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Abstract
This paper proposes and analyses the autoregressive conditional root (ACR)
time-series model. This multivariate dynamic mixture autoregression allows for
non-stationary epochs. It proves to be an appealing alternative to existing nonlinear
models, e.g. the threshold autoregressive or Markov switching class of models,
which are commonly used to describe nonlinear dynamics as implied by arbitrage
in presence of transaction costs. Simple conditions on the parameters of the ACR
process and its innovations are shown to imply geometric ergodicity, stationarity
and existence of moments. Furthermore, consistency and asymptotic normality of
the maximum likelihood estimators are established. An application to real exchange
rate data illustrates the analysis.

I. Introduction
The purpose of this paper is to propose and analyse the autoregressive conditional
root (ACR) model. A main feature of this multivariate dynamic mixture vector
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autoregressivemodel is that it allows for regime switching between seemingly station-
ary and non-stationary epochs, where the switching is a function of the magnitude of
lagged endogenous variables. This way it allows epochs of seeming non-stationarity,
giving the impression that possible long-term relationships, e.g. purchasing power
parity, have broken down, before they endogenously collapse back towards their
long-term relationship.
The kind of dynamics considered here has been increasingly discussed over the

past decade. For instance, the general equilibrium models developed by, e.g. Dumas
(1992), Sercu, Uppal and Van Hulle (1995) or Berka (2004) imply such dynamics
for the real exchange rate in presence of trading costs. The basic underlying idea is
that international trade in goods occurs only when the gain expected from the home
and foreign price differential is large enough to offset trading costs. Once trade takes
place across countries, it induces changes in home and foreign prices, which bring the
real exchange rate back into the area where international arbitrage is not profitable
anymore. The latter area is a non-arbitrage zone where the real exchange rate behaves
like a non-stationary process. Nevertheless, as any price differential larger than the
trading costs will activate corrective international trade, the real exchange rate pro-
cess is globally stationary or stable. Another example of the relevance of such kind
of nonlinear behaviour can be found in Anderson (1997; see also Balke and Fomby,
1997, for further examples). In Anderson (1997), it is argued that transaction costs
translate into two-regime dynamics for the interest rate spread, with the switching
between an adjusting and a non-adjusting area being defined as a function of the
magnitude of the lagged spread value.
The empirical relevance of these theoretical implications has been explored by

a large number of studies, using either discontinuous or smooth threshold auto-
regressive models. For instance, the empirical analyses by Michael, Nobay and Peel
(1997), Obstfeld and Taylor (1997), Taylor, Peel and Sarno (2001), Kilian and Taylor
(2003) or Bec, Ben Salem and Carrasco (2004) provide support for multiple regime
dynamics for real exchange rate data. Regarding the interest rate spread dynamics,
similar results are obtained in, e.g. Anderson (1997), Enders and Granger (1998) and
Enders and Siklos (2001).
The proposedACRmodelmay be viewed as an appealing alternative to the thresh-

old autoregressive (TAR) class of models employed in the papers cited above, and the
Markov switching (MS) autoregressive class of models.As for the TAR andMS auto-
regressive models, it allows switching between adjusting and non-adjusting regimes,
but does so in a different way. By contrast with the TARmodels, theACRmodel does
not require a fixed threshold. By contrast with MS models, the switching between
regimes in the ACR model depends explicitly on lagged endogenous variables, in
line with the economic theory outlined above.
The recent mixture autoregressive model (MAR) by Wong and Li (2000) and its

extensions in Wong and Li (2001a, b) and Fong, Li and Wong (2007), as well as the
dynamic switching Markov chain model of Gouriéroux and Robert (2006) actually
share some features similar to our proposed ACR model. Apart from the different
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dynamic interpretation of the models, our contribution to this literature is twofold:
first, unlike the above-mentioned papers, the ACR model and the theory we provide
for it are multivariate with any number of lags. Secondly, using geometric ergodicity
results, we provide asymptotic theory for inference in this multivariate framework.
Based on a univariate simple version of the ACR model with only one lag, the

ACR(1) model, the mentioned features are emphasized in section II, where the ACR
process is also comparedwith related nonlinear processes in the literature. Despite the
epochs of seeming non-stationarity allowed by theACRmodel, section III establishes
stationarity under simple regularity conditions for the proposed general multivariate
ACRmodel with k lags. The regularity conditions ensure that the collapses regularize
the periods of non-stationarity, forcing the deviation from the long-term relationship
to be globally stationary. Next, section IV provides asymptotic theory for the maxi-
mum likelihood (ML) estimators of the parameters of the multivariate model and
shows how the ML estimators can be obtained. In particular, we state conditions
under which the ML estimators are consistent and asymptotically normally distri-
buted.Theseresultsare illustratedinsectionVbyanempiricalanalysisofrealexchange
rate data. Section VI discusses possible extensions. Finally, section VII concludes the
paper, while the Appendix contains the proofs of the theorems stated in the paper.
Some notation is used throughout: for vectors a= (a1, . . .,ak)′ ∈Rk , we use ‖a‖ to

denote some vector norm.Key examples, whichwe use, include the Euclidean and the
L1 norms, as given by (a′a)1/2 and |a1|+ · · ·+ |ak |, respectively. With A a matrix, we
use ‖A‖ to denote the matrix norm as given by ‖A‖2= tr{A′A}, and �(A) to denote the
largest, in absolute value, of the eigenvalues of A. We apply the notation, dL(A, dA)
for the differential of the matrix function L(·) with increment dA, see Appendix B.

II. The ACR-like dynamics
This section aims at conveying the flavour of the ACR model. To this end, a simple
and univariate version is first presented, and then compared with the TAR class of
models. Finally, the specific features of the ACR model are further explored in the
light of a number of other related models such as the Markov switching model.

Univariate ACR(1) example

To fix ideas, consider initially the simplest version of a univariate autoregression of
order one, the ACR(1) model, as given by

xt =
{

�xt−1+ �t , if st =1
�̃xt−1+ �t , if st =0 (1)

for t=1, 2, . . .,T , with �, �̃ scalars, �t an identically and independently distributed
(i.i.d.) N (0,�2) sequence and x0 fixed. For simplicity in the exposition here, set �̃=1
without loss of generality. Then with �=� − 1, the ACR(1) model can be repara-
metrized as an equilibrium correction model (ECM),
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�xt = st�xt−1+ �t , (2)

where� is the difference operator. The binary variable st is allowed to be unobserved,
and the switching stochastic rather than deterministic.More precisely, the conditional
probability, or the switching probability, that st takes the values one or zero is given
by

P(st =1| xt−1, �t)=p(xt−1), (3)

where the notation p(xt−1) emphasizes dependence solely on xt−1. Vitally if the
regime st is zero, the process behaves locally like a random walk, while the case
st =1 implies that it is locally like a stationary autoregression of order one, provided
|�|= |�+1|<1. The essential requirement for the conditional probability p(xt−1) is
that it tends to one as |xt−1| tends to infinity in addition to it being a function of xt−1. No
other condition is needed. A key example is given by the logistic-type specification
of p(·),

�(xt−1)= log{p(xt−1)/ (1−p(xt−1))}=a+bf (xt−1). (4)

Here a and b are freely varying reals and f (·) some increasing function in |xt−1|. In our
empirical illustrations, we use the concave function f (x)= |x|1/2 and an ACR model
with more than one lag.
As emphasized, the ACR(1) process in equation (1) can have epochs of seeming

non-stationarity if �̃=1, while at the same time be globally stable or stationary. More
precisely, for the case of the simple ACR(1) process with p(·) given by equation (4),
an initial distribution of x0 exists such that xt in equation (1) is stationary and has finite
moments of all orders, provided that |�|= |1+�|<1 and b>0. Furthermore, as to the
estimation of the parameters, which in this case are � (or �), �̃, �2, a and b, the like-
lihood function can be computed via a prediction decomposition as discussed later.
The thereby obtained ML estimators are shown to be consistent and asymptotically
Gaussian-distributed.
In their recent paper, written independently and concurrently from our paper,

Gouriéroux and Robert (2006) study in detail a dynamic switching Markov chain
model which as mentioned is closely related to the ACR model. Their model may
be viewed as the ACR(1) process in the constrained case where there is switching
between white noise and a random walk (i.e. the special case of the above process
when �=0 and �̃=1), and where the switching is governed by the sign of xt−1
rather than by its magnitude. In other words, unlike theACR model, no convergence
is assumed regarding p(xt−1) as |xt−1|→∞. Hence, our model is quite different in
the dynamic interpretation and well suited for the real exchange rate application we
have in mind. By contrast, the wide-ranging paper by Gouriéroux and Robert (2006)
is motivated by value-at-risk considerations in financial economics. Therefore, it
allows a flexible distribution on �t and studies specifically the tail behaviour of the
marginal distribution of xt , the distribution of epochs of non-stationary behaviour
and discusses stability of xt in this case. From a methodological point of view, our
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analysis is complementary: it focuses on estimation and asymptotic inference for use
in empirical work in the general, and also the multivariate, version of theACRmodel.
We also note that Bec and Rahbek (2004) apply results from this paper to an analysis
of nonlinear adjustments in error correction models.

ACR and threshold autoregressive models

Clearly, the dynamics of the regimes in theACRmodel are determined entirely endo-
genously and so are similar to the threshold models in Tong (1990) and Enders and
Granger (1998). However, now the threshold is allowed to be stochastic rather than
only deterministic. In the general formulation of theACRmodel, the switching prob-
ability p(·) is not bounded away from one, and does allow for deterministic switching
by defining p(·) as,

p(xt−1)=
{
1, if |xt−1|> �>0,
0, otherwise.

