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Abstract

This paper considers potential effects of artificial intelligence (A.I.) on economic

growth. We start by modeling A.I. as a process where capital replaces labor at an

increasing range of tasks and consider this perspective in light of the evidence to

date. We further discuss linkages between A.I. and growth as mediated by firm-level

considerations, including organization and market structure. Finally, we engage

the concepts of “singularities” and “superintelligence” that animate many discus-

sions in the machine intelligence community. The goal throughout is to refine a set

of critical questions about A.I. and economic growth and help shape an agenda for

the field.

∗We are grateful to Adrien Auclert, Sebastian Di Tella, Pete Klenow, Hannes Mahlmberg, and Chris
Tonetti for helpful discussion and comments...
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1. Introduction

This paper considers the implications of artificial intelligence for economic growth.

Artificial intelligence (A.I.) can be defined as “intelligence exhibited by machines” or

“the capability of a machine to imitate intelligent human behavior”.1 These defini-

tions immediately evoke fundamental economic issues: namely, what happens if A.I.

allows an ever-increasing number of tasks previously performed by human labor to

become automated – i.e., performed by machines? Such A.I. may be deployed in the

ordinary production of goods and services with potential effects on growth rates and

income shares. But A.I. may also change the production of new ideas themselves. In

the near term, A.I. may help solve complex problems and save on computation time.

A.I. may also facilitate learning and imitation of technologies across firms, sectors, and

activities, thus increasing the scope for knowledge externalities but also for business-

stealing. A.I. could increase the scope for introducing new product lines; for example,

the recent boost in A.I. following the machine learning revolution has helped precip-

itate the invention of flying drones and advances toward self-driving cars. Eventually,

perhaps A.I. will exceed human creativity in inventing new ideas and new technologies,

substituting for even the most skilled researchers. In extreme versions, some observers

have argued that A.I. can become rapidly self-improving, producing ‘singularities’ that

feature unbounded machine intelligence and/or unbounded economic growth in finite

time (Good (1965), Vinge (1993), Kurzweil (2005)).

In this paper we speculate on how A.I. might affect the growth process. Our primary

goal here is to help shape an agenda for future research. To do so, we study several

growth frameworks and various subtopics, all of which will bear on the implications of

A.I. We are concerned with the following questions:

• How can A.I. affect economic growth when treated as a process of increasing

automation in the production of goods and services?

• Can we reconcile the advent of A.I. with the Kaldor facts, in particular the ob-

served constancy in growth rates and capital share over most of the 20th century?

Should we expect such constancy to persist in the 21st century given ongoing A.I.

advances?
1The former definition comes for the Wikipedia “Artificial Intelligence” page and the latter from the

Miriam-Webster dictionary.
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• How does A.I. affect the internal organization of firms, including skill composition

and wage inequality?

• How does A.I. affect the technology to produce ideas? How may this interface with

market structure and firm dynamics?

• Can A.I. drive massive increases in growth rates, or even a singularity, as some

observers predict? Under what conditions, and are these conditions plausible?

The paper proceeds as follows. In Section 2, we consider how automation in the

production of final goods impacts economic growth. We show that an important in-

dicator of automation is the capital share, so Section 3 examines empirical evidence

on capital shares in various sectors of the U.S. and European economies. Section 4

considers how A.I. affects firms, with particular attention to organization, skill compo-

sition and wage inequality. Next, Section 5 discusses the possible effects of automation

and A.I. on the production of new ideas and knowledge in the context of innovation-led

growth, and Section 6 takes this further to consider the possibilities of superintelligence

and singularities. Finally, Section 7 concludes by laying out productive directions for

further research on A.I. and economic growth.

2. A.I. and Automation of Production

One way of looking at the last 150 years of economic progress is that it is driven by

automation. The industrial revolution used steam and then electricity to automate

many production processes. Relays, transistors, and semiconductors continued this

trend. Perhaps artificial intelligence is the next phase of this process rather than a

discrete break. It may be a natural progression from autopilots, computer-controlled

automobile engines, and MRI machines to self-driving cars and A.I. radiology reports.

An advantage of this perspective is that it allows us to use historical experience to

inform us about the possible future effects of A.I. Later sections will explore alternatives

that do not make this assumption.



4 P. AGHION, B. JONES, AND C. JONES

2.1 The Zeira (1998) Model of Automation and Growth

A clear and elegant model of automation is the task-based model of Zeira (1998). In its

simplest form, Zeira considers a production function like

Y = AXα1
1 Xα2

2 · ... ·X
αn
n where

n∑
i=1

αi = 1. (1)

Tasks that have not yet been automated can be produced one-for-one by labor. Once a

task is automated, one unit of capital can be used instead:

Xi =

Li if not automated

Ki if automated
(2)

If the aggregate capitalK and laborL are assigned to these tasks optimally, the produc-

tion function can be expressed (up to an unimportant constant) as

Y = AKαL1−α (3)

where it is now understood that the exponent α reflects the overall share and impor-

tance of tasks that have been automated.

Next, we embed this setup into a standard neoclassical growth model with a con-

stant investment rate; in fact, for the remainder of the paper this is how we will close

the capital/investment side of the model for simplicity. The share of factor payments

going to capital is given by α and the long-run growth rate of y ≡ Y/L is

gy =
g

1− α
, (4)

where g is the growth rate of A. An increase in automation will therefore increase the

capital share α and, because of the multiplier effect associated with capital accumula-

tion, increase the long-run growth rate.

Zeira emphasizes that automation has been going on at least since the industrial

revolution, and his elegant model helps us to understand that. However, its strong

predictions that growth rates and capital shares should be rising with automation go

against the famous Kaldor (1961) stylized facts that growth rates and capital shares are
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relatively stable over time. In particular, this stability is a good characterization of the

U.S. economy for the bulk of the 20th century; for example, see Jones (2016). The Zeira

framework, then, needs to be improved so that it is consistent with historical evidence.

Acemoglu and Restrepo (2016) provide one approach to solving this problem. They

allow CES production and endogenize the number of tasks. In particular, they suppose

that research can take two different directions: discovering how to automate an existing

task or discovering new tasks that can be used in production. In their setting, α reflects

the fraction of tasks that have been automated. This leads them to emphasize one

possible resolution to the empirical shortcoming of Zeira: perhaps we are inventing

new tasks just as quickly as we are automating old tasks. So the fraction of tasks that

are automated is constant, leading to a stable capital share and a stable growth rate.

Other important contributions to this rapidly expanding literature include Peretto

and Seater (2013) and Hemous and Olsen (2016). Peretto and Seater (2013) explicitly

consider a research technology that allows firms to change the exponent in a Cobb-

Douglas production function; while they do not emphasize the link to the Zeira model,

with hindsight the connections to that approach to automation are interesting. The

model of Hemous and Olsen (2016) is closely related to what follows in the next sub-

section. They focus on CES production instead of Cobb-Douglas, as we do below,

but emphasize the implications of their framework for wage inequality between high-

skilled and low-skilled workers.

The next section takes a complementary approach, building on this literature and

using the insights of Zeira and automation to understand the structural change associ-

ated with Baumol’s cost disease.

2.2 Automation and Baumol’s Cost Disease

2.2.1 Overview

The share of agriculture in GDP or employment is falling toward zero. The same is true

for manufacturing in many countries of the world. Maybe automation increases the

capital share in these sectors and also interacts with nonhomotheticities in production

or consumption to drive the GDP shares toward zero. The aggregate capital share is

then a balance of a rising capital share in agriculture/manufacturing/automated goods

with a declining GDP share of these goods in the economy.
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Looking toward the future, 3D-printing techniques and nanotechnology that allow

production to start at the molecular or even atomic level could someday automate all

manufacturing. Could A.I. do the same thing in many service sectors? What would

economic growth look like in such a world?

This section expands on the Zeira (1998) and Acemoglu and Restrepo (2016) models

to develop a framework that is consistent with the large structural changes in the econ-

omy. Baumol (1967) observed that rapid productivity growth in some sectors relative

to others could result in a “cost disease” in which the slow growing sectors become

increasingly important in the economy. We explore the possibility that automation is

the force behind these changes.

2.2.2 Model

GDP is a CES combination of goods with an elasticity of substitution less than one:

Yt = At

(∫ 1

0
Y ρ
itdi

)1/ρ

where σ ≡ 1

1− ρ
< 1 (5)

where At = A0e
gt captures standard technological change, which we take to be exoge-

nous for now.

As in Zeira, another part of technical change is the automation of production. Goods

that have not yet been automated can be produced one-for-one by labor. When a good

has been automated, one unit of capital can be used instead:

Yit =

Lit if not automated

Kit if automated
(6)

This division is stark to keep the model simple. An alternative would be to say that

goods are produced with a Cobb-Douglas combination capital and labor, and when a

good is automated, it is produced with a higher exponent on capital.2

The remainder of the model is neoclassical:

Yt = Ct + It (7)

2A technical condition is required, of course, so that tasks that have been automated are actually
produced with capital instead of labor. We assume this condition holds.
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K̇t = It − δKt (8)∫ 1

0
Kitdi = Kt (9)

∫ 1

0
Litdi = L (10)

We assume a fixed endowment of labor for simplicity.

