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ABSTRACT

Solar power is often touted as a reliable renewable energy source
for low-cost sensor networks in various environments. However,
there have not been extensive real-world studies to examine how
well solar-powered sensor networks perform in urban settings
over long periods. In this work we analyze the performance of a
large-scale solar-powered sensor network over one year in Chicago,
Illinois. We find that over 35% of the devices experienced charging
issues between the months of October and March, resulting in
over 33,000 hours of data loss. Surprisingly the devices that had
issues charging were not all located near tall buildings and were
often found in majority Black and Latine neighborhoods. These
findings highlight the need for continued research in alternative
power sources and energy harvesting techniques, and increased
real-world deployments to identify additional barriers in using
sensor networks for real-time monitoring in cities.

CCS CONCEPTS

« Computer systems organization — Sensor networks.
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1 INTRODUCTION

One of the many challenges in working with low-cost sensor net-
works is maintaining power for long periods of time. Solar power
is perhaps the most ubiquitous form of energy used for low-cost
sensor networks because it is cost-effective and renewable [18].
Solar panels are relatively inexpensive and easy to deploy, and they
provide a reliable power source to continuously operate sensors
in locations that are remote, hard to reach, or simply difficult or
expensive to run electrical wires or replace batteries. Because solar
power eliminates the need for frequent maintenance and battery
replacements, it helps reduce the cost of the sensor network while
also reducing the carbon footprint associated with operating the
network. Thus it is no surprise that numerous sensor networks rely
on solar power as their primary power source.

Due to the vast quantity of previously deployed solar powered
sensor networks and the numerous papers published about these
networks, it seems guaranteed that solar power is reliable for most
sensor network deployments. However, there have been very few
studies looking into the reliability of solar power in urban settings.
As more and more cities push to adopt sensing technologies for
urban monitoring and smart city integration, it is necessary to un-
derstand how well solar energy will power these sensor networks.
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Figure 1: This map shows the locations of all sensor nodes
in the network. The small gray dots represent nodes that
did not enter power saving mode. The larger colored dots
represent the nodes that entered power saving mode, and are
color-coded by the number of hours that they were in power
saving mode. One of the nodes with the highest number of
hours in power saving mode is in downtown Chicago close to
several tall buildings, but another node with nearly the same
number of hours is in the western part of the city. Thus it is
clear that simply considering areas based on the number or
density of tall buildings is not enough to determine whether
or not they will experience solar charging issues in winter
months.

In this work we examine the power performance of a large-scale
solar-powered sensor network in Chicago, Illinois. We analyze data
from 115 nodes deployed around the city of Chicago from July 1,
2021 to June 30, 2022. We find that 44 devices have issues charging
during winter months, resulting in the loss of nearly 400,000 sen-
sor readings. Devices with charging issues could not be predicted
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using open crowdsourced building data, and neighborhoods that
are majority Black and Latine were disproportionately affected by
charging issues, despite the lack of very tall buildings.

This work makes a number of contributions. We present the
analysis of a large-scale solar-powered sensor network in an ur-
ban setting, showing that solar power is not as reliable as often
presented. We highlight the difficulty in predicting locations with
charging issues with the use of crowdsourced data and open source
tools. In addition, we describe the potential social implications of
charging issues in urban sensor networks, especially in cities that
are segregated by race, income, or social status. Our work points
to future research directions to address the shortcomings of so-
lar power for large-scale urban networks, helping to make these
networks more reliable in future deployments.

2 RELATED WORK

Although there have been prior evaluations of real-world sensor
network deployments in urban settings, they have often been small-
scale and short-term. A small number of researchers have shared
the lessons and challenges learned from urban sensor network de-
ployments, but many of these are focused on specific data such as
noise [12] and water quality [19]. Furthermore, many of these stud-
ies rely on the power grid for data transfer and high computation
tasks [2, 19].

Dehwabh et al. [6] evaluate the performance of a traffic monitor-
ing sensor network in a desert city, and describe the effect of dust
storms and building shadows on solar charging. However, they do
not do a deep analysis into the locations that were most affected
by shadows to determine how the issue may be prevented in fu-
ture deployments and the potential social implications. Thus to our
knowledge, this is the first in-depth analysis of charging issues for
a large-scale solar-powered urban sensor network.