This is indeed a Tong (1990) self-exciting threshold autoregressive (SETAR) process,
as it implies

xt =
{

�xt−1+ �t , if |xt−1|> �,
�̃xt−1+ �t , otherwise. (5)

The implication is that we can view ACR models as softening the thresholds in
autoregressive threshold models. This point will be amplified in the next sub-
section.
Thus, a noticeable difference between the ACR and the SETAR models stands in

the definition of the binary variable st . Contrary to the SETAR model, the ACR(1)
model defined by equations (1) and (3) does not require the assumption of a fixed
deterministic threshold.While maintained in SETARmodels,1 this assumption might
be too strong. Indeed, its relevance may be questioned when the threshold reflects,
e.g. trading costs over several decades as is often the case in empirical analyses.
Another difference is that in TAR models [see equation (5)] there is no uncertainty
on the regime conditional on the past values of the series.
Finally, the link between theACRmodel and the smooth transition autoregression

(STAR) class of models first developed by Chan and Tong (1986) can easily be seen
from the conditional expectation of equilibrium correction. For the ACR(1) process
with �̃=1, it is given by

E(�xt | xt−1)=�p(xt−1)xt−1.

Then, if the conditional probability is given by equation (4), the conditional expected
change is given by,

1Note however that the possibility of a Markovian regime for SETAR models has been mentioned by Tong
and Lim (1980) and Tong (1983).
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E(�xt | xt−1)=�

(
exp(a+bf (xt−1))

1+ exp(a+bf (xt−1))
)
xt−1. (6)

If we recast this as,

�xt =�

(
exp(a+bf (xt−1))

1+ exp(a+bf (xt−1))
)
xt−1+�t ,

where �t is a martingale difference sequence, then this is a STAR (see Luukkonen,
Saikkonen and Teräsvista, 1988; Tong, 1990; Granger and Teräsvirta, 1993, section
4.2). Hence the ACR model has many of the features of STAR models. Importantly,
however, STARmodels do not have epochs of non-stationary behaviour – even with
�̃=1. Consequently, they do not belong to the class of processes considered in this
paper.

A simulated example

The following simple example allows us to gain a better understanding of the
behaviour of the ACR process. Figure 1a shows a sample path from the simplest
ACR process given by equations (1), (3) and (4), together with the associated con-
ditional probabilities p(xt−1) given in Figure 1b. Figure 1c reports the corresponding
expected change in xt , conditionally to xt−1, as given by p(xt−1)(�−1)xt−1.
The parameter values are a=−9, b=28, �=0.75, �̃=1 and �=0.009.2 This

simulated process delivers realizations for p(xt−1) such that the conditional prob-
ability that st =1 never exceeds 0.5, which is enough for the xt series to be stable. The
second column of Figure 1 provides the same results based on a SETAR model
simulatedwith �=0.75, �̃=1, �=0.009 and p(xt−1)= st =1(|xt−1|>0.04). Here, the
corresponding expected change in xt , conditionally to xt−1 is givenby1(|xt−1|>0.04)×
(� − 1)xt−1. Comparing panels (c) and (f ) of Figure 1 clearly suggests that ACR
models may be viewed as softening the SETAR regime switching process.

Other related models

Apart from the already mentioned threshold class of models, the ACR model is also
related to a number of well-known models. The prediction probability defined in
equation (3) implies that the ACR(1) model appears similar to a Markov switching
autoregressive model. In the Markov switching literature, st is usually employed to
shift the intercept in a time-series model, but it has also been used to make the vari-
ance change (Hamilton and Susmel, 1994) delivering a simple stochastic volatility
process, and even to make the root of an autoregression move between a unit root and
a stationary root (Karlsen and Tjøstheim, 1990) or an explosive root (Hall, Psaradakis

2These values are inspired by the estimates of modelACR-III for French franc/Deutschemark real exchange
rate data, reported in sectionV. Similarly, the threshold parameter value for the SETARcomes from the estimate
obtained by Bec et al. (2004) using the same data.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1. Simulated ACR (first column) and SETAR (second column) models

and Sola, 1999). However, a fundamental difference between these models and the
ACR is that the probability that st takes the values one or zero explicitly depends on
xt−1 in the ACR. This in turn implies that a process defined by equations (1) and (3)
is a Markov chain whereas this is not the case for an MS autoregression. This proves
important for estimation as well as for the derivation of results for asymptotic infer-
ence in theACR model. In fact, as mentioned, the ML estimators are straightforward
to compute and our derived asymptotic theory allows for rigorous inference. This
contrasts with the MS autoregressive models where estimation is based on filtering
algorithms, andwhere a full asymptotic theory for inference still needs to be explored,
even though much progress in that direction has been made in, e.g. the recent paper
by Douc, Moulines and Ryden (2004).
TheACRmodel is also related to the stochastic root model introduced by Granger

and Swanson (1997) and further studied by Leybourne, McCabe and Mills (1996).
Those papers use equation (1) but place an exogenous process on the root – allowing
stationary, unit and explosive values. An example of this is where the log of the root
is specified as being a Gaussian autoregression. These models have many virtues, but
the likelihood function cannot usually be computed explicitly. Furthermore, they do
not have the clear-cut epoch interpretation of the ACR process.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2008



590 Bulletin

A related approach is the switching regression idea introduced into economics by
Goldfeld and Quandt (1973). In our context, this builds a model for the regime st
in equation (1), which can depend upon explanatory variables and lagged values of
the xt process. A simple example of this is given by defining �(xt−1)=a+bxt−1 in
equation (4). This is outside our structure as it does not bound �(·) away from minus
infinity and so there is a possibility that the process will indeed be absorbed into the
random walk state. The time-series setup of �(xt−1)=a+bxt−1 was also explicitly
studied byWong and Li (2001a), although its stochastic properties were not derived.
Of course, this can be generalized to allow �(xt−1) to depend upon many lags of xt
or other potentially helpful explanatory variables. Note however that this type of
model focuses on different dynamics for x positive or negative, while in the ACR,
the focus is on the magnitude of x, irrespective of its sign. Hence, these two
classes of models have an entirely different interpretation. Note in this respect
that the model in Wong and Li (2001a) and our ACR model are extensions of the
mentioned static MAR in Wong and Li (2000) where �(xt−1)=a, that is, with con-
stant switching probability.
Finally, observe that the univariate stochastic permanent breaks model of Engle

and Smith (1999) departs from our model as the process is non-stationary and allows
for switching between permanent and transitory shocks. In terms of equation (2), their
model can be mimicked by replacing st�xt−1 by st�t−1, thereby introducing a suitable
moving average term.

III. ACR(k)
In this section, we introduce the general ACR(k) process. Conditions which ensure
stationarity of the ACR process, despite epochs of non-stationarity, are discussed.
These conditions also imply geometric ergodicity, which, as used in section IV, again
implies that the law of large numbers in Jensen and Rahbek (2007) holds for moment
matrices in the asymptotic theory of the ML estimators.

The ACR(k) process

The ACR(k) process Xt is an immediate extension of the univariate ACR(1) process
considered in equation (1). Switching between two autoregressions of order k , the
m-dimensional ACR(k) process Xt is defined by the equation,

Xt = st(A1Xt−1+ · · ·+AkXt−k)+ (1− st)(B1Xt−1+ · · ·+BkXt−k)+ �t
= st(A1, . . .,Ak)Xt−1+ (1− st)(B1, . . .,Bk)Xt−1+ �t , (7)

for t=1, 2, . . .,T , whereXt−1≡ (X ′
t−1, . . .,X ′

t−k)′ and the initial valueX0 is fixed. Fur-
thermore, (�t)t=1,2,... is an i.i.d. (0,�) sequence, with �>0, and �t independent of the
lagged variables Xt−1,Xt−2, . . .. The autoregressive parameters Ai and Bi are m×m
matrices.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2008



The ACR model 591

Finally, the distribution of the switching variable, st , which can take values zero
or one, is given by the prediction or switching probability,

P(st =1|�t ,Xt−1,Xt−2, . . .)=p(Xt−1), (8)

where p(·) is a function ofXt−1. Note that in particular st and �t are independent con-
ditional onXt−1, and that an equivalent way of defining st , is in terms of the indicator
function 1{·},

st =1{	t ≥1−p(Xt−1)},
where (	t)t=1,2,... is an i.i.d. sequence, independent of (�t)t=1,2,... and with 	t uniformly
distributed on [0, 1]. We make here the following assumption for the functional form
of the switching probability p(·).
Assumption 1.With p :Rmk → [0, 1] defined in equation (8), assume that

p(X)→1 as ‖X‖→∞ (9)

where X∈Rmk .