Let βt be the fraction of goods that that have been automated as of date t. Then,

with symmetry, the production function can be written as

Yt = At

(
β1−ρt Kρ

t + (1− βt)1−ρLρ
)1/ρ

. (11)

This setup therefore reduces to a particular version of the neoclassical growth model,

and the allocation of resources can be decentralized in a standard competitive equilib-

rium.

In this equilibrium, the share of automated goods in GDP equals the share of capital

in factor payments:

αKt ≡
∂Yt
∂Kt

Kt

Yt
= β1−ρt Aρt

(
Kt

Yt

)ρ
. (12)

Similarly, the share of non-automated goods in GDP equals the labor share of factor

payments:

αLt ≡
∂Yt
∂Lt

Lt
Yt

= β1−ρt Aρt

(
Lt
Yt

)ρ
. (13)

And therefore the ratio of automated to nonautomated output — or the ratio of the

capital share to the labor share — equals

αKt
αLt

=

(
βt

1− βt

)1−ρ(Kt

Lt

)ρ
. (14)

Finally, notice that the production function in equation (11) is just a special case of

a neoclassical production function:

Yt = AtF (BtKt, CtLt) where Bt ≡ β
1−ρ
ρ

t and Ct ≡ (1− β)
1−ρ
ρ . (15)

With ρ < 0, notice that ↑ βt ⇒↓ Bt and ↑ Ct. That is, automation is equivalent to

a combination of labor-augmenting technical change and capital-depleting technical
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change. This is surprising. One might have thought of automation as somehow capital

augmenting. Instead, it is very different: it is labor augmenting and simultaneously

dilutes the stock of capital. Notice that these conclusions would be reversed if the

elasticity of substitution were greater than one; they importantly rely on ρ < 0.

This opens up one possibility that we will explore below: what happens if the evo-

lution of βt is such that Ct grows at a constant exponential rate? This can occur if 1− βt
falls at a constant exponential rate toward zero, meaning that βt → 1 in the limit and

the economy gets ever closer to full automation (but never quite reaches that point).

The logic of the neoclassical growth model suggests that this could produce a balanced

growth path with constant factor shares, at least in the limit.3

2.2.3 Discussion

The last several equations have a number of implications that can now be explored.

First, we specified from the beginning that we are interested in the case in which the

elasticity of substitution between goods is less than one, so that ρ < 0. From equa-

tion (14), there are two basic forces that move the capital share (or, equivalently, the

share of the economy that is automated). First, an increase in the fraction of goods that

are automated, βt, will increase the share of automated goods in GDP and increase the

capital share (holdingK/L constant). This is intuitive and repeats the logic of the Zeira

model. Second, as K/L rises, the capital share and the value of the automated sector

as a share of GDP will decline. Essentially, with an elasticity of substitution less than

one, the price effects dominate. The price of automated goods declines relative to the

price of non-automated goods because of capital accumulation. Because demand is

relatively inelastic, the expenditure share of these goods declines as well. Automation

and Baumol’s cost disease are then intimately linked. Perhaps the automation of agri-

culture and manufacturing leads these sectors to grow rapidly and causes their shares

in GDP to decline.4

The bottom line is that there is a race between these two forces. As more sectors

are automated, β increases, and this tends to increase the share of automated goods

and capital. But because these automated goods experience faster growth, their price

3This requires At to be constant.
4Manuelli and Seshadri (2014) offer a systematic account of the how the tractor gradually replaced the

horse and in American agriculture between 1910 and 1960.
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declines, and the low elasticity of substitution means that their shares of GDP also

decline.

One could imagine, following Acemoglu and Restrepo (2016), writing down a tech-

nology by which research effort leads goods to be automated. But it is relatively clear

that depending on exactly how one specifies this technology, βt
1−βt can rise faster or

slower than (Kt/Lt)
ρ declines. That is, the result would depend on detailed assump-

tions related to automation, and we do not have strong priors on how to make these

assumptions. We leave this to future work and focus for now on what happens when βt

changes in different ways.

2.2.4 Balanced Growth (Asymptotically)

Recall that the production function in this economy can be written in factor-augmenting

form as

Yt = F (BtKt, CtLt) where Bt ≡ β
1−ρ
ρ

t and Ct ≡ (1− β)
1−ρ
ρ . (16)

In this section, we explicitly omit any form of technical change other than automation

and show how automation can produce a balanced growth path asymptotically. In

particular, we want to consider an exogenous time path for the fraction of tasks that are

automated, βt, such that βt → 1 but in a way that Ct grows at a constant exponential

rate. This turns out to be straightfoward. Let γt ≡ 1 − βt, so that Ct = γ
1−ρ
ρ

t . Because

the exponent is negative (ρ < 0), if γ falls at a constant exponential rate, Ct will grow

at a constant exponential rate. This occurs if β̇t = θ(1 − βt), implying that gγ = −θ.

Intuitively, a constant fraction, θ, of the tasks that have not yet been automated become

automated each year.

Figure 1 shows that this example can produce steady exponential growth. We begin

in year 0 with none of the goods being automated, and then have a constant fraction

of the remainder being automated each year. There is obviously enormous structural

change underlying — and generating — the stable exponential growth of GDP in this

case. The capital share of factor payments begins at zero and then rises gradually over

time, eventually asymptoting to a value around 1/3. Even though an ever-vanishing

fraction of the economy has not yet been automated, so labor has less and less to do, the

fact that automated goods are produced with cheap capital combined with an elasticity

of substitution less than one means that the automated share of GDP remains at 1/3
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and labor still earns around 2/3 of GDP asymptotically!

Along such a path, however, sectors like agriculture and manufacturing exhibit a

structural transformation. For example, let sectors on the interval [0, 1/3] denote agri-

culture and the automated portion of manufacturing as of some year, such as 1990.

These sectors experience a declining share of GDP over time, as their prices fall rapidly.

The automated share of the economy will be constant only because new goods are

becoming automated.

2.2.5 Constant Factor Shares

Another interesting case worth considering is under what conditions can this model

produce factor shares that are constant over time? Taking logs and derivatives of (14),

the capital share will be constant if and only if

gβt = (1− βt)
(
−ρ

1− ρ

)
gkt, (17)

where gkt is the growth rate of k ≡ K/L. This is very much a knife-edge condition. It

requires the growth rate of βt to slow over time at just the right rate as more and more

goods get automated.

Figure 2 shows an example with this feature, in an otherwise neoclassical model

with exogenous growth in At at 2% per year. That is, unlike the previous section, we

allow other forms of technological change to make tractors and computers better of

time, in addition to allowing automation. In this simulation, automation proceeds at

just the right rate so as to keep the capital share constant for the first 150 years. After

that time, we simply assume that βt is constant and automation stops, so as to show

what happens in that case as well.

The perhaps surprising result in this example is that the constant factor shares oc-

cur while the growth rate of GDP rises at an increasing rate. From the earlier simulation

in Figure 1, one might have inferred that a constant capital share would be associated

with declining growth. However, this is not the case and instead growth rates increase.

The key to the explanation is to note that with some algebra, we can show that the

constant factor share case requires

gY t = gA + βtgKt. (18)
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Figure 1: Automation and Asymptotic Balanced Growth
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(b) Automation and the Capital Share

Note: This simulation assumes ρ < 0 and that a constant fraction of the tasks that have not yet

been automated become automated each year. Therefore Ct ≡ (1 − β)
1−ρ
ρ grows at a constant

exponential rate (2% per year in this example), leading to an asymptotic balanced growth path.
The share of tasks that are automated approaches 100% in the limit. Interestingly, the capital share
of factor payments (and the share of automated goods in GDP) remains bounded, in this case at
a value around 1/3. With a constant investment rate of s̄, the limiting value of the capital share is(

s̄
gY +δ

)ρ
.
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Figure 2: Automation with a Constant Capital Share
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(b) Automation and the Capital Share

Note: This simulation assumes ρ < 0 and sets βt so that the capital share is constant between year
0 and year 150. After year 150, we assume βt stays at its constant value. At is assumed to grow at a
constant rate of 2% per year throughout.
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First, consider the case with gA = 0. We know that a true balanced growth path requires

gY = gK . This can occur in only two ways if gA = 0: either βt = 1 or gY = gK = 0 if

βt < 1. The first case is the one that we explored in the previous example back in

Figure 1. The second case shows that if gA = 0, then constant factor shares will be

associated with zero exponential growth.

