the associated confidence intervals. Bottom line: the corresponding QQ plots.

Touzi (2000) for an alternative approach):

z(12)i = 1
2

log
1 + ρ̂(12)i

1 − ρ̂(12)i
and ζ(12)i = 1

2
log

1 + ρ(12)i

1 − ρ(12)i
�

Recall Fisher’s analysis is based on M multivariate, independent and identi-
cally distributed Gaussian random variables, in which case his transformation
has the important feature that

√
M(zi(12) − ζi(12)) has a standard normal limit

distribution and it is well known its asymptotic distribution provides an excel-
lent approximation to the exact distribution (e.g., David (1938)). In our more
general case we could use

z(12)i − ζ(12)i√
{1 − ρ̂ 2

(12)i}−2
(∑M

j=1 y
2
(1)j�i

∑M

j=1 y
2
(2)j�i

)−1(∑M

j=1 x
2
j�i −

∑M−1
j=1 xj�ixj+1�i

)(45)

L→N(0�1)�

Figure 6 repeats the previous experiment but now using the Fisher transfor-
mation. These pictures demonstrate that the Fisher transformation improves
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FIGURE 6.—Fisher transformation of the realized correlation. Top line: the Fisher transformed
realized correlation error of assets 1 and 2 together with the associated asymptotic standard er-
rors. Bottom line: corresponding QQ plots.

the performance of the asymptotic approximation and that the confidence in-
tervals are made even more stable through time. This is particularly apparent
when we look at the cases where M is moderately high. This means the errors
for the transformed realized correlations are approximately unconditionally
normal.

5. EMPIRICAL ILLUSTRATION

To illustrate some of the empirical features of realized covariation, and par-
ticularly their precision as estimators of actual covariation, we have used a sub-
set of the return data employed by Andersen, Bollerslev, Diebold, and Labys
(2001), although we have made slightly different adjustments to deal with some
missing data. These adjustments are described in detail in Barndorff-Nielsen
and Shephard (2002b). The bivariate series in question records the United
States Dollar/German Deutsche Mark and Dollar/Japanese Yen series. It cov-
ers the ten year period from 1st December 1986 until 30th November 1996. The
subset we have selected to illustrate our theory starts on February 4th, 1991 and
covers the next 50 trading days. The original dataset records every 5 minutes
the most recent mid-quote to appear on the Reuters screen. It has been kindly
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FIGURE 7.—DM and Yen against the Dollar, based on the Olsen dataset. Data are 4th Febru-
ary 1991 onwards for 50 active trading days. (a) 10 minute returns on the two exchange rates for
the first 4 days of the dataset. (b) Daily returns for the first 50 days of the dataset. (c) Realized

volatility
√∑

y2
(1)j�i for the DM series. This is marked with a cross, while the bars denote 95%

confidence intervals. (d) Realized volatility
√∑

y2
(2)j�i for the Yen series.

supplied to us by Olsen and Associates in Zurich, who document their path-
breaking work in this area in Dacorogna, Gencay, Müller, Olsen, and Pictet
(2001). Throughout the analysis presented in this section we will set M = 144,
thus basing our analysis on 10 minute return data with � representing one day.

Figure 7 provides some descriptive statistics for the empirical observations.
Figure 7(a) shows the first four active days of the dataset, displaying the bi-
variate 10 minute returns. Figure 7(b) shows the daily returns for each of the
50 active days drawn against i. Figures 7(c) and (d) detail the realized volatili-
ties for the two exchange rates, together with 95% confidence intervals. These
confidence intervals are based on the log-version of the limit theory for the
realized variance. Recall, for the first asset,∑M

j=1 y
2
(1)j�i −

∫
�i

�(i−1) Σ11(u)du√∑M

j=1 y
4
(1)j�i −

∑M−1
j=1 y

2
(1)j�iy

2
(1)j+1�i

L→N(0�1)�(46)
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which implies, using the standard linearization method, that

log
∑M

j=1 y
2
(1)j�i − log

∫
�i

�(i−1) Σ11(u)du√(∑M

j=1 y
2
(1)j�i

)−2{∑M

j=1 y
4
(1)j�i −

∑M−1
j=1 y

2
(1)j�iy

2
(1)j+1�i

} L→N(0�1)�

This type of log-based distribution theory for realized variance is studied in
Barndorff-Nielsen and Shephard (2004a), where it was shown to have better
finite sample behavior than the raw theory given in (46). Figure 7(c) shows a
steady increase in the level of volatility during this period, with occasional large
values of volatility. When the volatility is high, the confidence intervals tend to
be very large as well. Figure 7(d) shows a similar type of result with the first
half of the sample having quite a low level of volatility, which has risen and
become more variable in the second half of the sample.