As previously emphasized, our focus is on the logistic-type specification of p(·)
satisfying Assumption 1. The logistic specfication of p(·) is given by,

�(Xt−1)= log{p(Xt−1)/ (1−p(Xt−1))}=a+bf (Xt−1), (10)

where a and b are scalar parameters, b>0 and f (·) an increasing function in ‖Xt−1‖.
Trivially, in this case,

(1−p(X))= (1+ exp�(X))−1→0

as ‖X‖→∞ provided b>0. In other words, the probability is such that whatever
state the process is in, there is always a non-negative probability that it will (re-)enter
the state governed by the Ai parameters in equation (7). In addition, the structure
is such that the further the process gets away from the regime governed by Ai, the
more the probability of staying there tends to zero. This mimics closely the economic
theory outlined in the Introduction and discussed in the references given there.
Thus, the generalization differs from the univariateACR(1) process in equation (1)

in that we allow for a vector process, a richer lag structure, potentially non-Gaussian
errors and additional flexibility in the dynamics by the introduction of the additional
autoregressive regime parameters Bi. Specifically, the univariateACR(1) example in
equation (1) hasm= k=1,A1=� andB1=1. HereA1=� governs the locally station-
ary regime, while B1=1 governs the unit-root regime. In the multivariate extension,
consider as an example the case of k=2. Choosing, say, B2= Im−B1 introduces m
unit roots in the st =0 regime as desired and reflects the flexibility of the dynamics
in the current parametrization. Below we demonstrate how the autoregressive regime
governed by B1, . . .,Bk can have unit roots, even explosive roots, while Xt remains
globally stationary, provided the other regime corresponding to the Ai parameters has
no unit or explosive roots.
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Note that it is straightforward to generalize the switching between two regimes, to
switching between anyfixed number of regimes.This is not done here in order to avoid
unnecessary and complicated notation. To ensure stationarity of the m-dimensional
ACR(k) process a further assumption is needed.
Assumption 2. Assume that

|Im−�A1−· · ·−�kAk |=0⇒|�|>1, �∈C. (11)
Assumption 2 states that the vector autoregressive process corresponding to the

st =1 regime satisfies thewell-known condition for stationarity. Importantly, there are
no restrictions on the parameters Bi of the other regime. Hence, this regime may have
unit roots and even explosive roots. The final assumption addresses the distribution
of the innovations �t .
Assumption 3. With (�t)t=1,...,T m-dimensional i.i.d. (0,�), assume that �t has a con-
tinuous and strictly positive density with respect to the Lebesgue measure on Rm and
that E‖�t‖2n is finite for some n≥1.
When discussing ML estimation and inference on the parameters in section IV,

Assumption 3 is particularly satisfied, with �t Gaussian-distributed, in which case also
�t have finite moments for all n≥1. The requirement of continuity in Assumption 3
on the density could be replaced by the less strict assumption that for example the
density is bounded on compact subsets of Rm.

Theorem 1. Consider the m-dimensional ACR(k) process Xt defined by equation (7)
in terms of its lagged values in Xt−1≡ (X ′

t−1, . . .,X ′
t−k)′ and the switching probability

p(Xt−1) in equation (8).
Under Assumptions 1, 2 and 3, the mk-dimensional process (Xt)t=1,2,... is a geo-

metrically ergodic process. In particular,X0= (X ′
0, . . ., X ′

−k+1)′ can be given an initial
distribution such thatXt , and hence also theACR(k) process Xt , are stationary. More-
over, E‖Xt‖2n <∞.
The proof is given in the Appendix.
For theACR(1) case, the result parallels the result in Proposition 7 of Gouriéroux

and Robert (2006).
As already noted, an important implication of Xt being geometrically ergodic is

that the law of large numbers in Jensen and Rahbek (2007), and hence also a cen-
tral limit theorem, apply for product moment matrices appearing in the discussion
about estimation in the next section. Note furthermore, as emphasized and discussed
by Carrasco and Chen (2002), that geometric ergodicity implies that the stationary
solutionXt , and hence also the stationary ACR(k) process Xt , will be 
-mixing at an
exponential decaying rate.

Switching and Assumption 1

Assumption 1 in Theorem 1 is important as it implies in particular that the switch-
ing probability depends on all variables in X′

t−1= (X ′
t−1, . . .,X ′

t−k). Based on existing
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econometric applications of models with general switching between autoregressions,
it is also of interest to allow the switching probability to depend on only one of the
lagged variables Xt−1, say. This clearly violatesAssumption 1. In that case, to ensure
stationarity of Xt , while still allowing unit-root behaviour in the regime governed by
theBi parameters, the autoregressive parameters of the two regimesmust be restricted
such that A2=B2, . . .,Ak =Bk corresponding to the lags of Xt which do not enter the
switching probability. That is, the lag parameters of the variables not entering the
switching probability should be identical across the two regimes.
More generally, introduce the known mk × q-dimensional selection matrix � of

full rank q, q≤mk and its orthogonal complement �⊥, which is mk × (mk − q)-
dimensional of rank (mk− q) and for which �′�⊥ =0. Now let �′Xt be the q linear
combinations of Xt which enter in the definition of p(·),

P(st =1|�t ,Xt−1,Xt−2, . . .)=p(�′Xt−1), (12)

while the remaining (mk − q) linear combinations, �′
⊥Xt , do not enter. In terms of

this notation, replace Assumption 1 by Assumption 4.
Assumption 4. With � a known mk× q-dimensional matrix of full rank q, q≤mk ,
and with p :Rq→ [0, 1] defined in equation (12), assume that:

(i) p(�′X)→1 as ‖�′X‖→∞
(ii) (A1−B1, . . .,Ak −Bk)�⊥ =0

where X∈Rmk and Ai and Bi are the autoregressive parameters in equation (7).
In particular, with �′ = (Im, 0, . . ., 0) and �′Xt−1=Xt−1, Assumption 4(i) implies

that the probability of switching tends to one as the norm of Xt−1 gets large, indepen-
dently of the further lagged values, while (ii) implies that the autoregressive para-
meters corresponding to Xt−2, . . .,Xt−k do not switch. With q=mk all elements of
Xt−1 enter p(·) and all autoregressive parameters switch, while for q=0 the ACR(k)
process reduces to the well-known pure vector AR(k) process. The formulation is
based on Bec and Rahbek (2004, Theorem 1), where non-stationary ACR(k) pro-
cesses are studied. Analogous to Theorem 1 we have Theorem 2.

Theorem 2. Consider theACR(k) process Xt defined by equation (7) and the switch-
ing probability in equation (12). Then underAssumptions 2, 3 and 4, the conclusions
in Theorem 1 hold.

The proof is given in the Appendix.

IV. Likelihood-based estimation
In this section, we consider estimation and also asymptotic inference for the para-
meters of the ACR(k) model with Gaussian i.i.d. innovations. The ACR(k) model is
defined by equations (7) and (8), or rather (7) and (12),where the switching probability
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may depend on a few of the lagged variables. Estimation is considered specifically
for a logistic prediction probability function which is used in our application. The
results have been formulated such that it should be possible to apply them also for
other types of switching probability functions. We also discuss briefly how to test
hypotheses on the parameters.

Estimation and inference

We consider here estimation in the general case with switching between AR(k) pro-
cesses, where the switching probability is logistic and depends on q, q≤ k , linear
known combinations as given by �′Xt−1 (see Theorem 2). Thereby, the cases where
switching depends on all lagged Xt in Xt−1, or just one Xt−j, say, are all covered
simultaneously. A convenient way to write the ACR(k) model is then,

Xt = stA�′Xt−1+ (1− st)B�′Xt−1+C�′
⊥Xt−1+ �t for t=1, 2, . . .,T (13)

withXt−1= (X ′
t−1, . . .,X ′

t−k)′,X0 isfixed and �t is an i.i.d.Nm(0,�) sequencewith�>0
and �t independent of Xt−1, . . .,X0. Here A and B are m×q-dimensional matrices of
parameters which switch between the two regimes, while C is the m× (mk − q)-
dimensional parameter matrix with non-switching parameters.
The parametrization in terms of A, B and C is a simple reparametrization in

terms of (A1, . . .,Ak) and (B1, . . .,Bk) in equation (7). Specifically, if switching is
allowed to depend on all variables, that is �′Xt−1=Xt−1, then C=0, A= (A1, . . .,Ak)
and B= (B1, . . .,Bk). Likewise, A=A1, B=B1 and C= (A2, . . .,Ak)= (B2, . . .,Bk) if
�′Xt−1=Xt−1, that is switching is allowed to depend on Xt−1 alone. Formally, the
reparametrization is given by,

(A1, . . .,Ak)= (A,C)(�,�⊥)′ and (B1, . . .,Bk)= (B,C)(�,�⊥)′. (14)

The logistic specification in equation (10) of the switching probability in equation
(12) is given by,

�(p(�′Xt−1))=a+bf (�′Xt−1), (15)

where a and b are scalar parameters, b>0 and f :Rq→R is an increasing function in
‖�′Xt−1‖.
With �≡{A,B,C,a,b,�}, the log-likelihood function conditional onX0 is given

by

LT (�)=
T∑
t=1

`t(�)=
T∑
t=1
log(pAt�At +pBt�Bt), (16)

where

pAt = (1−pBt)≡p(�′Xt−1), (17)

and, omitting constants in the Gaussian density,
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�Mt = |�|−1/2 exp
(

−1
2
�Mt�

−1�′
Mt

)
, �Mt =Xt −M�′Xt−1−C�′

⊥Xt−1, (18)

for M =A,B. The likelihood function in equation (16) is numerically maximized to
obtain the ML estimator, �̂, and the following result holds.