Now we can see the reconciliation between Figures 1 and 2. In the absence of

gA > 0, the growth rate of the economy would fall to zero. Introducing gA > 0 with

constant factor shares does increases the growth rate. To see why growth has to accel-

erate, equation (18) is again useful. If growth were balanced, then gY = gK . But then

the rise in βt would tend to raise gY and gK . This is why growth accelerates.

2.2.6 Regime Switching

A final simulation shown in Figure 3 combines aspects of the two previous simulations

to produce results closer in spirit to our observed data, albeit in a highly stylized way.

We assume that automation alternates between two regimes. The first is like Figure 1,

in which a constant fraction of the remaining tasks are automated each year, tending

to raise the capital share and produce high growth. In the second, βt is constant and

no new automation occurs. In both regimes, At grows at a constant rate of 0.4% per

year, so that even when the fraction of tasks being automated is stagnant, the nature

of automation is improving, which tends to depress the capital share. Regimes last for

30 years. Period 100 is highlighted with a black circle. At this point in time, the capital

share is relatively high and growth is relatively low.

By playing with parameter values, including the growth rate of At and βt, it is possi-

ble to get a wide range of outcomes. For example, the fact that the capital share in the

future is lower than in period 100 instead of higher can be reversed.

2.2.7 Summing Up

Automation — an increase in βt — can be viewed as a“twist” of the capital- and labor-

augmenting terms in a neoclassical production function. From Uzawa’s famous theo-

rem, since we do not in general have purely labor-augmenting technical change, this

setting will not lead to balanced growth. In this particular application (e.g. with ρ <

0), either the capital share or the growth rate of GDP will tend to increase over time,
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Figure 3: Intermittent Automation to Match Data?
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(b) Automation and the Capital Share

Note: This simulation combines aspects of the two previous simulations to produce results closer
in spirit to our observed data. We assume that automation alternates between two regimes. In
the first, a constant fraction of the remaining tasks are automated each year. In the second, βt is
constant and no new automation occurs. In both regimes, At grows at a constant rate of 0.4% per
year. Regimes last for 30 years. Period 100 is highlighted with a black circle. At this point in time,
the capital share is relatively high and growth is relatively low.
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and sometimes both. We showed one special case in which all tasks are ultimately

automated that produced balanced growth in the limit with a constant capital share

less than 100%. A shortcoming of this case is that it requires automation to be the only

form of technological change. If, instead, the nature of automation itself improves

over time — consider the plow, then the tractor, then the combine-harvester, then

GPS tracking — then the model is best thought of as featuring both automation and

something like improvements inAt. In this case, one would generally expect growth not

to be balanced. However, a combination of periods of automation followed by periods

of respite, like that shown in Figure 3 does seem capable of producing dynamics at

least superficially similar to what we’ve seen in the U.S. in recent years: a period of a

high capital share with relatively slow economic growth.

3. Evidence on Capital Shares and Automation

The models of the previous section suggest that a key place to look for evidence on

automation is the share of factor payments going to capital — the capital share. In

recent years, the rise in the capital share in the U.S. and around the world has been a

central topic of research. For example, see Karabarbounis and Neiman (2013), Elsby,

Hobijn and Şahin (2013), and Kehrig and Vincent (2017). In this section, we explore

this evidence, first for industries within the United States, second for the motor vehicles

industry in the U.S. and Europe, and finally by looking at how changes in capital shares

over time correlate with the adoption of robots.

Figure 4 reports capital shares by industry from the U.S. KLEMS data of Jorgenson,

Ho and Samuels (2017); shares are smoothed using an HP filter with smoothing pa-

rameter 400 to focus on the medium- to long-run trends. It is well-known that the

aggregate capital share has increased since at least the year 2000 in the U.S. economy.

Figure 4 shows that this aggregate trend holds up across a large number of sectors,

including agriculture, construction, chemicals, computers equipment manufacturing,

motor vehicles, publishing, telecommunications, and wholesale and retail trade. The

main place where one does not see this trend is in services, including education, gov-

ernment, and health. In those sectors, the capital share is relatively stable or perhaps

increasing slightly since 1990. But the big trend one sees in these data from services is
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Figure 4: U.S. Capital Shares by Industry
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Note: The graph reports capital shares by industry from the U.S. KLEMS data of Jorgenson, Ho and
Samuels (2017). Shares are smoothed using an HP filter with smoothing parameter 400.

a large downward trend between 1950 and 1980. It would be interesting to know more

about what accounts for this trend.

While the facts are broadly consistent with automation (or an increase in automa-

tion), it is also clear that capital and labor shares involve many other economic forces

as well. For example, Autor, Dorn, Katz, Patterson and Van Reenen (2017) suggest that

a composition effect involving a shift toward superstar firms with high capital shares

underlies the industry trends. That paper and Barkai (2017) propose that a rise in

industry concentration and markups may underlie some of the increases in the capital

share. Changes in unionization over time may be another contributing factor to the

dynamics of factor shares. This is all to say that a much more careful analysis of factor

shares and automation is required before any conclusions can be drawn.

Keeping that important caveat in mind, Figure 5 shows evidence on the capital

share in the motor vehicles manufacturing industry for the U.S. and several European

countries. As Acemoglu and Restrepo (2017) note (more on this below), the motor
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Figure 5: The Capital Share for Motor Vehicles
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Note: Data for the European countries are from the EU-KLEMS project at http://www.euklems.net/
for the “transportation equipment” sector; see Jägger (2016). U.S. data are from Jorgenson, Ho and
Samuels (2017). Shares are smoothed using an HP filter with smoothing parameter 400.

vehicles industry is by far the industry that has invested most heavily in industrial

robots during the past two decades, so this industry is particularly interesting from the

standpoint of automation.

The capital share in motor vehicles shows a large increase in the United States,

France, Germany, and Spain in recent decades. Interestingly, Italy and the U.K. exhibit

declines in the capital share for motor vehicles since 1995. The absolute level differ-

ences in the capital share for motor vehicles in 2014 are also interesting, ranging from

a high of more than 50 percent in the U.S. to a low of around 20 percent in recent years

in the U.K. Clearly it would be valuable to better understand these large differences in

levels and trends. Automation is likely only a part of the story.

Acemoglu and Restrepo (2017) use data from the International Federation of Robots

to study the impact of the adoption of industrial robots on the U.S. labor market. At the

industry level, this data is available for the decade 2004 to 2014. Figure 6 shows data on

the change in capital share by industry versus the change in the use of industrial robots.

Two main facts stand out from the figure. First, as noted earlier, the motor vehicles

http://www.euklems.net/


18 P. AGHION, B. JONES, AND C. JONES

Figure 6: Capital Shares and Robots, 2004–2014
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industry is by far the largest adopter of industrial robots. For example, more than 56

percent of new industrial robots purchased in 2014 were installed in the motor vehicles

industry; the next highest share was under 12 percent in computers and electronic

products.

Second, there is little correlation between automation as measured by robots and

the change in the capital share between 2004 and 2014. The overall level of industrial

robot penetration is relatively small, and as we discussed earlier, other forces including

changes in market power, unionization, and composition effects are moving capital

shares around in a way that makes it hard for a simple data plot to disentangle.

4. A.I. and firms: organization, skills and wage inequality

How should we expect firms to adapt their internal organization, the skill composition

of their workforce and their wage policies to the introduction of AI? In his recent book

on “The Economics of the Common Good”, Tirole (2017) spells out what one may con-

sider to be “common wisdom” expectations on firms and A.I. Namely, introducing A.I.
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should: (a) increase the wage gap between skilled and unskilled labor, as the latter is

presumably more substitutable to A.I. than the former; (b) the introduction of A.I. al-

lows firms to automate and dispense with middle-men performing monitoring tasks (in

order words, firms should become flatter, i.e. with higher spans of control); (c) should

encourage self-employment by making it easier for individuals to build up reputation.

Let us revisit these various points in more details. A.I., skills, and wage premia: On

A.I. and the increased gap between skilled and unskilled wage, the prediction brings

us back to Krusell, Ohanian, Rı́os-Rull and Violante (2000): based on an aggregate pro-

duction function in which physical equipment is more substitutable to unskilled labor

than to skilled labor, these authors argued that the observed acceleration in the decline

of the relative price of production equipment goods since the mid-1970s could account

for most of the variation in the college premium over the past twenty-five years. In other

words, the rise in the college premium could largely be attributed to an increase in the

rate of (capital-embodied) skill-biased technical progress. And presumably A.I. is an

extreme form of capital-embodied skill-biased technical change, as robots substitute

for unskilled labor but require skilled labor to be installed and exploited. However,

recent work by Aghion, Bergeaud, Blundell and Griffith (2017) suggests that while the

prediction of a premium to skills may hold at the macroeconomic level, it perhaps

misses important aspects of firms’ internal organization and that organization itself

may evolve as a result of introducing A.I. More specifically, Aghion, Bergeaud, Blundell

and Griffith (2017) use matched employer-employee data from the UK, which they

augment with information on R&D expenditures, to analyze the relationship between

innovativeness and average wage income across firms.