3 CHICAGO AS A CASE STUDY

3.1 Building Height

According to the Council on Tall Buildings and Urban Habitat [14],
amongst cities around the world, Chicago has the 10th most build-
ings 150 meters and higher, 11th most buildings 200 meters and
higher, and 5th most buildings 300 meters and higher. However, its
place on those lists is expected to fall within the coming years—
Chicago has only three buildings 150 meters and higher under
construction and twelve proposed for construction. By comparison,
Wuhan, Shenyang, and Bangkok—cities just below Chicago on the
list of most 150+ meter buildings—have 49, 14, and 17, buildings
under construction respectively, and dozens more proposed in both
Wuhan and Shenyang. In addition, development in other cities such
as Mumbai, Nanning, and Nanjing, which all have several 150+
meter buildings under construction and proposed for construction
will propel them past Chicago in the list in the coming decades.

3.2 Latitude and Sunlight Hours

Chicago has a latitude of 41.88 degrees, lying at nearly the 42nd
parallel north. At this latitude, the sun is visible for 15 hours, 15
minutes during the summer solstice and 9 hours, 6 minutes during
the winter solstice. According to data from the World Economic
Forum [16], the top five most populous latitudes are between the
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22nd and 27th parallel north, which are all much closer to the
equator and thus have more sunlight on the winter solstice, with
an average of 10 hours 35 minutes.

Nevertheless, a number of highly populated cities reside at or
above the 42nd parallel north, including London, Moscow, Harbin,
and Toronto, as well as much of Western Europe. Cities such as
New York and Beijing are also located at nearly the same latitude,
falling at the 41st parallel north, which receives 9 hours 13 minutes
sunlight on the winter solstice. Furthermore, as the effects of climate
change disproportionately affect populations who live closer to the
equator, mass internal and international migration to more northern
latitudes is expected [8]. Thus, understanding the performance of
solar-powered sensor networks at northern latitudes is essential
for future urban environmental sensing.

3.3 Racial and Economic Segregation and
Inequality

Based on 2020 United States Census Data, Chicago is the fourth
most racially segregated large city (population at least 200,000) in
the United States [7]. Fig. 2 highlights Chicago’s racial segregation,
showing where the white, Black, and Latine populations live relative
to each other. There is limited data comparing racial segregation
in global cities, likely because many countries are more racially
homogeneous than the United States.

However, segregation based on income or social status exists in
many global cities, with the highest levels of inequality and segrega-
tion often found in cities of lower income countries [21]. According
to Gini Index data from the 2019 American Community Survey [1],
Chicago has the 10th greatest income inequality amongst US cities,
with a Gini index of 0.53 (where a 0 indicates perfect equality and
1 indicates perfect inequality). Compared to cities such as Lon-
don and Johannesburg, which have the highest global Gini index
values—both over 0.7—Chicago has a relatively medium-high level
of income inequality [3]. As seen in Fig. 3, the areas of Chicago that
are considered most socioeconomically disadvantaged based on
factors such as unemployment and poverty level also overlap with
many of the areas shown in Fig. 2 that have a majority Black or
Latine population. Thus, we believe that Chicago provides a useful
case study by which to examine the potential social and equity im-
plications that sensing technologies can introduce in cities around
the globe.

4 METHODS AND MATERIALS

For this work, we examined data from Microsoft Research’s Eclipse
network [5]. The nodes and network were designed and deployed
to monitor air quality in Chicago, and are further described in [5].

4.1 Sensor Network Design

The sensor network comprised of 115 unique sensor node locations,
broken down as follows:

o 80 devices placed based on locations chosen through strati-
fied random sampling, as described in NYCCAS [9]

e 20 devices allocated to local environmental justice groups
for placement according to their priorities

e 9 devices at three EPA stations, 3 devices at each station, for
collocation to perform calibration
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Figure 2: These maps show the city of Chicago with an outline of each zip code area. The zip codes are color coded by the
percentage of each major race identified—White, Black, and Latine. The maps show that each of the races is concentrated in
different areas of the city, highlighting how segregated Chicago is.

Figure 3: This map shows the city of Chicago broken down
by census tracts, with the tracts deemed socioeconomically
disadvantaged filled in blue. These areas were selected based
on household income, poverty rate, and unemployment rate
for the purpose of promoting equitable hiring [11]. Many
of these areas overlap with the zip codes that are majority
Black or Latine, as shown in Fig. 2, highlighting the numerous
forms of inequality and segregation present in Chicago.

o 6 devices for partner organizations to address their priorities

All devices that were not at EPA stations were installed at bus
shelters throughout the city, as shown in Fig 7. These nodes were
placed at the same height, about 2.5 meters above ground. Nodes at
EPA stations were located on the rooftops near the EPA monitors,
several meters above ground and at different heights based on the
height of the building or structure housing the EPA monitor. Most
of the devices were installed at their respective locations in July
and August 2021, with 98 nodes (over 83%) placed by July 3rd, 2021.