Theorem 3. Consider theACRmodel defined by equations (13) and (15). Then under
Assumptions 2, 3 and 4, and if A /=B, there exists with probability tending to one as
T tends to infinity, a unique ML estimator �̂={Â, B̂, Ĉ, â, b̂, �̂} which satisfies the
score equation,

dLT (�, d�)|�=�̂ =0, (19)

for all d�. Moreover, �̂ P→�, and �̂T is asymptotically Gaussian,
√
T (�̂−�) D→N (0,�). (20)

The proof of Theorem 3 is based on establishing Cramér-type conditions from
Jensen and Rahbek (2005, Lemma 1) and is given in Appendix B. When discuss-
ing an algorithm to obtain �̂ below, the explicit form of the score equation (19) is
discussed. A consistent estimator of � is given in Appendix B, equation (53).
It should be emphasized that the results show that the ML estimators are asymp-

totically Gaussian even if the Bi regime allows unit and even explosive roots, pro-
vided that the other has only stationary roots. Thus, we provide distribution theory
for a model which allows epochs of stationarity and epochs without. As mentioned,
we believe this is the first paper providing this kind of result. As discussed below,
hereMLestimators are straightforward to compute and our derived asymptotic theory
allows for rigorous inference. This is illustrated in the empirical application in
section V, where we also test for the presence of a unit root in the Bi regime by
the LR test statistic, which by Theorem 3 is asymptotically χ2-distributed. Note
that the imposed restrictions on the parameter space rule out the possibility of a
unit root in both regimes as well as the possibility of absorption in either of the
two regimes. Indeed usual asymptotic expansions in terms of score and information
would then be problematic as discussed in general in Davies (1987), Andrews and
Ploberger (1994) and Hansen (1996). Related issues have recently been analysed in
the context of TAR models: based on least squares estimation, Hansen (1997) dis-
cusses the theory of Wald-type testing for the hypothesis that one of the regimes in
a stationary model is an absorbing state. Testing for a unit root in multiple regimes
is treated in Caner and Hansen (2001) and Bec et al. (2004). Furthermore,
cointegrated TAR models are discussed in Hansen and Seo (2002) and Bec and
Rahbek (2004).
The results in Theorem 3 are derived specifically for the parametrization and

functional choice of a logistic probability in equation (15). While our derivations do
depend on the chosen logistic structure for the probabilities p(·), it is straightforward
to modify the results to accommodate alternative specifications of p(·). Specifically,
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for transparency we have formulated all relevant quantities in terms of the derivative
of �(p(·)) with respect to the parameters in � in Lemmas 3, 5 and 6.

On optimization of the likelihood

In order to carry out likelihood inference, we have to numerically maximize the like-
lihood function, and an algorithm for this is discussed here. When presenting the
algorithm, we use notation as in least squares and logistic regression. Note that the
algorithm could equivalently be derived as the EM algorithm3 (see, e.g. Dempster,
Laird and Rubin, 1977; Ruud, 1991).
Define first the weights

pÅAt = (1−pÅBt)=
pAt�At

pAt�At +pBt�Bt , (21)

in terms of the probabilities pAt = (1−pBt)=p(�′Xt−1) in equation (17) and theGauss-
ian densities�At and�Bt in equation (18). Denote by p̂At , the probability pAt evaluated
at the ML estimator �̂, and likewise for p̂Bt , �̂Mt and p̂

Å
Mt withM =A,B.

Next, mimicking least squares regression notation, introduce product moment
matrices in terms of the m-dimensional response variable Xt and the q-dimensional
explanatory variables p̂ÅAt�′Xt−1 and p̂ÅBt�′Xt−1, as well as �′

⊥Xt−1 which is (mk−q)-
dimensional. Define,

S01=
T∑
t=1
p̂ÅAtXtX

′
t−1�, S02=

T∑
t=1
p̂ÅBtXtX

′
t−1�, and S03=

T∑
t=1
XtX′

t−1�⊥. (22)

Define further the product moments as given by,

S11=
T∑
t=1
p̂ÅAt�′Xt−1X

′
t−1�, S13=S ′

31=
T∑
t=1
p̂ÅAt�′Xt−1X

′
t−1�⊥,

S22=
T∑
t=1
p̂ÅBt�′Xt−1X

′
t−1�, S23=S ′

32=
T∑
t=1
p̂ÅBt�′Xt−1X

′
t−1�⊥,

S33=
T∑
t=1

�′
⊥Xt−1X

′
t−1�⊥ S12=S ′

21=0.

(23)

3Specifically, treating (st)t=1,2, ...,T as observed variables, the log-likelihood function for the EM algorithm
is given by,

LEM
T (�)=

T∑
t=1
log(pstAtp

(1−st )
Bt �t), �t = |�|−1/2 exp

(
−1
2
�t�

−1�′
t

)
,

and �t =Xt − (stA+ (1− st)B)�′Xt−1−C�′
⊥Xt−1. By definition, E(st | Xt ,Xt−1)=pAt , and also

E(st | Xt ,Xt−1)=E(s2t |XT ,XT−1, . . .,X0)=pÅAt .
Using this, it follows that the updating recursions discussed below are identical to the M , or maximization,
step in the EM algorithm.
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In terms of these, it follows by Lemma 3 in theAppendix, that the components of the
ML estimator �̂ satisfy

(Â B̂ Ĉ)= (S01 S02 S03) S−1, (24)

where S is the (q+mk)× (q+mk)-dimensional matrix with entries (Sij)i,i=1,2,3 in
equation (23). Likewise,

�̂= 1
T

T∑
t=1
( p̂ÅAt �̂At �̂

′
At + p̂ÅBt �̂Bt �̂′

Bt), (25)

where �̂Mt is �Mt defined in equation (18) evaluated at �̂ for M =A,B. Finally, the
estimators â and b̂ for the logistic part satisfy the two equations:

T∑
t=1
( p̂ÅAt − p̂At)(1 f (�′Xt−1))=0, (26)

corresponding to a logistic regression for the ‘observations’ p̂ÅAt .
In other words, �̂ satifies equations (24)–(26) which are therefore not in closed

form. However, an immediate recursive algorithm is the following. For M =A,B,
let p̂ÅMt denote pÅMt evaluated at the previously obtained estimator �̂

(n−1)
, say, then the

updated estimator �̂
(n)
is obtained by the least squares regression in equations (24)

and (25), and the logistic nonlinear optimization in (26). Convergence is then defined
by evaluating the log-likelihood function LT (�̂

(n)
) until convergence. The algorithm

is implemented in the illustration in the next section.

V. An application to real exchange rate data
We illustrate the ACR model by applying it to different real exchange rates, and
compare this with the MAR and linear AR models. Moreover, we discuss applica-
tion of the SETAR model. The possible nonlinear nature of the dynamics of the real
exchange rates has been increasingly discussed, both theoretically and empirically,
since the beginning of the 1990s. Until then, the so-called purchasing power parity
(PPP) relationship constituted a cornerstone of most open macroeconomic theo-
retical models. This relationship comes from international arbitrage on goods
market under frictionless and costless adjustment assumption. It states that once con-
verted into the same currency, home and foreign general price levels should equalize,
thanks to international trade in goods. More formally, the PPP relationship writes
ep*=p, where e denotes the nominal exchange rate, i.e. the price of foreign cur-
rency in terms of home currency, p and p* are national price levels measured in local
currency. As a consequence of this non-arbitrage condition, the real exchange rate,
defined as ep*/p, should be a linear stationary process. Nevertheless, this implication
has been challenged by a lot of empirical work.4 One possible explanation for those
results could be the presence of trading costs, or more generally transaction costs
4See, e.g. Rogoff (1996) for an overview of this topic.
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including transportation costs, tariffs, information costs, etc.5 Trading costs imply a
nonlinear stationary process for the real exchange rate, as stressed in the theoretical
models by Dumas (1992), Sercu et al. (1995) or Berka (2004), from which it follows
that international arbitrage takes place if and only if the international price differential
exceeds transaction costs. Hence, price differentials smaller than these costs are not
being corrected by international trade.The simplestway to formalize this idea consists
in defining two distinct areas for the real exchange rate process. One is the arbitrage
area, concerning relatively large real exchange rate absolute values, where the real
exchange rate adjusts towards its long-term equilibrium. The other area is a non-
arbitrage area, gathering real exchange rate observations which are relatively small
in absolute value, where the real exchange rate behaves as if it were non-stationary.A
threshold defining these two areas could then be interpreted as the trading costs level.
As underlined in the Introduction, evidence of nonlinearity in the real exchange

rate process has been found by many authors since a decade, using either discon-
tinuous (SETAR) or smooth (ESTAR, LSTAR) threshold models. The ACR model
provides an appealing alternative to model the real exchange rate process, as it does
not impose a fixed threshold. So as to illustrate the relevance of this model, let us first
consider the logarithm of French franc/Deutsche mark real exchange rate, xt , defined
as log(et)+ log(pDM

t )− log(p FF
t ), where et is the monthly average of the nominal

exchange rate, and pit is the consumption price index of country i. These post-Bretton
Woods and pre-Euro data, spanning from September 1973 to December 1998, are
from Datastream. The centred FF/DM real exchange rate is plotted in Figure 2.
In order to check the stationarity of this series, we apply the WSup

B test statistics
developed by Bec, Guay and Guerre (2008). Based on simulation experiments, these
authors show that theWSup

B unit-root test has power against stationary ACR alterna-
tives. For the FF/DM exchange rate data, this statistics reaches 31.81, which is well
above the 5% critical value of 13.82 (see Table 1 in Bec et al., 2008) and hence allows
rejection of the unit-root null hypothesis.
The ACR model considered below is defined by equations (13) and (15), where

the function f (X) retained here is:

f (Xt−1)=
√

|xt−1|+ |xt−2|+ · · ·+ |xt−k |.
To allow for more straightforward inference regarding the existence of non-stationary
epochs, we rewrite this ACR model in the following equivalent form:

�xt = st
(

�Axt−1+
k−1∑
i=1


Ai�xt−i
)

+ (1− st)
(

�Bxt−1+
k−1∑
i=1


Bi�xt−i
)

+ �t. (27)

Within this equilibrium correction form of the ACR model, the test for epochs of
non-stationarity simply amounts to testing the null �B=0.
The number of lags to include in the ACR model is chosen as the smallest one

which succeeds in eliminating residuals autocorrelation according to the LM test.
5The crucial role of trading costs is emphasized in Obstfeld and Rogoff (2000).
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Figure 2. Centred FF/DM real exchange rate

Computing residuals for the ACR model is not so straightforward. We have chosen
to compute first the one-step-ahead prediction distribution functions