A first, not surprising, finding is that more R&D intensive firms pay higher wages

on average and employ a higher fraction of high-occupation workers than less R&D

intensive firms (see Figure 7 below).

This, in turn, is perfectly in line with the above prediction (a) but also with pre-

diction (b) as it suggests that more innovative (or more “frontier”) firms rely more on

outsourcing for low-occupation tasks. However, a more surprising finding in Aghion,

Bergeaud, Blundell and Griffith (2017) is that lower-skilled (lower occupation) workers

benefit more from working in more R&D intensive firms (relative to working in a firm

which does no R&D) than higher-skilled workers. This finding is summarized by Figure
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Figure 7: Log hourly wage and R&D intensity

Note: This figure plots the logarithm of total hourly income against the logarithm of total R&D
expenditures (intramural + extramural) per employee (R&D intensity). Source: Aghion, Bergeaud,
Blundell and Griffith (2017).
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Figure 8: Log hourly wage and R&D intensity

Note: This figure plots the logarithm of total hourly income against the logarithm of total R&D
expenditures (intramural + extramural) per employee (R&D intensity) for different skill groups.
Source: Aghion, Bergeaud, Blundell and Griffith (2017).

8. In that Figure, we first see that higher-skilled workers earn more than lower-skilled

workers in any firm no matter how R&D intensive that firm is (the high-skill wage curve

always lies strictly above the middle-skill curve which itself always lies above the lower-

skill curve). But more interestingly the lower-skill curve is steeper than the middle-

skill and higher-skill curve. But the slope of each of these curves precisely reflects the

premium for workers with the corresponding skill level to working in a more innovative

firm.

Similarly, we should expect more AI-intensive firms to: (i) employ a higher fraction

of (more highly paid) high-skill workers; (ii) outsource an increasing fraction of low-

occupation tasks; (iii) give a higher premium to those low-occupation workers they

keep within the firm (unless we take the extreme view that all the functions to be per-
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formed by low-occupation workers could be performed by robots).

To rationalize the above findings and these latter predictions, let us follow Aghion,

Bergeaud, Blundell and Griffith (2017) who propose a model in which more innovative

firms display a higher degree of complementarity between low-skill workers and the

other production factors (capital and high-skill labor) within the firm. Another feature

of their model is that high-occupation employees’ skills are less firm-specific than low-

skill workers: namely, if the firm was to replace a high-skill worker by another high-skill

worker, the downside risk would be limited by the fact that higher-skill employees are

typically more educated employees, whose market value is largely determined by their

education and accumulated reputation, whereas low-occupation employees’ quality

is more firm-specific. This model is meant to capture the idea that low-occupation

workers can have a potentially more damaging effect on the firm’s value if the firm is

more innovative (or more A.I. intensive for our purpose).

In particular an important difference with the common wisdom, is that here in-

novativeness (or A.I. intensity) impacts on the organizational form of the firm and in

particular on complementarity or substitutability between workers with different skill

levels within the firm, whereas the common wisdom view takes this complementarity

or substitutability as given. Think of a low-occupation employee (for example an as-

sistant) who shows outstanding ability, initiative and trustworthiness. That employee

performs a set of tasks for which it might be difficult or too costly to hire a high-skill

worker; furthermore, and perhaps more importantly, the low-occupation employee

is expected to stay longer in the firm than higher-skill employees, which in turn en-

courages the firm to invest more in trust-building and firm-specific human capital and

knowledge. Overall, such low-occupation employees can make a big difference to the

firm’s performance.

This alternative view of A.I. and firms, is consistent with the work of theorists of

the firm such as Luis Garicano. Thus in Garicano (2000) downstream - low-occupation

- employees are consistently facing new problems; among these new problems they

sort out those they can solve themselves (the easier problems) and the more difficult

questions they pass on to upstream “higher-skill”- employees in the firm’s hierarchy.

Presumably, the more innovative or more A.I. intensive- the firm is, the harder it is

to solve the more difficult questions, and therefore the more valuable the time of up-
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stream high-occupation employees becomes; this in turn makes it all the more im-

portant to employ downstream - low-occupation - employees with higher ability to

make sure that less problems will be passed on to the upstream - high-occupation -

employees within the firm, so that these high-occupation employees will have more

free time to concentrate on solving the most difficult tasks. Another interpretation of

the higher complementarity between low-occupation and high-occupation employees

in more innovative (or more AI-intensive) firms, is that the potential loss from unre-

liable low-occupation employees is bigger in such firms: hence the need to select out

those low-occupation employees which are not reliable. This higher complementarity

between low-occupation workers and other production factors in more innovative (or

more A.I. intensive) firms in turn increases the bargaining power of low-occupation

workers within the firm (it increases their Shapley Value if we follow Stole and Zwiebel

(1996)). This in turn explains the higher payoff for low-occupation workers. It also

predicts that job turnover should be lower (tenure should be higher) amongst low-

occupation workers who work for more innovative (more AI-intensive) firms than for

low-occupation workers who work for less innovative firms, whereas the turnover dif-

ference should be less between high-occupation workers employed by these two types

of firms. This additional prediction is also confronted to the data in Aghion, Bergeaud,

Blundell and Griffith (2017).

Note that so far R&D investment has been used as the measure of the firm’s innova-

tiveness or frontierness. We would like to test the same predictions but using explicit

measures of A.I. intensity as the RHS variable in the regressions (investment in robots,

reliance on digital platforms,..). A.I. and firm’s organizational form: Recent empirical

studies (e.g. see Bloom, Garicano, Sadun and Van Reenen (2014)), have shown that the

IT revolution has led firms to eliminate middle-range jobs and move towards flatter

organizational structure. The development of A.I. should reinforce that trend, while

perhaps also reducing the ratio to low-occupation to high-occupation jobs within firms

as we argued above.

A potentially helpful framework to think about firms’ organizational forms, is Aghion

and Tirole (1997). There, a principal can decide whether or not to delegate authority to

a downstream agent. She can delegate authority in two ways: (i) by formally allocat-

ing control rights to the agent (in that case we say that the principal delegates formal
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authority to the agent); (ii) or informally through the design of the organization, e.g.

by increasing the span of control or by engaging in multiple activities: these devices

enable the principal to commit to leave initiative to the agent (in that case we say that

the principal delegates real authority to the agent). And agents’ initiative particularly

matters if the firm needs to be innovative, which is particularly the case for more fron-

tier firms in their sectors. Whether she decides to delegate formal or only real authority

to her agent, the principal faces the following trade-off: more delegation of authority to

the agent induces the agent to take more initiative; on the other hand this implies that

the principal will lose some control over the firm, and therefore face the possibility that

suboptimal decisions (from her viewpoint) be taken more often. Which of these two

counteracting effects of delegation dominates, will in turn depend upon the degree

of congruence between the principal’s and the agent’s preference, but also about the

principal’s ability to reverse suboptimal decisions.

How should the introduction of A.I. affect this trade-off between loss of control

and initiative? To the extent that A.I. makes it easier for the principal to monitor the

agent, more delegation of authority will be required in order to still elicit initiative from

the agent. The incentive to delegate more authority to downstream agents, will also

be enhanced by the fact that with A.I., suboptimal decision-making by downstream

agents can be more easily corrected and reversed: in other words, A.I. should reduce

the loss of control involved in delegating authority downstream. A third reason for why

A.I. may encourage decentralization in decision-making, has to do with coordination

costs: namely, it may be costly for the principal to delegate decision making to down-

stream units if this prevents these units from coordinating within the firm (see Hart and

Holmstrom (2010)). But here again, A.I. may help overcome this problem by reducing

the monitoring costs between the principal and its multiple downstream units, and

thereby induce more decentralization of authority.

More delegation of authority in turn can be achieved through various means: in par-

ticular by eliminating intermediate layers in the firm’s hierarchy, or by turning down-

stream units into profit centers or fully independent firms, or through horizontal inte-

gration which will commit the principal to spending time on other activities. Overall,

one can imagine that the development of A.I. in more frontier sectors should lead to

larger and more horizontally integrated firms, to flatter firms with more profit centers,
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which outsource an increasing number of tasks to independent self-employed agents.

The increased reliance on self-employed independent agents will in turn be facilitated

by the fact that, as well explained by Tirole (2017), AI helps agents to quickly develop in-

dividual reputations. This brings us to the third aspect of A.I. and organizations on self-

employment. A.I. and self-employment: As stressed above, A.I. favors the development

of self-employment for at least two reasons: first, it may induce A.I. intensive firms

to outsource tasks, starting with low-occupation tasks; second, it makes it easier for

independent agents to develop individual reputations. Does that imply that A.I. should

result in the end of large integrated firms with individuals only interacting with each

other through platforms? And which agents are more likely to become self-employed?