We now turn our attention to the measures of dependence between the
assets. In Figure 8(a) we have drawn the realized covariance

∑M

j=1 y(1)j�iy(2)j�i
against i, together with the associated 95% confidence intervals constructed
using our asymptotic theory. These terms move rather violently through this
period, although the confidence intervals show that when the realized covari-
ance is particularly high, then so is the width of the confidence intervals. The
corresponding realized correlations∑M

j=1 y(1)j�iy(2)j�i√∑M

j=1 y
2
(1)j�i

∑M

j=1 y
2
(2)j�i

(47)

are given in Figure 8(b). These are quite stable through time with only a single
realized correlation standing out from the others in the sample. An important
feature is that the confidence intervals, which are based on the Fisher type
theory given in (45), are nonsymmetric with longer left-hand tails than right-
hand tails. The correlations are not particularly precisely estimated, with the
confidence intervals typically being around .2 wide. Interestingly the largest
shifts in the correlation structure during this time period do not appear at times
of particularly large volatility spikes.

Figures 8(c) and (d) also pick up the large movements in the volatility, for
they show the regressions of the DM on the Yen and the Yen on the DM,∑M

j=1 y(1)j�iy(2)j�i∑M

j=1 y
2
(2)j�i

and

∑M

j=1 y(1)j�iy(2)j�i∑M

j=1 y
2
(1)j�i

�

respectively. These move very significantly over time, but again this is mostly
due to volatility shifts, not changes in the pattern of correlation.
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FIGURE 8.—Dependence measures between the DM and Yen returns based on the Olsen
dataset. Data are 4th February 1991 onwards for 50 active trading days, using 10 minute returns.
Vertical lines always denote 95% confidence intervals. (a) Realized covariance. (b) Realized cor-
relation and confidence intervals using the Fisher transformation theory. (c) Realized regression
of asset 1 on asset 2. (d) Realized regression of asset 2 on asset 1.

6. CONCLUSIONS

In this paper we have developed a distribution theory for realized covari-
ation, a quantity that appears both in finance theory and in a great deal of
empirical financial econometrics. Based on some rather weak assumptions on
a multivariate stochastic volatility process, our new theory can be used to de-
rive a feasible limit theory for realized regression and realized correlation. The
limit theory is robust as it does not require the empirical researcher to specify
a model for the spot covolatility or the drift process. In this sense it is semi-
parametric. Our approach has the virtues that there are no tuning parameters
to choose and that the theory is both easy to code and self-contained. Monte
Carlo results suggest the theory may well be useful in practice for it seems a
good guide to the finite sample behavior.

An important theme in theoretical econometrics and statistics is that covari-
ances are not very robust objects, as they are highly sensitive to large move-
ments in asset prices. It may be desirable to construct economic theory and
econometrics on more robust quantities such as mean absolute errors. In some
recent work Barndorff-Nielsen and Shephard (2003b, 2004b) have studied the



REALIZED COVARIATION 915

univariate version of this problem, in particular establishing limiting distrib-
ution theories for M−1/2

∑M

j=1 |yj�i| and
∑M

j=2 |yj−1�i||yj�i|, which are somewhat
robust to jumps in the price process. We are currently working on developing
multivariate versions of these statistics.
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APPENDIX A: PROOF OF THEOREM 1

A.1. Prelude

A.1.1. Multivariate SV Model in Tensor Notation

We start by recalling that y∗ ∈ SVSMc , which means that

y∗(t)= α∗(t)+
∫ t

0
Θ(u)dw(u) and Σ(t)=Θ(t)Θ(t)′�(48)

where w is a q-dimensional vector of independent Brownian motions. In our proofs it will be
more convenient to employ tensor notation (cf., for instance, McCullagh (1987, Chapter 1) or
Barndorff-Nielsen and Cox (1994, p. 3)) than vector and matrix notation. Thus we will write the
q stochastic processes y∗

(k) (k= 1� � � � � q) as

y∗
(k)(t)= α∗

(k)(t)+
∫ t

0
γa(k)(u)dwa(u)(49)

with initial condition y∗
(k)(0)= 0 and

Θ(t)= {γa(k)(t)}k�a=1�2�����q�

Recall that in tensor notation we use the Einstein summation convention, which means that if an
index is repeated in a single expression then summation over that index is understood. Thus, in
particular (49) is understood to mean

y∗
(k)(t)= α∗

(k)(t)+
q∑
a=1

∫ t

0
γa(k)(u)dwa(u)�

However, unless otherwise mentioned, we apply the summation convention only to indices
a�b� c� d and not to the indices k� l�k′� l′.