εt =p(Xt−1)�
(

�̂At
�̂A

)
+ (1−p(Xt−1))�

(
�̂Bt
�̂B

)
,

where �̂it denotes the ML estimators of the ACR residuals in regime i (i=A,B), for
instance �̂At =�xt − �̂Axt−1− 
̂A1�xt−1−· · ·− 
̂Ak−1�xt−k+1, while � is the distribu-
tion function of the standard normal. These {εt} are approximately standard uniform
and i.i.d. if the model is true, ignoring the effect of estimating the parameters. These
have been frequently used to define residuals in nonlinear time-series econometric
models (see, e.g. Shephard, 1994; Kim, Shephard and Chib, 1998). We then map
these to our residuals for the ACR model by the inverse distribution function,
�ACR
t =�−1(εt).
Using these residuals, the LM test of serial autocorrelation leads to retaining

two lags in levels. Then, regarding the ACR model estimation, it is necessary to
initialize the parameters in order to use the EM algorithm. All parameters are ini-
tialized from the corresponding linear model estimates, obtained by setting �A=�B
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TABLE 1

Linear and ACR model estimates
Linear ACR-I ACR-II ACR-III

xt−1 −0.039 — — —
(0.013)

stxt−1 — −0.234 −0.234 −0.258
(0.034) (0.035) (0.035)

(1− st)xt−1 — 0.033 0.029 —
(0.023) (0.023)

�xt−1 0.304 — 0.319 0.315
(0.055) (0.056) (0.054)

st�xt−1 — 0.407 — —
(0.104)

(1− st)�xt−1 — 0.227 — —
(0.074)

a — −6.47 −6.49 −9.41
(2.86) (2.72) (3.69)

b — 14.32 20.09 28.25
(6.69) (8.89) (12.14)

�� 0.010 0.009 0.009 0.009
LM(AR 1–12) (P-value) 0.14 0.18 0.18 0.18
log L 1,237.60 1,259.91 1,258.52 1,257.63

Note: Standard errors in parentheses. LM test of no error autocorrelation.

and 
Ai= 
Bi ∀i=1, . . ., k− 1 in equation (27). The last issue consists in initializing
the logit function parameters. The EM algorithm outcome is in fact quite sensi-
tive to these initial conditions. In order to avoid ending up in a local optimum, we
highly recommend choosing them from the plot of the profile likelihood, i.e. the
likelihood as a function of a and b. The ACR model log-likelihood is estimated
using the EM ML algorithm, considering (a,b) fixed, for a wide range of (a,b)
values picked up in a grid consistent with the positiveness requirement for b.6 For
all EM ML estimations presented hereafter, the algorithm is stopped as soon as the
log-likelihood increment between two steps is less than 10−7. Moreover, so as to
make b approximately scale-free, the logit function is reparameterized by dividing
(|xt−1|+ |xt−2|)1/2 by its sample standard deviation. The plot obtained for the profile
log-likelihood of this FF/DM real exchange rate model is in Figure 3, for a grid over
a∈ [−60; 10], and over b∈ [0.1; 300].7 As can be seen from the graph at the top
of Figure 3, the shape of the profile log-likelihood suggests that initializing a from
values greater than, say, −20.0, and b from values smaller than 50.0 should allow
the EM algorithm to reach the global maximum. This is confirmed by the graph

6The span of the grid should be adapted to the magnitude of the switching variable: for instance, the smaller
it is, the larger the maximum of the grid over b.
7Extending the grid spans for a and b actually does not change the conclusions, but makes the graph less

easy to read. Also note that for values of a greater than 10, the EM ML algorithm failed to estimate the ACR
model for b values greater than 200, say, because the variance-covariance matrix of the estimated residuals
becomes singular.
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Figure 3. The profile log-likelihood as a function of a and b
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zooming the profile log-likelihood for these ranges of a and b values, at the bottom
of Figure 3.
Table 1 reports linear andACRmodel results, where�xt is the left-hand-side vari-

able. The standard errors reported in parentheses were computed using equation (53)
inAppendix. The results corresponding to theACR model described above are given
in columnACR-I. As can be seen from this column, the likelihood of theACR model
is higher than the one of the linear model, as also reflected in the smaller standard
error of estimated residuals. Moreover, this ACR model points to a sharp contrast
between the outer and inner regime dynamics. The outer regime is characterized by
a quite strong adjustment with a coefficient of −0.234 for �̂A. On the contrary, this
model reveals a random walk behaviour of the real exchange rate associated with
small absolute value of the latter: �̂B=0.033, but it is not significantly different from
zero according to its standard error. This provides evidence in favour of the exis-
tence of non-stationary epochs, or in other words, the existence of a non-arbitrage
area. Hence, the conclusion drawn from the ACR model confirms the findings of
numerous empirical studies performed within TAR models.
To make our analysis more comparable with this empirical literature, Theorem 2

is used to allow the switching probability to depend only on xt−1. Accordingly, the
logit function is defined in terms of |xt−1|1/2 only, and the parameters of �xt−1 are
restricted to be identical across regimes (see Assumption 4 above). The profile log-
likelihood obtained in this case (not reported) being very similar to the one plotted in
Figure 3, we initialized the EM algorithm with the same values as the ones retained
for theACR-I model’s estimation. The resultingMLestimates are reported in column
ACR-II of Table 1. They are quite close to their analogues from model ACR-I and
clearly point to the same conclusion. Moreover, the decrease in the log-likelihood is
very small. This may come from the fact that even though the point estimates of�xt−1
parameters look rather different across regimes in model ACR-I (0.407 and 0.227 in
the outer and inner regime, respectively), they are not significantly different from
each other according to their 5% confidence intervals. The similarity of the results
from models ACR-I and ACR-II also suggests that including xt−2 in the switching
probability does not convey crucial information about the switches.8
As the parameter associated with (1− st)xt−1 is still found not to be significantly

different from zero, we also present the results of the estimation of theACR-II model,
imposing that this coefficient is zero (columnACR-III). The log-likelihood is not sig-
nificantly decreased by this restriction: the LR test does not reject it with a statistic
value of 1.78 to be compared with a χ2(1) (Theorem 3). Consequently, we will now
focus on the restrictedACR-IIImodel.Again, the regime related to large real exchange
rate in absolute value is characterized by a quick mean-reverting dynamics, with an
estimated autoregressive coefficient of−0.258. Overall, these results provide further
support to the nonlinear model.

8Testing this hypothesis is not straightforward because the ACR-I and ACR-II models are not nested; this
will be addressed in future research.
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Figure 4. Estimated conditional probability (outer regime)

When looking at the estimated conditional probability to be in the outer regime
(Figure 4) it appears that it peaks more often over the first half of the sample. The two
largest peaks observed in 1974 and 1978 reflect the sharp widening of the French–
German inflation gap after the two oil shocks: the French authorities tried to accom-
modate the recession by easing monetary policy. The Bundesbank did the same, but
to a lesser extent. The smaller peak in between corresponds to the year when France
abandoned the European snake system, in 1976.The fourth epoch of increased switch-
ing probability also corresponds to a widening of the French and German inflation
rates differential. Beyond the high inflation rates inherited from the oil price shocks,
the new French government elected in 1981, led by Prime Minister Pierre Mauroy
and President François Mitterrand, initiated a strong Keynesian policy in order to
increase domestic demand. This policy resulted quite quickly in even more inflation
and in a sharp weakening of the French franc against the German mark because of
a noticeable worsening of the current account. This nominal exchange rate central
parity was realigned twice between October 1981 and June 1982. It is worth noting
that the conditional switching probability increase precedes the first franc devalu-
ation by roughly 1 year. Over the second half of the sample, things look quieter
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than before. The reason for this is twofold. First, the Basle-Nyborg Agreement of
September 1987 probably stabilized the European Monetary System, basically by
allowing the (limited) use of EMS credit facilities for intramarginal intervention.9
Second, this corresponds to the French policy of ‘franc fort’ or ‘strong franc’. Actu-
ally, whereas other European countries like UK or Italy said they would not defend
their exchange rate against the DMwhen the Bundesbankmaintained such high inter-
est rates to finance the German unification, France chose the other way to deal with
that issue: the so-called ‘competitive disinflation’. Consequently, the French–
German inflation gap decreased sharply, hence contributing to the relative stabiliz-
ation of the real exchange rate. The last small peaks occur between 1993 and 1995,
as a consequence of the speculative attacks against the French franc in July 1993
which caused the widening of the fluctuation bands from ±2.25% to ±15% in
September 1993.
Finally, it is worth noting that the conditional switching probability peaks at

around 0.80, and that only 1.3% of the sample is associated with a probability larger
than 0.5 to switch to the outer regime. By fitting a SETAR to the same data, Bec
et al. (2004) found a threshold at 0.0455. In Figure 5, ACR and SETAR estimated
probabilities to lie in the outer regime are plotted. The SETAR probabilities closely
match their non-zeroACR analogues. However, the SETAR classification looks quite
crude compared with the ACR classification.
As noted above, the British and Italian exchange rate policies were more inde-

pendent from the German policy than the French policy. As an additional check of
the relevance of theACR model, we now consider these two other real exchange rate
series from the ACR model’s versions which are close to those commonly used in
the empirical literature, namely the ACR-II and ACR-III models. According to the
WSup
B test statistics, the null of a unit root is strongly rejected against the stationary

alternative, with values of 20.47 and 36.84 for UK and Italy, respectively. Table 2
summarizes the ACR-II and ACR-III models estimated for the British and Italian
real exchange rates vis-à-vis the DM. The conclusions emerging from these results
are quite similar to those obtained for the FF/DM real exchange rate. Actually, large
deviations fromPPPare associatedwith strong and significant adjustment coefficients
(−0.11 and −0.28 for UK and Italy, respectively). In both cases, the null hypothesis
that small deviations are not corrected, i.e. �̂B=0, cannot be rejected according to the
LR test statistics. The latter equals 0.6 in the British case and 0.06 in the Italian case,
and hence is smaller than the χ2(1) 5% critical value. The only noticeable difference
compared with the French case is the fact that the logit function parameters a and b
are less accurately estimated here. Finally, it is possible to compare the ACR model
with the mixture autoregressive (MAR) nonlinear model developed by Wong and
Li (2000). Indeed, imposing b=0 in the ACR model amounts to assuming that the
transition probability is constant, in which case the ACR model reduces to the MAR