On the first question: Tirole (2017) provides at least two reasons for why firms should

survive the introduction of A.I. First, some activities involve large sunk costs and/or

large fixed costs that cannot be borne by a single individual. Second, some activities

involve a level of risk-taking which also may not be borne by one single agent. To this we

should add the transaction cost argument that vertical integration facilitates relation-

specific investments in situations of contractual incompleteness: can we truly imagine

that A.I. will by itself fully overcome contractual incompleteness?

On the second question: Our above discussion suggests that low-skill activities in-

volving limited risk and for which A.I. helps develop individual reputations (hotel or

transport services, health assistance to the elder and/or handicapped, catering ser-

vices, house cleaning,..) are primary candidates for increasingly becoming self-employment

jobs as A.I. diffuses in the economy. And indeed recent studies by Saez (2010), Chetty,

Friedman, Olsen and Pistaferri (2011), and Kleven and Waseem (2013) point to low-

income individuals being more responsive to tax or regulatory changes aimed at facil-

itating self-employment. Natural extensions of these studies would be to explore the

extent to which such regulatory changes have had more impact in sectors with higher

A.I. penetration.

The interplay between A.I. and self-employment also involves potentially interest-

ing dynamic aspects. Thus it might be worth looking at whether self-employment helps

individuals accumulate human capital (or at least protects them against the risk of

human capital depreciation following the loss of a formal job), and the more so in

sectors with higher AI penetration. Also interesting would be to look at the interplay
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between self-employment and A.I. is itself affected by government policies and insti-

tutions, and here we have primarily in mind education policy and social or income

insurance for the self-employed. How do these policies affect the future performance

of currently self-employed individuals, and are they at all complemented by the in-

troduction of AI? In particular, do currently self-employed individuals move back to

working for larger firms, and how does the probability of moving back to a regular

employment vary with A.I., government policy, and the interplay between the two?

Presumably, a more performing basic education system and a more comprehensive

social insurance system should both encourage self-employed individuals to better

take advantage of A.I. opportunities and support to accumulate skills and reputation

and thereby improve their future career prospects. On the other hand, some may argue

that A.I. will have a discouraging effect on self-employed individuals, if it lowers their

prospects of ever reintegrating a regular firm in the future, as more A.I. intensive firms

reduce their demand for low-occupation workers.

5. A.I. and Innovation-Based Growth

In the previous sections, we examined the implications of introducing A.I. in the pro-

duction function for goods and services. But what if the tasks of the innovation process

themselves can be automated? How would A.I. interact with the production of new

ideas? In this section, we first introduce A.I. in the production technology for new ideas

and look at how A.I. affects growth. We then consider a other channels through which

A.I. could influence growth, including product market competition, cross-sector incen-

tives for innovation, and business-stealing. In general, this section lays the groundwork

for the next section, where we consider the possibility that A.I. could lead to a singular-

ity.

5.1 A.I. in the Idea Production Function

A moment of introspection into our own research process reveals many ways in which

automation can matter for the production of ideas. Research tasks that have bene-

fited from automation and technological change include typing and distributing our

papers, obtaining research materials and data (e.g. from libraries), ordering supplies,
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analyzing data, solving math problems, and computing equilibrium outcomes. Beyond

economics, other examples include carrying out experiments, sequencing genomes,

exploring various chemical reactions and materials. In other words, applying the same

task-based model to the idea production function and considering the automation of

research tasks seems relevant.

To keep things simple, suppose the production function for goods and services just

uses labor and ideas:

Yt = AtLt. (19)

But suppose that various tasks are used to make new ideas according to

Ȧt = Aφt

(∫ 1

0
Xρ
itdi

)1/ρ

where σ ≡ 1

1− ρ
< 1 (20)

Assuming some fraction βt of tasks have been automated — using a similar setup to

that in Section 2 — the idea production function can be expressed as

Ȧt = Aφt ((BtKt)
ρ + (CtSt)

ρ)1/ρ ≡ Aφt F (BtKt, CtSt) (21)

where St is the research labor used to make ideas, and Bt and Ct are defined as before,

namely Bt ≡ β
1−ρ
ρ

t and Ct ≡ (1− βt)
1−ρ
ρ .

Several observations then follow from this setup. First, consider the case in which β

is constant at some value but then increases to a higher value (recall that this leads to a

one-time decrease in B and increase in C). The idea production function can then be

written as

Ȧt = Aφt StF
(
BKt
St
, C
)

∼ Aφt CSt
(22)

where the “∼” notation means “is asymptotically proportional to.” The second line fol-

lows if Kt/St is growing over time (i.e. if there is economic growth) and if the elasticity

of substitution in F (·) is less than one, which we’ve assumed. In that case, the CES

function is bounded by its scarcest argument, in this case researchers. Automation then

essentially produces a level effect but leaves the long-run growth rate of the economy

unchanged if φ < 1. Alternatively, if φ = 1 — the classic endogenous growth case —

then automation raises long-run growth.
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Next, consider this same case of a one-time increase in β, but suppose the elasticity

of substitution in F (·) equals one, so that F (·) is Cobb-Douglas. In this case, as in

the Zeira model, it is easy to show that a one-time increase in automation will raise

the long-run growth rate. Essentially, an accumulable factor in production (capital)

becomes permanently more important, and this leads to a multiplier effect that raises

growth.

Third, suppose now that the elasticity of substitution is greater than one. In this

case, the argument given before reverses, and now the CES function asymptotically

looks like the plentiful factor, in this case Kt. The model will then deliver explosive

growth under fairly general conditions, with incomes becoming infinite in finite time.

But this is true even without any automation. Essentially, in this case researchers are

not a necessary input and so standard capital accumulation is enough to generate

explosive growth. This is one reason why the case of ρ < 0 — i.e. an elasticity of

substitution less than one — is the natural case to consider. We focus on this case for

the remainder of this section.

Continuous Automation

We can now consider the special case in which automation is such that the newly-

automated tasks constitute a constant fraction, θ, of the tasks that have not yet been

automated. Recall that this was the case that delivered a balanced growth path back in

Section 2.2.4. In this case, Bt → 1 and Ċt
Ct
→ gC = −1−ρ

ρ · θ > 0 asymptotically.

The same logic that gave us equation (22) now implies that

Ȧt = Aφt CtStF
(
BtKt
CtSt

, 1
)

∼ Aφt CtSt
(23)

where the second line holds as long as BK/CS → ∞, which holds for a large class of

parameter values.5

This reduces to the Jones (1995) kind of setup, except that now “effective” research

grows faster than the population because of A.I. Dividing both sides of the last expres-

5Since Bt → 1, we just need that gk > gC . This will hold — see below — for example if φ > 0.
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sion by At gives
Ȧt
At

=
CtSt

A1−φ
t .

(24)

In order for the left-hand side to be constant, we require that the numerator and de-

nominator on the right side grow at the same rate, which then implies

gA =
gC + gS
1− φ

. (25)

In Jones (1995), the expression was the same except gC = 0. In that case, the growth

rate of the economy is proportional to the growth rate of researchers (and ultimately,

population). Here, automation adds a second term and raises the growth rate: we can

have exponential growth in research effort in the idea production function not only

because of growth in the actual number of people, but also as a result of the automation

of research implied by A.I.6

5.2 The competition channel

Existing work on competition and innovation-led growth points to the existence of two

counteracting effects: on the one hand, more intense product market competition (or

imitation threat) induces neck-and-neck firms at the technological frontier to innovate

in order to escape competition; on the other hand, more intense competition tends to

discourage firms behind the current technology frontier to innovate and thereby catch-

up with frontier firms. Which of these two effects dominates, in turn depends upon the

degree of competition in the economy, and/or upon how advanced the economy is:

while the escape competition effect tends to dominate at low initial levels of compe-

tition and in more advanced economies, the discouragement effect may dominate for

higher levels of competition or in less advanced economies.7

Can A.I. affect innovation and growth through potential effects it might have on

product market competition? A first potential channel is that A.I. may facilitate imita-

tion of existing products and technologies. Here we have particularly in mind the idea

that A.I. might facilitate reverse engineering, and thereby facilitate imitation of leading

6Substituting in for other solutions, the long-run growth rate of the economy is gy =
− 1−ρ

ρ
·θ+n

1−φ , where
n is the rate of population growth.

7For example, see Aghion and Howitt (1992) and Aghion, Bloom, Blundell, Griffith and Howitt (2005).



30 P. AGHION, B. JONES, AND C. JONES

products and technologies. If we follow the inverted-U logic of Aghion, Bloom, Blun-

dell, Griffith and Howitt (2005), in sectors with initially low levels of imitation, some

AI- induced reverse engineering might stimulate innovation by virtue of the escape-

competition effect. But too high (or too immediate) an imitation threat will end up

discouraging innovation as potential innovators will face excessive expropriation. A

related implication of A.I., is that its introduction may speed up the process by which

each individual sector becomes congested over time. This in turn may translate into

faster decreasing returns to innovating within any existing sector (see Bloom, Gari-

cano, Sadun and Van Reenen (2014)), but by the same token it may induce potential

innovators to devote more resources to inventing new lines in order to escape compe-

tition and imitation within current lines. The overall effect on aggregate growth will in

turn depend upon the relative contributions of within-sector secondary innovation and

fundamental innovation aimed at creating new product lines (see Aghion and Howitt

(1996)) to the overall growth process.