4.2 Solar Power and Power Saving Mode

Each sensing node was outfitted with a rechargeable 2000 mAh
lithium polymer battery, which was charged using a 10x13 cm
Voltaic Systems P126 6W solar panel. The solar panel was attached
horizontally, in a flat position, to the top of the node’s respective
bus shelter to maximize solar absorption, maintain security of the
panel, and provide ease of installation.

To optimize for low-power optimization, the microcontroller
operated in a duty cycled mode, consuming as little as 40 pA be-
tween measurements. The device’s four electrochemical gas sensors
consume microwatts of power, while the particulate matter (PM)
sensor consumes up to 80 mA power as it relies on an internal fan to
circulate air. Thus to optimize the overall power usage, we sampled
the gases every 60 seconds and sampled the PM and transmitted
data every 5 minutes. On average, the device draws 4mA current
over a 24 hour period, allowing the battery to power the sensing
node for approximately 15 days at the aforementioned sampling
rate.

In October 2021, we noticed that one of the devices was no longer
charging. After sending the local maintenance team to investigate,
we determined that the sun was no longer reaching the solar panel
due to the change in the sun’s position and the node’s location
surrounded by skyscrapers. Thus, we implemented a power-saving
mode to put devices into a deep sleep to avoid depleting the batteries
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Figure 4: This plot shows the daily number of sensor readings
between the autumn and spring equinox. There is a clear
drop off in the number of daily readings during many of the
winter days, especially in January and February.

in low- or no-light conditions. Power-saving mode was initiated
when a battery’s power level fell to 15% or less of its total capacity
then turned off when the battery’s power level had recharged to at
least 40%.

4.3 Data Analysis

The battery level was logged with each device reading and stored
in an Azure server. To identify devices that were in power saving
mode, we wrote a function based on the logic to put devices in
and out of power saving mode. We used OSM (Open Street Maps)
Buildings [15] to gather data about buildings surrounding the nodes
and the Shadow Accrual Maps tool [10] to calculate the amount
of shadow hours at each node location. Socioeconomic data were
pulled from the City of Chicago Open Data Portal [11].

5 RESULTS
5.1 Data Loss due to Power Saving Mode

Between the autumn and spring equinox of the year long study
period, 44 devices (38.26%) went into power saving mode. Seven of
these devices were at community selected sites, representing about
16% of the devices in power saving mode, indicating the community
selected sites were not disproportionately affected.

Most devices experienced data loss to power saving mode be-
tween the month of January and March 2022, as shown in Fig. 4.
In total, Devices in the networks spent 19,450,915 seconds — over
33,180 hours or 1382.5 days—in power saving mode, resulting in
about 398,000 potential sensor readings that were not captured.

As shown in Fig. 5, most devices entered power saving mode
numerous times, with several entering power saving mode more
than five times during the study period. Thus, in many locations
there may have been adequate sunlight to keep the devices charged
throughout the winter months if a larger solar panel had been used
or the devices had better energy harvesting to extend the battery
life with the limited charge they received.

5.2 Location of Solar Charging Issues

As expected, the node locations in downtown Chicago entered
power saving mode for a long duration of the winter due to the high
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Figure 5: This bar plot shows the number of times that each
device entered power saving mode. Many devices entered
power saving mode numerous times, indicating that they
were able to recharge, even throughout the winter months.
Thus one potential solution to address this issue is to have
larger solar panels or better energy harvesting for sensor
nodes to continue reporting data throughout the winter
months.
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number of very tall buildings in the neighborhood. However, several
node locations in neighborhoods outside of downtown Chicago,
that lack a high density of tall buildings, also experienced solar
charging issues. In fact, the node location with the second highest
amount of time spent in power saving mode was not in a location
near tall buildings, and 8 of the 12 node locations that had the
most power saving hours were outside of the downtown area, as
shown in Fig. 8. As the figure also shows, an examination of the
socioeconomic factors around these nodes revealed that they mostly
fall in neighborhoods with a majority Black or Latine population.
As seen in Fig. 7, shadows from trees could be a potential cause
for charging issues in some areas. In addition, snow or ice build up
on solar panels may cause charging issues, but this is difficult to
diagnose without visiting every node location while it is in power
saving mode. Thus, further analysis is required to determine why
these node locations experience charging issues despite the lack of
tall buildings in the vicinity.