9Before this agreement, the use of EMS credit facilities was allowed at the edge of the fluctuation bands
only, which weakened the credibility of the EMS.
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Figure 5. Estimated ACR conditional probability (solid line) and SETAR regimes (shaded area)

TABLE 2

ACR model estimates for UK and Italy

UK Italy
ACR-II ACR-III ACR-II ACR-III

stxt−1 −0.113 −0.111 −0.278 −0.278
(0.031) (0.030) (0.036) (0.036)

(1− st)xt−1 −0.008 — −0.002 —
(0.010) (0.008)

�xt−1 0.361 0.363 0.335 0.334
(0.053) (0.053) (0.051) (0.050)

a −31.66 −27.38 −16.65 −16.40
(18.57) (15.52) (7.99) (7.71)

b 63.97 55.78 31.95 31.40
(37.39) (31.74) (17.91) (17.33)

�� 0.020 0.020 0.015 0.015
LM(AR 1–12) [P-value] 0.27 0.27 0.97 0.97
log L 1,021.29 1,220.99 1,106.55 1,106.52

Note: See Table 1.
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TABLE 3

Comparing ACR and MAR models

France UK Italy
LR 10.04 9.12 4.16
P-values 0.001 0.002 0.041

model. Table 3 reports the likelihood ratio tests corresponding to this constraint in the
ACR-II model for the three real exchange rate series. In all cases, theMAR restriction
is strongly rejected by the data. Hence, this test provides additional empirical support
to the ACR model.

VI. Potential extensions
It is noted in Wong and Li (2000) that the conditional variance of the static mixture
MAR process is non-constant. Likewise for the ACR process in equation (1) with
�̃=1, where straightforward computations give

V (xt | xt−1= x)=�2+ (p(x)�2x2+ (1−p(x))x2)+ (p(x)�x+ (1−p(x))x)2.
Thus, the processes indeed allow for non-constant conditional variances (while xt
has a constant unconditional variance). However, note that the form of the condi-
tional variance induced by theACR is rather restricted as for instance the conditional
variance of �xt , V (�xt | xt−1), is constant.
Autoregressive conditional rootmodels could be developed formore sophisticated

models of conditional variance.10As an example, considerfirst the traditionalfinancial
econometrics model with xt |Ft−1∼N (0,�2t ), where the conditional variance follows
a GARCH-type recursion (see for a review Bollerslev, Engle and Nelson, 1994) such
as

�2t =�0+�1x2t−1+�2�
2
t−1=�0+�1(x2t−1−�2t−1)+��2t−1

where�=�1+�2.Here�0,�1 and�2 are non-negative reals and, say,Ft =�{xt ,�t , . . .}.
Although this GARCHmodel is strictly stationary even if �=1, this unit root implies
that the process is not covariance-stationary and the multistep forecasts of volatility
will trend upwards. This is often regarded as being unsatisfactory, however empiri-
cally near-unit-root GARCH models are often estimated. (See the discussion in, e.g.
Bollerslev and Engle, 1993; Engle and Lee, 1999.)
We can use theACR structure to construct aGARCHmodelwhich behavesmostly

like a unit-root process, but which is regularized by periods of stationary GARCH.
This is simply achieved by writing xt |Ft−1, st∼N (0,�2t ) and changing the conditional
variance into

�2t =�0+{(�1+�2)st −�2}x2t−1+�2�
2
t−1.

10See also Zhang, Li and Yuen (2006) and Wong and Li (2001b) for similar extensions of related models.
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Now when st =0 the GARCH process has a unit root, while when st =1, the process
is locally covariance-stationary. The idea would be to allow, in the simplest case,

�(�2t−1)=�+ 
�2t−1,

with 
 being positive. This would mean that if the conditional variance becomes large
the process has a chance to switch to a covariance-stationary process, while when the
conditional variance is low the process behaves like an integrated GARCH.

VII. Conclusion
This paper has proposed a new type of time-series model, an autoregressive con-
ditional root model, which endogenously switches between being stationary and
non-stationary. The periods of stationarity regularize the overall properties of the
model, implying that although the process has epochs of true non-stationarity,
overall the process is both strictly and covariance stationary.
This model was motivated by our desire to reflect the possibility that long-term

economic relationships between variables seem to sometimes break down over quite
prolonged periods, butwhen the disequilibriumbecomes very large there is a tendency
for the relationship to reassert itself. This type of behaviour is quite often predicted
by economic theory. Now we have a rather flexible time-series model which can test
for this type of behaviour within the framework of some established econometric
theory. Based on this, cointegration and nonlinear adjustment are discussed for the
ACR model in Bec and Rahbek (2004).

Final Manuscript Received: May 2008
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Appendix A: Proof of Theorems 1 and 2
With them-dimensionalACR(k) process Xt defined by equation (7) and the switching
probability in equation (12), we show thatXt ≡ (X ′

t−1, . . .,X ′
t−k)′ is a Markov chain on

Rmk which is geometrically ergodic (see Tong, 1990; Meyn and Tweedie, 1993, for
an introduction to Markov chain theory and geometric ergodicity). The proof falls
in two parts: first it is verified in Lemma 1 that the Markov chain Xt is irreducible
with respect to the Lebesgue measure � on Rmk , it is aperiodic and that compact sets
K ⊆ Rmk are small. By Meyn and Tweedie (1993) these regularity conditions imply
that if a drift criterion is shown to hold, thenXt is geometrically ergodic and has finite
moments as defined by the drift function. Geometric ergodicity ofXt implies thatX0
can be given an initial distribution such that Xt , and hence also Xt , are stationary as
claimed. This is established in Lemma 2. Thus, Theorem 2 holds by Lemmas 1 and
2. Likewise, Theorem 1 holds by setting �= Imk .
A similar strategy has been used in Bec and Rahbek (2004) and Saikkonen (2005)

to establish stationarity of cointegrated relations in non-stationary nonlinear vector
autoregressive processes. In particular, Bec and Rahbek (2004, proof of Theorem 1)
use the results of Lemma 1 here.

Lemma 1. Under Assumptions 3 and 4(i), (Xt)t=0,1,... is a �-irreducible, aperiodic
Markov chain on (Rmk ,Bmk), where Bmk is the Borel �-algebra on Rmk . Moreover,
compact sets K⊆Rmk are small.

Proof of Lemma 1. By definition of Xt and st , Xt conditional on Xt−1 has density
f (Xt |Xt−1) given by

f (Xt |Xt−1)=p(�′Xt−1)g(Xt −AXt−1)+ (1−p(�′Xt−1)) g(Xt −BXt−1), (28)

where A= (A1, . . .,Ak), B= (B1, . . .,Bk) and g(·) is the density of �t which is well
defined by Assumption 3. Next, by straightforward factorization, Xt+ k conditional
on Xt has density,

h(Xt+ k |Xt)=
k∏
i=1
f (Xt+ i |Xt+ i−1). (29)

That is, Xt has a well-defined k-step transition density, which, similar to Tjøstheim
(1990), will be exploited in the next step.
Let Pn(D |x)=P(Xt+n∈D |Xt = x) denote the n-step transition probabilities for

the Markov chainXt , where x∈Rmk and D∈Bmk . Then irreducibility with respect to
� follows by Proposition 4.2.1(ii) in Meyn and Tweedie (1993), by noting that for all
x∈Rmk and D∈Bmk , with �(D)>0,

∞∑
n=1
Pn(D | x)≥Pk(D | x)=

∫
D
h(y | x) dy>0, (30)

which holds by equation (29) and Assumption 3.
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Likewise, with K ⊆ Rmk a compact set, and (x, y)∈K ×K , h(y | x)≥ � for some
�>0 by Assumptions 4(i) and 3. Then for any x∈K and any D∈Bmk ,

Pk(D | x)≥Pk(D∩K | x)=
∫
D∩K

h(y | x)dy≥��(D∩K).
Hence for all x ∈K , Pk(· | x) is minorized by �(· ∩K) and the compact set K by
definition is small (cf. Meyn and Tweedie, 1993, p. 106).
Finally, an irreducible chain is periodic if it has period d>1 and aperiodic if d=1.

IfXt has period d>1, then by Meyn and Tweedie (1993, Theorem 5.4.4), there exist
disjoint sets D0,D1, . . .,Dd−1 in Bmk such that

P1(Di+1 | x)=1 for x∈Di and i=0, 1, . . .,d−1 (mod d)
and furthermore, �(

⋃d−1
i=0Di)c=0, where � is a maximal irreducibility measure.

By Proposition 4.2.2(ii) in Meyn and Tweedie (1993), � is absolutely continuous
with respect to � and therefore also �(

⋃d
i=1Di−1)c=0. For this to hold at least one

of the sets D1, say, must have �(D1)>0, which implies Pk(D1 | x)>0 for all x as in
equation (30).
Iterating k times one gets for some j, the contradiction,

Pk(D1 | x)=0 with x∈
⋃
i /=j
Di.

Hence Xt has period d=1 and is aperiodic. �
Lemma 2. Under Assumptions 3 and 2, and Assumption 4(i) and (ii), (Xt)t=0,1,...
satisfies a drift criterion such that Xt is geometrically ergodic and has finite 2nth-
order moments.