Another channel whereby A.I. and the digital revolution may affect innovation and

growth through affecting the degree of product market competition, is in relation the

development of platforms or networks. A main objective of platform owners is to max-

imize the number of participants to the platform on both sides of the correspond-

ing two-sided markets. For example Google enjoys a monopoly position as a search

platform, Facebook enjoys a similar position as a social network with more than 1.7

billion users worldwide each month, and so does Booking.com for hotel reservations

(more than 75% of hotel clients resort to this network). And the same goes for Uber

in the area of individual transportation, Airbnb for apartment renting, and so on. The

development of networks may in turn affect competition in at least two ways. First, data

access may act as an entry barrier for creating new competing networks, although it did

not prevent Facebook from developing a new network after Google. More importantly,

networks can take advantage of their monopoly positions to impose large fees on mar-

ket participants (and they do), which may discourage innovation by these participants,

whether they are firms or self-employed individuals.

At the end, whether escape competition or discouragement effects will dominate,

will depend upon the type of sector (frontier/neck-and-neck or older/lagging), the ex-

tent to which A.I. facilitates reverse engineering and imitation, and upon competition
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and/or regulatory policies aimed at protecting intellectual property rights while lower-

ing entry barriers. Recent empirical work (e.g. see Aghion, Howitt and Prantl (2015))

points at patent protection and competition policy being complementary in inducing

innovation and productivity growth. It would be interesting to explore how A.I. affects

this complementarity between the two policies.

5.3 A.I., innovation-led growth, and sectoral reallocation

A recent paper by Baslandze (2016) argues that the IT revolution has produced a major

knowledge diffusion effect which in turn has induced a major sectoral reallocation from

sectors that do not rely much on technological externalities from other fields or sectors

(e.g. textile industries) to sectors that rely more heavily on technological externalities

from other sectors. Her argument, which we believe applies to A.I., rests on the follow-

ing two counteracting effects of IT on innovation incentives: on the one hand, firms can

more easily learn from each other and therefore benefit more from knowledge diffusion

from other firms and sectors; on the other hand, the improved access to knowledge

from other firms and sectors induced by IT (or AI) increases the scope for business-

stealing. In high-tech sectors where firms benefit more from external knowledge, the

former - knowledge diffusion - effect will dominate whereas in sectors that do not

rely much on external knowledge the latter - competition or business-stealing- effect

will tend to dominate. Indeed in more knowledge dependent sectors firms see both

their productive and their innovative capabilities increase to a larger extent than the

capabilities of firms in sectors that rely less on knowledge from other sectors.

It then immediately follows that the diffusion of IT - and A.I. for our purpose -

should lead to an expansion of sectors which rely more on external knowledge (in which

the knowledge diffusion effect dominates) at the expense of the more traditional (and

more self-contained) sectors where firms do not rely as much on external knowledge.

Thus, in addition to its direct effects on firms’ innovation and production capabil-

ities, the introduction of IT and A.I. involve a knowledge diffusion effect which is aug-

mented by a sectoral reallocation effect at the benefit of high-tech sectors which rely

more on knowledge externalities from other fields and sectors. The positive knowledge

diffusion effect is partly counteracted by the negative business-stealing effect (Baslandze

shows that the latter effect has been large in the US and that without it the IT revolu-
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tion would have induced yet a much higher acceleration in productivity growth for the

whole US economy).

Based on her, Baslandze (2016) responds to Gordon (2012) with the argument that

Gordon only took into account the direct effect of IT and not its indirect knowledge

diffusion and sectoral reallocation effects on aggregate productivity growth.

We believe that the same points can be made with respect to A.I. instead of IT,

and one could try and reproduce Baslandze’s calibration exercise to assess the relative

importance of the direct and indirect effects of A.I., to decompose the indirect effect of

A.I. into its positive knowledge diffusion effect and its potentially negative competition

effect, and to assess the extent to which A.I. affects overall productivity growth through

its effects on sectoral reallocation.

6. Singularities

Up to this point, we’ve considered the effects of gradual automation in the goods and

idea production functions and shown how that can potentially raise the growth rate

of the economy. However, many observers have suggested that A.I. opens the door

to something more extreme – a “technological singularity” where growth rates will ex-

plode. John Von Neumann is often cited as first suggesting a coming singularity in tech-

nology (Danaylov (2012)). I.J. Good and Vernor Vinge have suggested the possibility of

a self-improving A.I. that will quickly outpace human thought, leading to an “intelli-

gence explosion” associated with infinite intelligence in finite time (Good (1965), Vinge

(1993)). Ray Kurzweil in The Singularity is Near also argues for a coming intelligence

explosion through non-biological intelligence (Kurzweil (2005)) and, based on these

ideas, co-founded Singularity University with funding from prominent organizations

like Google and Genentech.

In this section, we consider singularity scenarios in light of the production functions

for both goods and ideas. Whereas standard growth theory is concerned with matching

the Kaldor facts, including constant growth rates, here we consider circumstances in

which growth rates may increase rapidly over time. To do so, and to speak in an orga-

nized way to the various ideas that borrow the phrase “technological singularity”, we

can characterize two types of growth regimes that depart from steady-state growth. In
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particular, we can imagine:

• a “Type I” growth explosion, where growth rates increase without bound but re-

main finite at any point in time.

• a “Type II” growth explosion, where infinite output is achieved in finite time.

Both concepts appear in the singularity community. While it is common for writers

to predict the singularity date (often just a few decades away), writers differ on whether

the proposed date records the transition to the new growth regime of Type I or an actual

singularity occurring of Type II. 8

To proceed, we now consider examples of how the advent of A.I. could drive growth

explosions. The basic finding is that complete automation of tasks by an A.I. can nat-

urally lead to the growth explosion scenarios above. However, interestingly, one can

even produce a singularity without relying on complete automation, and one can do it

withouth relying on an intelligence explosion per se. Further below, we will consider

several possible objections to these examples.

6.1 Examples of Technological Singularities

We provide four examples. The first two examples take our previous models to the

extreme and consider what happens if everything can be automated — that is, if peo-

ple can be replaced by A.I. in all tasks. The third example demonstrates a singularity

through increased automation but withouth relying on complete automation. The final

example looks directly at ”superintelligence” as a route to a singularity.

Example 1: Automation of Goods Production

The Type I case can emerge with full automation in the production for goods. This is

the well-known case of an AK model with ongoing technological progress. In particular,

take the model of Section 2, but assume that all tasks are automated as of some date

t. The production function is then Yt = AtKt and growth rates themselves grow expo-

nentially with A. Ongoing productivity growth would then produce ever-accelerating

8Vinge (1993)), for example, appears to be predicting a Type II explosion, a case that has been examined
mathematically by Solomonoff (1985), Yudkowsky (2013) and others. Kurzweil (2005) by contrast, who
argues that the singularity will come around the year 2045, appears to be expecting a Type I event.
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growth rates over time. Specifically, with a standard capital accumulation specification

(K̇t = s̄Yt − δKt) and technological progress proceeding at rate g, the growth rate of

output becomes

gY = g + s̄A(0)egt − δ (26)

Example 2: Automation of Ideas Production

An even stronger version of this acceleration occurs if the automation applies to the

idea production function instead of (or in addition to) the goods production function.

In fact, one can show that there is a mathematical singularity: a Type II event where

incomes essentially become infinite in a finite amount of time.

To see this, consider the model of Section 5. Once all tasks can be automated — i.e.

once an A.I. replaces all people in the idea production function — the production of

new ideas is given by

Ȧt = KtA
φ
t (27)

With φ > 0, this differential equation is “more than linear.” As we discuss next, growth

rates will explode so fast that incomes become infinite in finite time.

The basic intuition for this result comes from noting that this model is essentially

a two-dimensional version of the differential equation Ȧt = A1+φ
t (e.g. replacing the

K with an A in equation (27)). This differential equation can be solved using standard

methods to give

At =

(
1

A−φ
0 − φt

)1/φ

. (28)

And it is easy to see from this solution that A(t) exceeds any finite value before date

t∗ = 1

φAφ0
. This is a singularity.