Further, in what is to follow we will write

γab(kl) = γa(k)γb(l)�
with similar notation for other index combinations. This is quite a standard formulation in tensor
notation. Notice that in this object no superscripts or subscripts are repeated and so no summa-
tion operator is generated. Combining the Einstein summation convention and the notational
rule for γab(kl), the (k� l)th element of the spot covolatility matrix of the SV model is then

Σkl(t)= γaa(kl)(t)=
q∑
a=1

γa(k)(t)γ
a
(l)(t)�(50)
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A.1.2. Notation

Throughout this Appendix we will set i= 1, for the more general result holds by analogy if we
can establish the i = 1 case. By focusing solely on the i = 1 case we are able to drop i from our
notation and so reduce the clutter in our subscripts. Further, in the main text we have written
y(k)j�i as the high frequency return for the kth asset. As the i notation has been removed we take
this opportunity to also drop the bracket around the k notation in the sequel. Hence, for example,

y∗
(k) becomes y∗

k�

As a result in what follows we have set, as before,

δ= �/M

as the time interval for our high frequency returns and we let our high frequency returns be
written as

ykj = y∗
k(jδ)− y∗

k((j − 1)δ) (j = 1� � � � �M)�(51)

Note that ykj suppresses the dependence on δ and so on M . Below we apply the same kj conven-
tion in similar cases.

Then using this notation we will prove the following result under Assumptions (a)–(c) of The-
orem 1. Conditionally on (α∗�Σ) the realized covariation matrix

[y∗
M ] =

M∑
j=1

yjy
′
j =
{

M∑
j=1

ykjylj

}
k�l=1�2�����q

(52)

follows asymptotically, as M → ∞, the normal law with q× q matrix of means
∫

�

0 Σ(u)du. The
asymptotic covariance of δ−1/2{[y∗

M ] − ∫ �

0 Σ(u)du} is Ω, a q2 × q2 array with elements

Ω=
{∫

�

0
{Σkk′(u)Σll′(u)+Σkl′(u)Σlk′(u)}du

}
k�k′�l�l′=1�����q

�(53)

It will be convenient for us to define the following

αkj = α∗
k(jδ)−α∗

k((j − 1)δ)�(54)

Γkl(t)=
∫ t

0
γaakl (s)ds�(55)

and

Γklj =
∫ jδ

(j−1)δ
γaakl (s)ds�(56)

Then, in fact,

Γkl(t)=
∫ t

0
Σkl(u)du

and

Γklj =
∫ jδ

(j−1)δ
Σkl(u)du�

When k= l it will be convenient to use the shorthand

Γkj = Γkkj�
We should note that in the main text we wrote Σ∗(t)= ∫ t0 Σ(u)du�We have introduced the addi-
tional notation Γkl(t) and Γklj in order to reduce notational clutter in superscripts.
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A.2. Structure of the Proof

We give the proof of Theorem 1 in several steps, each constituting a section. First we derive
the means, variances, and covariances of the variates

[y∗
kM� y

∗
lM ] =

M∑
j=1

ykjylj =
M∑
j=1

{y∗
k(δj)− y∗

k((j − 1)δ)}{y∗
l (jδ)− y∗

l ((j − 1)δ)}�(57)

The second step is to prove Theorem 1 for the case where the mean processes α∗
k are identically 0.

In the final section the latter restriction is lifted.
Throughout the rest of this proof we reason conditionally on α∗ and Σ and so can regard the

processes as if they were deterministic.

A.3. Mean and Variance

We are interested in the limiting behavior of [y∗
kM� y

∗
lM] when the processes α∗

k� γ
a
k are consid-

ered given due to conditioning.
To the asymptotic order considered, the limit behavior is dominated by the infinitesimal varia-

tion of the Brownian motion w, so that, as we shall show, the variation of the (vector) process α∗

does not influence the limit laws. Accordingly we suppose in this section that α∗ is identically 0,
in which case

ykj =
∫ jδ

(j−1)δ
γak(s)dwa(s)(58)

and we proceed to determine the means, variances, and covariances of the quantities [y∗
kM� y

∗
lM].