Proof of Lemma 2.By Lemma 1 Xt is a Markov chain for which we can apply the
drift criterion as stated in, e.g. Theorem 15.0.1(iii) of Meyn and Tweedie (1993).
As to the choice of drift function d(Xt)≥ 1 and calculation of E(d(Xt)|Xt−1= x),
the arguments mimic Bec and Rahbek (2004, proof of Theorem 1). Specifically, a
drift function in Feigin and Tweedie (1985) implying finite second-order moments is
given by

d(x)=1+ x′Vx, V =
∞∑
i=0
Ai′Ai,

where A is the mk×mk-dimensional matrix given by,

A≡

⎛
⎜⎜⎝
A1 A2 · · · Ak
Im 0 · · · 0

. . .
. . .

...
0 Im 0

⎞
⎟⎟⎠.

Note thatA′VA=V − I . Assumption 2 is equivalent to the assumption that �(A)<1,
and therefore d(·) is well defined. Defining B similarly in terms of the Bi coefficients,
it follows that
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E(d(Xt) |Xt−1= x)=
(
1− x

′x− tr(�V )− (1−p(�′x))h(x)
d(x)

)
d(x), (31)

with
h(x)= x′(A−B)′D(A−B)x−2x′A′D(A−B)x.

For some �>1, define the compact set K ≡{x | x′Vx≤ �}. Note initially, that on its
complement Kc it holds by definition that

d(x)=1+ x′Vx≤ x′Vx
(
1+ 1

�

)
≤2x′Vx.

Hence for � large enough,

x′x− tr(�V )− (1−p(�′x))h(x)
d(x)

≥ x′x
2x′Vx

− tr(�V )+ (1−p(�′x))h(x)
d(x)

≥ 1
2�(V )

− tr(�V )+ (1−p(�′x))h(x)
d(x)

.

Write x=��̄′x+�⊥�̄′
⊥x, where, e.g. �̄=�(�′�)−1. Assumption 4(ii) implies that h(x)

can be written as:

h(x)= (x′�)�̄′(A−B)′D(A−B)�̄(�′x)−2x′A′D(A−B)�̄(�′x)=h1(x)−h2(x).
Note that as ‖x‖2→∞, either (a) ‖�′x‖→∞ or (b) ‖�′

⊥x‖→∞. In case of (a), as h1(x)
and h2(x) areO(‖x‖2), clearly (1−p(�′x))h(x)/d(x)→0 by assumption on p(·). In case
(b) h1(x)→0 and also h2(x)→0 as h2(x)=O(‖�′x‖‖x‖) and again (1−p(�′x))h(x)/
d(x)→0 holds since 1−p(·) is bounded. We can therefore conclude that

tr(�V )+ (1−p(�′x))h(x)
d(x)

→0.

Summarizing, for � large enough,

E(d(Xt)|Xt−1= x)≤ (1−�)d(x)

for x∈Kc and some �>0. On K , E(d(Xt)|Xt−1= x) given by equation (31) which is
continuous and hence bounded on the compact set. �

Appendix B: Proof of Theorem 3
Theorem 3 holds by establishing the regularity conditions (A.1), (A.2) and (A.3) in
Jensen and Rahbek (2004, Lemma 1), which are classical Cramér-type conditions
addressing first-, second- and third-order differentials of the log-likelihood function.
These hold by Lemmas 5 and 6 below.
We apply notation as in Magnus and Neudecker (1988) for derivatives of matrix

functions: with k , l,m and n integers, the mapping G, G :Rk×l →Rm×n, G is differen-
tiable of order three in X ∈�⊂Rk×l if
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G(X +dX )=G(X )+dG(X , dX )+d2G(X , dX , dX )+d3G(X , dX , dX , dX )
+o(‖dX ‖3)

as ‖dX ‖ → 0. Here, say, dG(X , dX ) is the differential of G at X with increment
dX ∈Rk×l , where X +dX is in the interior of �. The Jacobian, ∂

∂vec(X ) vec{G(X )}, and
the differential are connected through the vec-operator by the identity,

vec{dG(X , dX )}=
[
∂vec{G(X )}
∂{vec(X )}′

]′
vec(dX ). (32)

Likewise for the second-order derivative or Hessian, see Magnus and Neudecker
(1988).

First- and second-order differentials

We start by listing the first- and second-order differentials, or score and observed
information. In both cases, the differentials have been stated such that it is possible
to accommodate different choices of the logistic specification in equation (15).

Lemma 3. With p(·) on the logistic form in equation (15), the first-order differential
for the log-likelihood function in equation (16) is given by

d`t(�, d�)= (pÅAt −pAt)d�(�, d�)+{pÅAtd log �At(�, d�)+pÅBtd log �Bt(�, d�)}, (33)
such that with pMt , pÅMt , �Mt and �Mt for M =A, B defined in equations (17), (21)
and (18)

d`t(�, dA)= tr{�−1pÅAt�AtX
′
t−1�dA′}, d`t(�, dB)= tr{�−1pÅBt�BtX

′
t−1�dB′} (34)

d`t(�, dC)= tr{�−1(pÅAt�At +pÅBt�Bt)X′
t−1�⊥dC ′}, (35)

d t̀(�, d(a,b)′)= (pÅAt −pAt)d(a,b)vt , vt = (1, f (�′Xt−1))′, (36)

d`t(�, d�)= 12tr{�−1d�[�−1(pÅAt�At�′
At +pÅBt�Bt�′

Bt)− Im]}. (37)

Proof of Lemma 3. The result follows by direct differentiation of the log-likelihood
function in equation (16) combined with the identity equation (21). �
Lemma 4.With the notation from Lemma 3,

d2`t(�, d�, d�)=pÅAtpÅBt {d�(�, d�)+d log�At(�, d�)−d log�Bt(�, d�)}2
+{
pÅAtd

2 log�At(�, d�, d�)+pÅBtd2 log�Bt(�, d�, d�)
}

−pAtpBt {d�(�, d�)}2 . (38)

The second-order differentials for the autoregressive parameters are given by,

d2`t(�, dA, dA)=pÅAtpÅBt(tr{�−1�AtX
′
t−1�dA′})2−pÅAttr{�−1dA�′Xt−1X

′
t−1�dA′}

d2`t(�, dA, dB)=−pÅAtpÅBttr{�−1�AtX
′
t−1�dA′}tr{�−1�BtX

′
t−1�dB′}
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d2`t(�, dA, dC)=−pÅAttr{�−1dC�′
⊥Xt−1X

′
t−1�dA′}

+pÅAtpÅBttr{�−1�AtX
′
t−1�dA′}tr{�−1[�At − �Bt]X′

t−1�⊥dC ′}
d2`t(�, dB, dB)=pÅAtpÅBt(tr{�−1�BtX

′
t−1�dB′})2−pÅBttr{�−1dB�′Xt−1X

′
t−1�dB′}

d2`t(�, dB, dC)=−pÅBttr{�−1dC�′
⊥Xt−1X

′
t−1�dB′}

−pÅAtpÅBttr{�−1�BtX
′
t−1�dB′}tr{�−1[�At − �Bt]X′

t−1�⊥dC ′}
d2`t(�, dC, dC)=−tr{�−1dC�′

⊥Xt−1X
′
t−1�⊥dC ′}

+pÅAtpÅBt(tr{�−1[�At − �Bt]X′
t−1�⊥ dC ′})2. (39)

Next, for the logistic parameters,

d2`t(�, d(a,b)′, d(a,b))= (pÅAtpÅBt −pAtpBt){d(a,b)vt}2
d2`t(�, d(a,b)′, dA)=pÅAtpÅBttr{�−1�AtX

′
t−1�dA′}d(a,b)vt

d2`t(�, d(a,b)′, dB)=−pÅAtpÅBttr{�−1�BtX
′
t−1�dB′}d(a,b)vt

d2`t(�, d(a,b)′, dC)=pÅAtpÅBttr{�−1[�At − �Bt]X′
t−1�⊥dC ′}d(a,b)vt. (40)

And finally, for the covariance,

d2`t(�, d�, d�)= tr
{(

1
2
Im−�−1[pÅAt�At�′

At +pÅBt�Bt�′
Bt]

)
�−1d��−1d�

}

+pÅAtpÅBt
(
tr

{
1
2
�−1d��−1[�At�′

At − �Bt�
′
Bt]

})2

d2`t(�, d�, dA)=pÅAtpÅBttr
{
1
2
�−1d��−1[�At�′

At − �Bt�
′
Bt]

}
tr{�−1�AtX

′
t−1�dA′}

−pÅAttr{�−1d��−1�AtX
′
t−1�dA′}

d2`t(�, d�, dB)=−pÅAtpÅBttr
{
1
2
�−1d��−1[�At�′

At − �Bt�
′
Bt]

}
tr{�−1�BtX

′
t−1�dB′}

−pÅBttr{�−1d��−1�BtX
′
t−1�dB′}

d2`t(�, d�, dC)=−tr{�−1d��−1(pÅAt�At +pÅBt�Bt)X′
t−1�⊥dC ′}

+pÅAtpÅBttr
{
1
2
�−1d��−1[�At�′

At − �Bt�
′
Bt]

}
tr{�−1[�At − �Bt]

×X′
t−1�⊥dC ′}

d2`t(�, d�, d(a,b))=pÅAtpÅBttr
{
1
2
�−1d��−1[�At�′

At − �Bt�
′
Bt]

}
d(a,b)vt. (41)

Proof of Lemma 4. Differentiation in equation (33) gives,

d2`t(�, d�, d�)=pÅAtd2 log�At(�, d�, d�)+pÅBtd2 log�Bt(�, d�, d�)
+ (pÅAt −pAt)d2�(�, d�, d�)+[dpÅAt(�, d�)−dpAt(�, d�)]d�(�, d�)
+dpÅAt(�, d�)(d�At(�, d�)−d�Bt(�, d�))
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which equals equation (38) using the identity dpAt(�, d�)=pAtpBtd�(�, d�), the
identity

dpÅAt(�, d�)=pÅAtpÅBt(d�(�, d�)+d log�At(�, d�)−d log�Bt(�, d�))

and that d2�(�, d�, d�)=0. The results in equations (39)–(41) hold by using the
identities,

d log�At(�, dA)= tr{�−1�AtX
′
t−1�dA′},

d log�At(�, dC)= tr{�−1�AtX
′
t−1�⊥dC ′}

d2 log�At(�, dA, dA)= tr{�−1dA�′Xt−1X
′
t−1�dA′}

d2 log�At(�, dA, dC)= tr{�−1dA�′Xt−1X
′
t−1�⊥dC ′}

(42)

and similarly for dB as well as standard matrix calculus results such as d log |�|=
tr{�−1d�}. �

Regularity conditions

Next, we verify that the information equality holds positive definiteness of the infor-
mation and that the third-order differential is bounded.