For the two dimensional system with capital in equation (27), the argument is slightly

more complicated but follows this same logic. The system of differential equations is

equation (27) together with the capital accumulation equation (K̇t = s̄Yt − δKt, where

Yt = AtL). Writing these in growth rates gives

Ȧt
At

=
Kt

At
·Aφt (29)
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K̇t

Kt
= s̄L

At
Kt
− δ. (30)

First, we show that Ȧt
At

> K̇t
Kt

. To see why, suppose they were equal. Then equa-

tion (30) implies that K̇t
Kt

is constant, but equation (29) would then imply that Ȧt
At

is

accelerating, which contradicts our original assumption that the growth rates were

equal. So it must be that ȦtAt >
K̇t
Kt

.9 Notice that from the capital accumulation equation,

this means that the growth rate of capital is rising over time, and then the idea growth

rate equation means that the growth rate of ideas is rising over time as well. Both

growth rates are rising. The only question is whether they rise sufficiently fast to deliver

a singularity.

To see why the answer is yes, set δ = 0 and s̄L = 1 to simplify the algebra. Now

multiply the two growth rate equations together to get

Ȧt
At
· K̇t

Kt
= Aφt . (31)

We’ve shown that ȦtAt >
K̇t
Kt

, so plugging this into equation (31) yields

(
Ȧt
At

)2

> Aφt (32)

implying that
Ȧt
At

> A
φ/2
t . (33)

That is, the growth rate of A grows at least as fast as Aφ/2t . But we know from the

analysis of the simple differential equation given earlier — see equation (28) — that

even if equation (33) held with equality, this would be enough to deliver the singularity.

Because A grows faster than that, it also exhibits a singularity.

Because ideas are nonrival, the overall economy is characterized by increasing re-

turns, a la Romer (1990). Once the production of ideas is fully automated, this in-

creasing returns applies to “accumulable factors,” which then leads to a Type II growth

explosion – i.e., a mathematical singularity.

9It is easy to rule out the opposite case of Ȧt
At

< K̇t
Kt

.
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Example 3: Singularities without Complete Automation

The above examples consider complete automation of goods production (Example 1)

and ideas production (Example 2). With the CES case and an elasticity of substitution

less than one, we require that all tasks are automated. If only a fraction of the tasks

are automated, then the scarce factor (labor) will dominate, and growth rates do not

explode. We show in this section that with Cobb-Douglas production, a Type II singu-

larity can occur as long as a sufficient fraction of the tasks are automated. In this sense,

the singularity might not even require full automation.

Suppose the production function for goods is Yt = AσtK
α
t L

1−α (a constant pop-

ulation simplifies the analysis, but exogenous population growth would not change

things). The capital accumulation equation and the idea production function are then

specified as

K̇t = s̄LAσtK
α
t − δKt. (34)

Ȧt = Kβ
t S

λAφt (35)

where 0 < α < 1 and 0 < β < 1 and where we also take S (research effort) to be

constant. Following the Zeira (1998) model discussed earlier, we interpret α as the

fraction of goods tasks that have been automated and β as the fraction of tasks in idea

production that have been automated.

The standard endogenous growth result requires “constant returns to accumulable

factors.” To see what this means, it is helpful to define a key parameter:

γ :=
σ

1− α
· β

1− φ
. (36)

In this setup, the endogenous growth case corresponds to γ = 1. Not surprisingly, then,

the singularity case occurs if γ > 1. Importantly, notice that this can occur with both α

and β less than one — i.e. when tasks are not fully automated. For example, in the case

in which α = β = φ = 1/2, then γ = 2 · σ, so explosive growth and a singularity will

occur if σ > 1/2. We show that γ > 1 delivers a Type II singularity in the remainder of

this section. The argument builds on the argument given in the previous subsection.
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In growth rates, the laws of motion for capital and ideas are

K̇t

Kt
= s̄L1−α Aσt

K1−α
t

− δ. (37)

Ȧt
At

= Sλ
Kβ
t

A1−φ
t

(38)

It is easy to show that these growth rates cannot be constant if γ > 1.10

If the growth rates are rising over time to infinity, then eventually either gAt > gKt, or

the reverse, or the two growth rates are the same. Consider the first case, i.e. gAt > gKt;

the other cases follow the same logic. Once again, to simplify the algebra, set δ = 0,

S = 1, and s̄L1−α = 1. Multiplying the growth rates together in this case gives

Ȧt
At
· K̇t

Kt
=

Kβ
t

A1−φ
t

· Aσt
K1−α
t

. (39)

Since gA > gK , we then have

(
Ȧt
At

)2
>

Kβ
t

A1−φ
t

· Aσt
K1−α
t

> 1
Kt
· Kβ

t

A1−φ
t

· Aσt
K1−α
t

(since Kt > 1 eventually)

> 1

K1−β
t

· 1

A1−φ
t

· Aσt
K1−α
t

(rewriting)

> 1

A1−β
t

· 1

A1−φ
t

· Aσt
A1−α
t

(since At > Kt eventually)

> Aγ−1
t (collecting terms)

Therefore,
Ȧt
At

> A
γ−1

2
t . (40)

With γ > 1, the growth rate grows at least as fast as At raised to a positive power. But

even if it grew just this fast we would have a singularity, by the same arguments given

before. The case with gKt > gAt can be handled in the same way, using K’s instead of

A’s. QED.

10If the growth rate of K is constant, then σgA = (1 − α)gK , so K is proportional to Aσ/(1−α). Making
this substitution in (35) and using γ > 1 then implies that the growth rate of A would explode, and this
requires the growth rate of K to explode.
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Example 4: Singularities via Superintelligence

The examples of growth explosions above are based in automation. These examples

can also be read as creating ”superintelligence” as an artifact of automation, in the

sense that advances of At across all tasks include, implicitly, advances across cognitive

tasks, and hence a resulting singularity can be conceived of as commensurate with an

intelligence explosion. It is interesting that automation itself can provoke the emer-

gence of superintelligence. However, in the telling of many futurists, the story runs

differently, where an intelligence explosion occurs first and then, through the insights

of this superintelligence, a technological singularity may be reached. Typically the AI

is seen as “self-improving” through a recursive process.

This idea can be modeled using similar ideas to those presented above. To do so

in a simple manner, divide tasks into two types: physical and cognitive. Define a

common level of intelligence across the cognitive tasks by a productivity termAcognitive,

and further define a common productivity at physical tasks,Aphysical. Now imagine we

have a unit of AI working to improve itself, where progress follows

Ȧcognitive = A1+ω
cognitive (41)

We have studied this differential equation above, but now we apply it to cognition

alone. If ω > 0, then the process of self-improvement explodes, resulting in an un-

bounded intelligence in finite time.

The next question is how this superintelligence would affect the rest of the economy.

Namely, would such superintelligence also produce an output singularity? One route

to a singularity could run through the goods prodution function: to the extent that

physical tasks are not essential (i.e. ρ ≥ 0 ), then the intelligence explosion will drive a

singularity in output. However, it seems noncontroversial to assert that physical tasks

are essential to producing output, in which case the singularity will have potentially

modest effects directly on the goods production channel.

The second route lies in the ideas production function. Here the question is how

the superintelligence would advance the productivity at physical tasks, Aphysical. For

example, if we write

Ȧphysical = AγcognitiveF (K,L) (42)
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where γ > 0, then it is clear that Aphysical will also explode with the intelligence ex-

plosion. That is, we imagine that the superintelligent AI can figure out ways to vastly

increase the rate of innovation at physical tasks. In the above specification, the out-

put singularity would then follow directly upon the advent of the superintelligence.

Of course, the ideas production functions (41) and (42) are particular, and there are

reasons to believe they would not be the correct specifications, as we will discuss in the

next section.

6.2 Objections to singularities

The above examples show ways in which automation may lead to rapid accelerations of

growth, including ever increasing growth rates or even a singularity. Here we can con-

sider several possible objections to these scenarios, which can broadly be characterized

as “bottlenecks” that A.I. cannot resolve.

Automation Limits

One kind of bottleneck, which has been discussed above, emerges when some essential

input(s) to production are not automated. Whether A.I. can ultimately perform all

essential cognitive tasks, or more generally achieve human intelligence, is widely de-

bated. If not, then growth rates may still be larger with more automation and capital in-

tensity (Sections 2 and 5) but the “labor free” singularities featured above (Section 6.1)

become out of reach.

Search Limits

A second kind of bottleneck may occur even with complete automation. This type of

bottleneck occurs when natural laws prevent especially rapid producitivy gains. To

see this, consider again the idea production function. In the second example above,

we allow for complete automation and show that a true mathematical singularity can

ensue. But note also that this result depends on the parameter φ. In the differential

equation

Ȧt = A1+φ
t
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we will have explosive growth only if φ > 0. If φ ≤ 0, then the growth rate declines

as At advances. Many models of growth and associated evidence suggest that, on

average, innovation may becoming harder, which is consistent with low values of φ

on average.11 Fishing out or burden of knowledge processes can point toward φ < 0.