For this we first recall the fact, which follows from the multidimensional version of Ito’s
formula (cf., for instance, Protter (1990, p. 74)), that for any continuous semimartingales
Y1(t)� � � � �Ym(t) (with starting value 0) we have that

Y1(t) · · ·Ym(t)=
m∑
j=1

∫ t

0

∏
k �=j
Yk(s)dYj(s)+

∑
1≤j<k≤m

∫ t

0

∏
l �=j�k

Yl(s)d[Yj�Yk](s)�(59)

For m= 2 this reduces to

Y1(t)Y2(t)=
∫ t

0
Y1(s)dY2(s)+

∫ t

0
Y2(s)dY1(s)+

∫ t

0
d[Y1�Y2](s)�(60)

while for m= 4

Y1(t)Y2(t)Y3(t)Y4(t) =
∫ t

0
Y1(t)Y2(t)Y3(t)dY4(s) [4](61)

+
∫ t

0
Y1(s)Y2(s)d[Y3�Y4](s) [6]�

where the symbol [4] indicates the sum of the term given plus 3 similar terms obtained via per-
mutation of the indices, etc. Specifically,∫ t

0
Y1(t)Y2(t)Y3(t)dY4(s) [4]

=
∫ t

0
Y1(t)Y2(t)Y3(t)dY4(s)+

∫ t

0
Y1(t)Y2(t)Y4(t)dY3(s)

+
∫ t

0
Y1(t)Y3(t)Y4(t)dY2(s)+

∫ t

0
Y2(t)Y3(t)Y4(t)dY1(s)�
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which, we note in passing, is a local martingale, and∫ t

0
Y1(s)Y2(s)d[Y3�Y4](s) [6]

=
∫ t

0
Y1(s)Y2(s)d[Y3�Y4](s)+

∫ t

0
Y2(s)Y3(s)d[Y1�Y4](s)

+
∫ t

0
Y3(s)Y4(s)d[Y1�Y2](s)+

∫ t

0
Y1(s)Y4(s)d[Y2�Y3](s)

+
∫ t

0
Y1(s)Y3(s)d[Y2�Y4](s)+

∫ t

0
Y2(s)Y4(s)d[Y1�Y3](s)�

By (58) and (59) we find

E{ykjylj} = Γklj
and hence we have

E{[y∗
kM� y

∗
lM ]} = Γkl(�)�

Furthermore, for any indices k� l�k′� l′ in {1� � � � � q},

Cov{[y∗
kM� y

∗
lM ]� [y∗

k′M� y
∗
l′M ]} = E

{
M∑
j′=1

(ykj′ylj′ − Γklj′)
M∑
j=1

(yk′jyl′j − Γk′l′j)

}
(62)

=
M∑
j=1

E{ykjyljyk′jyl′j} −
M∑
j=1

ΓkljΓk′l′j �

Consider now the case j = 1. Using (61) and similarly for other index combinations, we find

E{yk1yl1yk′1yl′1} =
∫ δ

0
E
{∫ u

0

∫ u

0
γak(s)γ

b
l (s)dba(s)dbb(s)

}
γck′(u)γcl′(u)du [6]

=
∫ δ

0
γcck′l′(u)

∫ u

0
γaakl (s)ds du [6](63)

=
∫ δ

0
γcck′l′(u)Γkl(u)du [6]�(64)

Next we note that

d

ds
{Γkl(s)Γk′l′ (s)} = γcckl (s)Γk′l′ (s)+ γcck′l′(s)Γkl(s)�

or, in other words,∫ δ

0
γcck′l′ (u)Γkl(u)du+

∫ δ

0
γcckl(u)Γk′l′ (u)du= Γkl(δ)Γk′l′(δ)�

The terms for other values of the indices behave similarly and so, all in all, we obtain

Cov{[y∗
kM� y

∗
lM ]� [y∗

k′M� y
∗
l′M ]} =

M∑
j=1

(Γkk′jΓll′j + Γkl′jΓlk′j)�(65)

Now, when δ→ 0 the sum in (65) turns into an integral and behaves as δΩkl�k′l′(�), i.e.,

δ−1 Cov{[y∗
kM� y

∗
lM]� [y∗

k′M� y
∗
l′M ]} →Ωkl�k′l′ (�)�(66)
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where (recalling that Γklj = ∫ jδ
(j−1)δ γ

aa
kl (u)du and invoking Riemann integration)

Ωkl�k′l′(t)=
∫ t

0
{γaakk′(s)γccll′ (s)+ γaakl′(s)γcclk′ (s)}ds�(67)

as stated in Theorem 1.