5.3 Predicting Solar Charging Issues

We used the OSM Buildings data [15] and Shadow Accrual Maps
tool [10] to determine how well we would be able to predict a sensor
location having power saving issues. With the OSM Buildings data,
we examined the distance to the closest building, height of the
closest building, and mean and median height of buildings within
100, 250, and 500 meters of each node location. For shadows, we
used the tool to calculate the amount of time each node location
was in shadow on the winter equinox, which is the shortest day (in
terms of sunlight) of the year. Using both a logistic regression model
for the binary case of power saving or not and a linear regression
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Figure 6: This boxplot shows a comparison of the height of
the tallest building within 100 meters for node locations that
experienced power saving mode to those that did not. Exclud-
ing the four buildings taller than 75 meters, the distribution
of building heights is virtually the same for nodes that did
and did not experience power saving mode, showing that
access to building height is not always adequate to predicting
solar charging issues.

model for the amount of time spent in power saving mode, we found
no statistical significance for either the amount of time spent in
shadow, or any data related to buildings around the node locations,
as highlighted for one data point in Fig. 6.

Upon further examination, we discovered that one of the issues
around using crowdsourced data and open source resources is that
they are not consistently updated. For example, one sensor node
that was indicated to have shadow issues but did not enter power
saving mode likely had a building present when the data were up-
loaded, but no longer has a building there as discovered on Google
Maps. Likewise, as seen in Fig. 7, a node location with no build-
ing nearby that entered power saving mode was likely affected
by the presence of a tree near the bus shelter, which was not cap-
tured in the tools we used, which are focused on buildings. This
points to an additional shortcoming of the data available, which
generally focuses on buildings and does not account for foliage, hy-
perlocal snowfall, and other physical phenomena that may impede
the charging ability of solar panels.

6 DISCUSSION
6.1 Implications of Solar Power Issues

Despite the ubiquity of solar panels as the power source for wire-
less sensor networks, we found that they are not a reliable power
source for urban sensor networks for cities at more northern or
southern latitudes that have limited sunlight and thus will expe-
rience power issues in winter months. In addition, urban areas at
latitudes closer to the equator will also experience solar charging
issues during winter months if they have numerous tall buildings
blocking the path of the sun. Thus, we need to continue research
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Figure 7: This bus shelter, with the sensor shown in the red
circle, is at a location that experienced power saving issues
despite having no shadows recorded in the Shadow Accrual
Maps [10]. It is likely that the large tree blocked the path
between the sun and solar panel for several days in the winter.
This highlights a challenge in having information about all
of the physical objects that may block solar charging sensors
in urban areas.

in alternative charging options, energy harvesting techniques, and
battery-less sensors to ensure reliable power of sensor networks in
urban settings.

In our study, we also found that solar charging issues are not all
localized to areas with tall buildings and may be spread inequitably
around a city. Thus, urban sensor network deployments have the
potential to exacerbate existing societal inequalities by allowing
for sensors to be more easily supported in some neighborhoods
than others. In turn, this can increase the level of mistrust between
residents and governments [13] and drive residents to make as-
sumptions about the distribution of resources and harms in the city
based on the physical presence of sensors [17].

6.2 Challenges around Data Access

Due to the lack of official up-to-date building information, we relied
on open crowdsourced data from OSM Buildings to determine the
location and height of buildings in the city. As with many open
crowdsourced datasets, our data source was not completely accurate
or up-to-date [20]. This was especially clear when discovering
issues in shadow prediction using the Shadow Accrual Maps [10],
which also relies on OSM data for building heights. Thus, relying on
crowdsourced data makes it difficult to predict locations with solar
charging issues or other difficulties that may arise due to building
height, such as wireless connectivity [4].
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Figure 8: This map shows the sensor locations that spent the
most amount of time in power saving mode, all with over
1100 hours of data loss. The map is color-coded by ZIP Code
based on the percentage of non-white population, showing
that the issue was more prominent in areas that had a higher
non-white population.

The difficulty in working with crowdsourced data points to a
need for new methods to obtain up-to-date building data. For ex-
ample, researchers can help develop ways to obtain building height
from satellite imagery or Google Maps. We may also look to develop
easier ways for cities to create their own building databases that are
kept up-to-date or develop better community science incentives to
keep crowdsourced data sources such as OSM Buildings up-to-date.

7 CONCLUSION

In this work we present the power analysis of a large-scale, solar-
powered sensor network across the city of Chicago. We find that a
significant number of devices experience issues charging during the
winter months and that it is difficult to predict which devices will
have charging issues due to the limitations of open crowdsourced
data. Furthermore, we discover that many of the devices with the
most data loss from limited charging are located in areas that are
a majority Black or Latine, pointing to the potential for sensing
technologies to further the digital divide. This work presents es-
sential findings for real-world urban sensor network design and
deployment, and highlights a number of future research directions
to improve urban sensor network reliability.
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