Lemma 5. Under the Assumptions of Theorem 3 it holds that

E(d`t(�, d�))2=−E(d2`t(�, d�, d�))>0. (43)

Furthermore, for each � there is a neighbourhood N (�) of � such that

E sup
�̃∈N (�)

|d3`t(�, d�, d�, d�) |<∞.

Proof of Lemma 5.To see that, e.g. E(d`t(�, dA)2)=−E(d2`t(�, dA, dA)) for allm×q
matrices dA, we use the conditional independence of st and �t given Xt−1: first note
that

st�At = st(Xt −A�′Xt−1−C�′
⊥Xt−1)= st�t

and using equation (21),

E(pÅAt�At |Xt−1)=E(E(st |Xt ,Xt−1)�At |Xt−1)=E(st�t |Xt−1)=0. (44)

By definition,

E(pÅAt |Xt−1)=E(st |�′Xt−1)=pAt. (45)

Now,

(d`t(�, dA)2)+d2`t(�, dA, dA)
=pÅAt[tr{�−1�AtX

′
t−1�dA′}2− tr{�−1dA�′Xt−1X

′
t−1�dA′}],

and it holds that
E((d`t(�, dA)2)+d2`t(�, dA, dA) |Xt−1)=0
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as desired. Likewise for the remaining terms in equation (43), the results follow by
repeated use of the additional identities

(1− st)�Bt = (1− st)�t , E((pÅBt�Bt |Xt−1)=0 (46)

E(pÅAt�At�′
At +pÅBt�Bt�′

Bt |Xt−1)= st�+ (1− st)�=� (47)

Cov(tr{�t�
′
tP}, tr{�t�

′
tQ})=2tr{P�Q�} (48)

for P,Q symmetric p× p matrices. For instance, using equation (48) together with
equations (47) and (46) it follows that

E(d`t(�, d�))2+E(d2`t(�, d�, d�))
= 1
4
E[tr{�t�

′
t�

−1d��−1}]2−
[
1
4
tr{�−1d�}2+ 1

2
tr{[�−1d�]2}

]
=0.

Next, observe that E(d`t(�, d�))2>0 for all d�, is equivalent to linear independence
of the first-order differentials or simply,

d`t(�, dA)+d`t(�, dB)+d`t(�, dC)+d`t(�, d(a,b)′ +d`t(�, d�)=0
implies dA=dB=dC=d(a,b)=d�=0. Note initially that by the definition of pÅAt
in equation (21) then

pÅAt −pAt =pAtpBt(�At −�Bt). (49)

Thus if A=B then by equation (49) pÅAt =pAt and the claimed implication does not
hold. More precisely, conditioning onXt−1 and choosing dA=�dB /=0 for some real
�, d`t(�, dA)+d`t(�, dB)=0. This is a consequence of the fact that conditional on
Xt−1, and with a and b known, the considerations simplify to the well known for
mixed normal models, see, e.g. Titterington, Smith andMakov (1985). Therefore, we
focus on the non-singularity of the derivative with respect to (a,b)′,

d`t(�, d(a,b)′)= (pÅAt −pAt)d(a,b)vt
= (pÅAt −pAt)(da+ f (�′Xt−1)db).

By equation (49) andAssumption 1, (pÅAt−pAt) /=0 almost surely (as b>0). Next, the
proof of geometric ergodicity ofXt implies that the Markov chain has the Lebesgue
measure as irreducibility measure. This again implies, by the Lebesgue decomposi-
tion, that the invariant measure has a component which has a strictly positive density
w.r.t. Lebesgue measure and hence that, Pr(f (�′Xt−1) /= constant)>0 and therefore
d`t(�, d(a,b)′) /=0 almost surely.
For the third-order differential, use Lemma 4 and note that with

wMt =d log�Mt = tr{�−1[XtX′
t−1�−M�′Xt−1X

′
t−1�]dM} (50)

for M =A,B, cf. equation (42), then
|wMt |≤�1‖Xt−1X ′

t ‖+�2‖Xt−1X
′
t−1‖
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for �̃∈N (�) and some constants �i, i=1, 2. Consider first the direction of A,
|d3`t(�, dA, dA, dA) |= | (pÅAtpÅBtwAt tr{�−1dA�′Xt−1X

′
t−1�dA′}+ (1−2pÅAt)pÅAt(wAt )3|

≤ �̃1|wAt | ‖Xt‖2+ �̃2|wAt |3

for some constants �̃i, i=1, 2. HenceE� sup�̃∈N (�) |d3`t(�, dA, dA, dA)| is finite by exis-
tence of second-ordermoments ofXt .Apart from tedious calculus, similar results hold
for the remaining third-order differentials. �
Lemma 6. Under the assumptions of Theorem 3, then as T→∞:
Provided �(·, ·) is measurable and E‖�(Xt ,Xt−1)‖<∞, then for each �

1
T

T∑
t=1
d2`t(�, d�, d�)

P→E(d2`t(�, d�, d�)). (51)

Furthermore,

1
T

T∑
t=1
d`t(�, d�)

D→N (0,E[d`t(�, d�)]2), (52)

where E[d`t(�, d�)]2 satisfies equation (43).

Proof of Lemma 6. By the law of large numbers in Jensen and Rahbek (2007),

1
T

T∑
t=1

�(Xt ,Xt−1)
P→E(�(Xt ,Xt−1)),

for all �(·, ·) measurable and E‖�(Xt ,Xt−1)‖<∞ as Xt is geometrically ergodic.
Using the expressions in Lemma 4 for the second-order differential, the convergence
in equation (51) holds as all moments are finite. Next, note that d`t(�, d�) is a
Martingale difference sequence with respect to Ft =�(Xt ,Xt−1, . . .). Specifically,

E(d`t(�, d�) |Ft−1)=E(d`t(�, d�) |Xt−1)=0
using the expression for the differentials in Lemma 3 together with the identities
equations (44)–(47) applied in the proof of Lemma 4. Again the established geo-
metric ergodicity and existence of moments imply that

1
T

T∑
t=1
E([d`t(�, d�)]2 |Xt−1)

converges in probability by the law of large numbers. Furthermore, the Lindeberg
condition in Brown (1971) applies and the claimed asymptotic normality of the first-
order differential follows. �
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Information

We end this section by stating the observed information, that is minus the second-
order derivative of the log-likelihood function, which is used in the application as a
consistent estimator for �−1 in Theorem 3. Consistency of the observed information,
or Hessian, evaluated at �̂, holds by Lemmas 5 and 6 as the third-order derivative is
uniformly bounded in mean in a neighbourhood of �, that the Hessian evaluated at �
is consistent, and finally that �̂ is consistent by Theorem 3.
Using Lemma 4, the observed information can be represented as follows, setting

vec �=((vec A)′, (vec B)′, (vec C)′, (vec �)′,a,b, )′.

The corresponding consistent estimator of the covariance matrix is given by �−1

evaluated at �̂ where �−1 is given by

�−1=�1+�2= 1
T

T∑
t=1
(blockdiag(�t ⊗�−1, 02×2)+�t). (53)

Here �t is the (q+m(k+1))×q+m(k+1))-dimensional matrix defined by,
⎛
⎜⎜⎜⎝
pÅAt�

′Xt−1X′
t−1� 0 pÅAt�

′Xt−1X′
t−1�⊥ pÅAt�

′Xt−1�′At�
−1

0 pÅBt�
′Xt−1X′

t−1� pÅBt�
′Xt−1X′

t−1�⊥ pÅBt�
′Xt−1�′Bt�

−1

pÅAt�
′
⊥Xt−1X′

t−1� pÅBt�
′
⊥Xt−1X′

t−1� �′
⊥Xt−1X′

t−1�⊥ �′
⊥Xt−1

∑
M =A,B p

Å
Mt�

′
Mt�

−1

pÅAt�
−1�AtX′

t−1� pÅBt�
−1�BtX′

t−1� �−1∑
M =A,B p

Å
Mt�MtX

′
t−1�⊥ �−1(

∑
M =A,B p

Å
Mt�Mt�

′
Mt − 1

2�)�
−1

⎞
⎟⎟⎟⎠.

Next,�t is the (q+m(k+1)+2)× (q+m(k+1)+2) dimensional matrix given
by

�t =pAtpBt�t�′
t −pÅAtpÅBt�Å

t �Å′
t

where

�Å′
t =

[
vec(�−1�AtX

′
t−1�)

′, −vec(�−1�BtX
′
t−1�0)

′, vec
(
1
2
�−1Qt�−1

)′
, v′
t

]
,

�′
t =[0, 0, 0, v′

t], Qt =[�At�′
At − �Bt�

′
Bt] and v′

t = (1, f (�′Xt−1)).
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