A.4. Proof of Asymptotic Normality

As above, indices k, l, k′ , and l′ will run from 1 to q. To prove the result of Theorem 1 in the
case where the mean processes α∗

k are identically 0, it suffices,6 in view of (66), to show that for
any real constants ckl we have, as δ ↓ 0,

δ−1/2
M∑
j=1

ckl(ykjylj − Γklj) L→N
(
0� cklck

′l′Ωkl�k′l′ (�)
)
�(68)

where we are now applying the Einstein summation convention also to the indices k� l� � � � � By
the above calculations,

Var

{
δ−1/2

M∑
j=1

ckl(ykjylj − Γklj)
}

→ cklck
′l′Ωkl�k′l′ (�)�

We now invoke the following theorem from Gnedenko and Kolmogorov (1954, pp. 102–103).
Let xn1� � � � � xnkn (n= 1�2� � � � � i= 1�2� � � � � kn; with kn → ∞ as n→ ∞) be a triangular array of
independent random variables and let xn = xn1 + · · · + xnkn .

THEOREM 3: Suppose that E{xnj} = 0 for all n and j and that Var{xn} = 1 for all n. Then
xn →LN(0�1) if and only if, for arbitrary ψ> 0,

kn∑
j=1

E{x2
nj1(ψ�∞)(|xnj |)} → 0�(69)

as n→ ∞.

This result yields the following Corollary.

COROLLARY 3: Suppose that E{xnj} = 0 for all n and j and that there exists a nonnegative num-
ber v such that Var{xn} → v for n→ ∞. Then

xn
L→N(0� v)

if and only if (69) is satisfied.

6Recall that if zn = (zn1� � � � � znq) is a sequence of random vectors having mean 0, then to prove
that zn→L Nq(0�Ψ) for some nonnegative definite matrix Ψ it suffices to show that for arbitrary
real constants c1� � � � � cq we have

c′zn
L→Nq

(
0� c′Ψc

)
�

where c = (c1� � � � � cq)
′. (This follows directly from the characterization of convergence in law in

terms of convergence of the characteristic functions.)
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PROOF: When v= 0 we have Var{xn} → 0, which implies

xn
p→0 =N(0�0)�

When v > 0, writing vn = Var{xn} and x̄n = xn/
√
vn we find, by the above theorem, that

x̄n →L N(0�1) and hence

xn = √
v ·√vn/v · x̄n L→N(0� v)� Q.E.D.

By a standard type of argument (cf., for instance, Billingsley (1995, Theorem 27.3)), a sufficient
condition for (69) is that

kn∑
j=1

E{|xnj |2+ε} → 0

for some ε > 0.
We have

ykj
L=
√
Γkjukj�

where ukj is a standard normal variate. Hence, letting

xMj = δ−1/2ckl(ykjylj − Γklj)�
we find

xMj
L=δ−1/2ckl

(√
ΓkjΓljukjulj − Γklj

)
or, equivalently,

xMj
L=δ1/2ckl

√
Γ̄kj Γ̄lj(ukjulj − ρklj)�(70)

where

Γ̄kj = δ−1Γkj

and

ρklj = Γklj√
ΓkjΓlj

is the correlation coefficient between ukj and ulj . Note that, by our Assumption (a) on the
Σ process, as δ varies the quantities Γ̄kj are bounded away from 0 and infinity, uniformly in
k and j. This implies that

E
{∣∣ckl√Γ̄kj Γ̄lj (ukjvlj − ρklj)∣∣2+ε}

is uniformly bounded above, and hence, by (70), that

M∑
j=1

E{|xMj |2+ε} → 0�

as was to be shown.
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A.5. Negligibility of Mean Process α∗