Interestingly, the burden of knowledge mechanism (Jones (2009)), which is based on

the limits of human cognition, may not restrain an A.I., if an A.I. can comprehend a

much greater share of the knowledge stock than a human can. Fishing out processes,

however, viewed as a fundamental feature of the search for new ideas (Kortum (1997)),

would presumably also apply to an A.I. seeking new ideas. Put another way, A.I. may

resolve a problem with fishermen, but it wouldn’t change what is in the pond. Of

course, ”fishing out” search problems can apply not only to overall productivity but

also to the emergence of a superintelligence, limiting the potential rate of an AI’s self-

improvement (see (41)), and hence limiting the potential for growth explosions through

the superintelligence channel.

”Baumol” Tasks and Natural Laws

A third kind of bottleneck may occur even with complete automation and even with a

superintelligence. This type of bottleneck occurs when an essential input does not see

much productivity growth. That is, we have another form of Baumol’s cost disease.

To see this, generalize slightly the task-based production function (5) of Section 2 as

Y =

[∫ 1

0
(aitYit)

ρ di

]1/ρ
, ρ < 0

where we have introduced task-specific productivity terms, ait.

In contrast to our prior examples, where we considered a common technology term,

At, that affected all of aggregate production, here we imagine that productivity at some

tasks may be different than others and may proceed at different rates. For example,

machine computation speeds have increased by a factor of about 1011 since World

War II.12 By contrast, power plants have seen modest efficiency gains and face lim-

11See, e.g., Jones (1995), Kortum (1997), Jones (2009), Gordon (2016), Bloom, Jones, Van Reenen and
Webb (2017).

12This ratio compares Beltchley Park’s Colossus, the 1943 vacuum tube machine that made 5 × 105

floating point operations per second, with the Sunway TaihuLight computer, which in 2016 peaked at
9× 1016 operations per second.
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ited prospects given constraints like Carnot’s theorem. This distinction is important,

because with ρ < 0, output and growth end up being determined not by what we are

good at, but by what is essential but hard to improve.

In particular, let’s imagine that some superintelligence somehow does emerge, but

that it can only drive productivity to (effectively) infinity in a share θ of tasks, which we

index from i ∈ [0, θ]. Output thereafter will be

Y =

[∫ 1

θ
(aitYit)

ρ di

]1/ρ
Clearly, if these remaining technologies ait cannot be radically improved, we no longer

have a mathematical singularity (Type II growth explosion) and may not even have

much future growth. We might still end up with an AK model, if all the remaining

tasks can be automated at low cost, and this can produce at least accelerating growth

if the ait can be somewhat improved but, again, in the end we are still held back by

the productivity growth in the essential things that we are worst at improving. In fact,

Moore’s Law, which stands in part behind the rise of artificial intelligence, may be a

cautionary tale along these lines. Computation, in the sense of arithmetic operations

per second, has improved at mind-boggling rates and is now mind-bogglingly fast. Yet

economic growth has not accelerated, and may even be in decline.

Through the lens of essential tasks, the ultimate constraint on growth will then be

the capacity for progress at the really hard problems. These constraints may in turn be

determined less by the limits of cognition (i.e., traditionally human intelligence limits,

which an A.I. superintelligence may overcome) and more by the limits of natural laws,

such as the second law of thermodynamics, which constrain critical processes.13

6.3 Some additional thoughts

We conclude this section with additional thoughts on how A.I. and its potential singu-

larity effects might affect growth and convergence.

A first idea is that new A.I. technologies might allow imitation/learning of frontier

technologies to become automated. That is, machines would figure out in no time how

13Returning to example 4 above, note that (42) assumes that all physical constraints can be overcome
by superintelligence. However, one might alternatively specify max (Aphysical) = c, representing a firm
physical constraint.
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to imitate frontier technologies. Then a main source of divergence might become credit

constraints, to the extent that those might prevent poorer countries or regions from

acquiring super-intelligent machines whereas developed economies could afford such

machines. Thus one could imagine a world in which advanced countries concentrate

all their research effort on developing new product lines (i.e. on frontier innovation)

whereas poorer countries would devote a positive and increasing fraction of their re-

search labor on learning about the new frontier technologies as they cannot afford the

corresponding A.I. devices. Overall, one would expect a increasing degree of divergence

worldwide.

A second conjecture is that, anticipating the effect of A.I. on the scope and speed

of imitation, potential innovators may become reluctant to patent their inventions,

fearing that the disclosure of new knowledge in the patent would lead to straight imi-

tation. Trade secrets may then become the norm, instead of patenting. Or alternatively

innovations would become like what financial innovations are today, i.e. knowledge

creation with huge network effects and with very little scope for patenting.

Finally, with imitation and learning being performed mainly by super-machines in

developed economies, then research labor would become (almost) entirely devoted to

product innovation, increasing product variety or inventing new products (new prod-

uct lines) to replace existing products. Then, more than ever, the decreasing returns

to digging deeper into an existing line of product would be offset by the increased

potential for discovering new product lines. Overall, ideas might end up being easier to

find, if only because of the singularity effect of A.I. on recombinant idea-based growth.

7. Conclusion

In this paper, we discussed potential implications of A.I. for economic growth. We be-

gan by introducing A.I. into the production of goods and services and tried to reconcile

evolving automation with the observed stability in the capital share and per capita GDP

growth over the last century. Our model, which introduces Baumol’s “cost disease”

insight into Zeira’s model of automation, generates a rich set of possible outcomes. We

thus derived sufficient conditions under which one can get overall balanced growth

with constant capital share: in particular this requires a structural transformation of
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the economy such that the share of automated sectors in GDP decreases over time even

as an increasing fraction of sectors are automated. We also saw how this model can be

used to generate a prolonged period with high capital share and relatively low aggregate

economic growth while automation keeps pushing ahead.

Then we considered how introducing A.I. into the production technology for goods

and services affects wage policy and the international organization of firms. In partic-

ular, while we conjectured that A.I. should be skill-biased for the economy as a whole,

we also predict that more AI-intensive firms should: (i) outsource a higher fraction of

low-occupation tasks to other firms; (ii) pay a higher premium to the low-occupation

workers they keep inside the firm.

Next, we speculated on the effects of introducing A.I. into the production tech-

nology for new ideas. A.I. can potentially increase growth, either temporarily or per-

manently, depending on precisely how it is introduced. It is possible that ongoing

automation can obviate the role of population growth in generating exponential growth

as A.I. increasingly replaces people in generating ideas. But in this paper, we’ve taken

automation to be exogenous, and the incentives for introducing A.I. in various places

clearly can have first-order effects. Exploring the details of endogenous automation

and A.I. in this setup is a crucial direction for further research. We also noted that A.I.

could have offsetting effects and discourage future innovation by speeding up imita-

tion.

Finally we discussed the (theoretical) possibility that A.I. could generate some form

of a singularity, perhaps even leading the economy to infinite income in finite time. If

the elasticity of substitution in combining tasks is less than one, this seems to require

that all tasks be automated. But with Cobb-Douglas production, a singularity could oc-

cur even with less than full automation because the nonrivalry of knowledge gives rise

to increasing returns. These possibilities, as well as other implications of a “super-A.I.”

(for example for cross-country convergence and property rights protection), remain

promising directions for future research.
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Krusell, Per, Lee E Ohanian, José-Vı́ctor Rı́os-Rull, and Giovanni L Violante, “Capital-skill

complementarity and inequality: A macroeconomic analysis,” Econometrica, 2000, 68 (5),

1029–1053.

Kurzweil, Ray, The Singularity is Near, New York: Penguin, 2005.

Manuelli, Rodolfo E. and Ananth Seshadri, “Human Capital and the Wealth of Nations,”

American Economic Review, 2014, 104 (9), 2736–62.

Peretto, Pietro F. and John J. Seater, “Factor-eliminating technical change,” Journal of Monetary

Economics, 2013, 60 (4), 459–473.

Romer, Paul M., “Endogenous Technological Change,” Journal of Political Economy, October

1990, 98 (5), S71–S102.

Saez, Emmanuel, “Do taxpayers bunch at kink points?,” American Economic Journal: Economic

Policy, 2010, 2 (3), 180–212.

Solomonoff, R.J., “The Time Scale of Artificial Intelligence: Reflections on Social Effects,”

Human Systems Management, 1985, 5, 149–53.

Stole, Lars and Jeffrey Zwiebel, “Organizational Design and Technology Choice under Intrafirm

Bargaining,” 1996, 86 (1), 195–222.

Tirole, Jean, Economics for the Common Good, Princeton University Press, 2017.



ARTIFICIAL INTELLIGENCE AND ECONOMIC GROWTH 47

Vinge, Vernor, “The Coming Technological Singularity: How to Survive in the Post-Human Era,”

Vision-21: Interdisciplinary Science and Engineering in the Era of Cyberspace, 1993, pp. 11–22.

Yudkowsky, Eliezer, “Intelligence Explosion Microeconomics,” 2013. Technical report 2013-1.

Zeira, Joseph, “Workers, Machines, And Economic Growth,” Quarterly Journal of Economics,

November 1998, 113 (4), 1091–1117.