To prove that the same limiting laws hold when the mean processes α∗
ν are not 0, we first note

that

ykjylj = αkjαlj + αkjy0lj +αljy0kj + y0kjy0lj �

where

y0kj =
∫ jδ

(j−1)δ
γak(s)dwa(s)�

Under condition (16), αkj is o(
√
δ) uniformly in k and j. Furthermore we have

αkjy0lj +αljy0kj ∼N(0� α2
kjΓllj + 2αkjαljΓklj +α2

ljΓkkj)�

Consequently,

[y∗
kM� y

∗
lM ] =

M∑
j=1

αkjαlj +
M∑
j=1

(αkjy0lj + αljy0kj)+
M∑
j=1

y0kjy0lj

= o(
√
δ)+ op(

√
δ)+ [y∗

0kM� y
∗
0lM ]�

where

[y∗
0kM� y

∗
0lM] =

M∑
j=1

y0kjy0lj �

It follows that, conditionally,

δ−1/2{[y∗
M ] − Γ }

has the same limit law as

δ−1/2{[y∗
0M ] − Γ }

and the latter is as given in Theorem 1.

APPENDIX B: STATISTICALLY FEASIBLE RESULTS

B.1. Preamble

The matrix Ω of Theorem 1 is not known and so the results of the theorem and its corollary
are infeasible. In this Appendix we continue with the same notation and assumptions used in
the previous section, but now we focus on feasible limit theorems. The following theorem and
corollary, which then immediately deliver the proof of Theorem 2 in the main text, mean that
Ω can be replaced by a consistent estimator. We have thus delivered a feasible theory.

THEOREM 4: Let the assumptions be as in Theorem 1, and let

ψ̂klk′l′ = M

�

M∑
j=1

ykjyljyk′jyl′j

and

ψ̃klk′l′ = M

�

M−1∑
j=1

ykjyljyk′(j+1)yl′(j+1)�
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Then, as M → ∞,

ψ̂klk′l′
p→
∫

�

0

{
Σkk′(u)Σll′ (u)+Σkl′(u)Σlk′(u)+Σkl(u)Σk′l′ (u)

}
du�

while

ψ̃klk′l′
p→
∫

�

0
Σkl(u)Σk′l′ (u)du�

Note that, importantly,

ψ̃k′l′kl
p→
∫

�

0
Σkl(u)Σk′l′ (u)du�

COROLLARY 4: Defining

ψklk′ l′ = ψ̂klk′l′ − 1
2
(
ψ̃klk′l′ + ψ̃k′l′kl

)
�

we see that

ψklk′ l′
p→
∫

�

0

{
Σkk′(u)Σll′ (u)+Σkl′(u)Σlk′(u)

}
du�

and so there exists a random q2 × q2 matrix

H =
M∑
j=1

xjx
′
j −

1
2

M−1∑
j=1

(xjx
′
j+1 + xj+1x

′
j )�(71)

where xj = vec(yjy ′
j), explicitly calculable in terms of y∗

M , such that

M

�
H

p→Ω

as M → ∞.

The above corollary follows immediately from Theorem 4; hence the only remaining issue is
the Proof of Theorem 4.

B.1.1. Proof of Theorem 4

Recall from (62) that

Cov{[y∗
kM� y

∗
lM ]� [y∗

k′M� y
∗
l′M ]} =

M∑
j=1

E{ykjyljyk′jyl′j} −
M∑
j=1

ΓkljΓk′l′j �

From the previous discussion we have

δ−1 Cov{[y∗
kM� y

∗
lM]� [y∗

k′M� y
∗
l′M ]} →Ωkl�k′l′ (�)�

On the other hand, arguing as above it is seen, using formula (63) and Riemann integration, that

δ−1
M∑
j=1

E{ykjyljyk′jyl′j} = δ−1
M∑
j=1

∫ jδ

(j−1)δ
γcck′l′ (u)

∫ jδ

(j−1)δ
γaakl (u)ds du [6]

→
∫

�

0

{
γaakl (s)γ

cc
k′ l′(s)+ γaakk′(s)γccll′ (s)+ γaakl′(s)γcclk′(s)

}
ds
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and, by (56),

δ−1
M∑
j=1

ΓkljΓk′l′j →
∫

�

0
γaakl (s)γ

cc
k′l′ (s)ds�

and, moreover, that

δ−1
M∑
j=1

ykjyljyk′jyl′j

must converge in probability to the same limit as

δ−1
M∑
j=1

E{ykjyljyk′jyl′j}�

Thus to obtain a consistent estimator of Ωkl�k′l′ (�) it suffices to find a consistent estimator of∫
�

0
γaakl (s)γ

cc
k′l′(s)ds�

The quantity

M−1∑
j=1

ykjyljyk′(j+1)yl′(j+1)

solves this problem, as is seen by again applying formula (63).
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