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Abstract

Ecological inference is a problem of partial identification, and therefore precise
conclusions are rarely possible without the collection of individual level (identifying)
data. Without such data, sensitivity analyses provide the only recourse. In this paper
we review and critique recent approaches to ecological inference in the social sciences,
and describe in detail hierarchical models, which allow both sensitivity analysis and the
incorporation of individual level data into an ecological analysis. A crucial element of
a sensitivity analysis in such models is prior specification, and we detail how this may
be carried out. Furthermore, we demonstrate how the inclusion of a small amount of
individual level data from a small number of ecological areas can dramatically improve
the properties of such estimates.

1 Introduction

In this paper the problems of making individual-level inference from ecological data is con-
sidered. In particular suppose we have a set of R × C tables in which only the margins
are observed, for concreteness we suppose each table corresponds to a different geographical
area. This problem arises in many disciplines including political science (Achen and Shively,
1995; King, 1997), sociology (Goodman, 1953, 1959; Duncan and Davis, 1953)) and spatial
epidemiology (Richardson and Montfort, 2000; Wakefield, 2008); King (1997) and Cleave
et al. (1995) describe further application areas. However, the exact nature of the inferential
question differs importantly across these disciplines (Salway and Wakefield, 2004).

In epidemiological applications the usual aim is to estimate a risk contrast between exposed
and unexposed individuals in a certain population and time period. This contrast can then
be used to predict the number of new cases in a future time period (for public health provi-
sion, for example) or to make causal inferences. Since the data are usually observational, to
estimate the causal effect of the exposure an attempt must be made to control for confound-
ing variables (for example, one or more of age, gender, race, and smoking history) that are
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responsible for differences in risk, beyond those due to exposure, of the study populations.
Hence in ecological studies in epidemiology there is never a single predictor and the data
are not simply in the form of a series of 2× 2 tables, since within each area there will (typ-
ically) be multiple confounders for which to control. Control for confounders in ecological
studies is more difficult than in individual studies, since the multivariate distribution of ex-
posures/confounders within and between areas is needed (Richardson et al., 1987; Greenland
and Robins, 1994; Prentice and Sheppard, 1995; Plummer and Clayton, 1996; Lasserre et al.,
2000; Wakefield, 2008).

By contrast, in the social sciences, ecological inference can have causal and non-causal infer-
ential purposes. In many cases, social scientists have concentrated on imputing the missing
cells in the constituent 2 × 2 or R × C tables. This type of ecological inference is often re-
ferred to as EI (named after the software package that accompanies King’s 1997 book). For
example, in political science, a typical analysis will examine the differences between racial
voting patterns in a specific region. This query can be answered by imputing the number
of votes by race for a particular party or candidate, by area. Hence, viewed in this way,
prediction rather than causality is the aim. However, in many recent cases, EI is followed by
a second stage analysis that utilizes the imputed data, often as the dependent variable in a
regression (Herron and Shotts, 2003b) and may be implicitly causal. For example, Burden
and Kimball (1998) used EI to analyze ticket splitting rates across congressional districts,
and then used the estimated rates as a dependent variable in a second stage analysis to
determine why voters were splitting their tickets. This type of analysis is often referred to
as EI-R.

Although the shortcomings of ecological inference in the EI and epidemiological contexts
have been documented (Achen and Shively, 1995; Greenland and Robins, 1994; Cho, 1998;
Freedman et al., 1998; Gelman et al., 2001; Wakefield, 2008), the continued use of ecological
data can be attributed to: the increased sample sizes and predictor ranges they provide; their
routine availability; their increased reliability when a sensitive question is asked; the avoid-
ance of selection bias; and the impossibility of further data collection in historical contexts.
Furthermore, as King (1999) notes, in some cases the bounds will be sufficiently informa-
tive, diagnostics will detect some violations of the modeling assumptions, and qualitative
information may be included to improve the analysis. (The difficulties of ecological inference
may become compounded in the EI-R framework, where ecological estimates are used as the
dependent variable in second stage analyses in (Herron and Shotts, 2003b), and although
extensions to the EI can alleviate some of these problems (Adolph and King, 2003; Herron
and Shotts, 2003a; Adolph et al., 2003), there are still concerns over the use of the technique
(Herron and Shotts, 2004; Cho and Gaines, 2004).)

Given the aforementioned difficulties of ecological inference and the fundamental lack of
identification, an ecological analysis will benefit from a sensitivity analysis, and when pos-
sible, the inclusion of individual level data. In this paper, we discuss how to perform both
of these tasks within the hierarchical convolution likelihood model described in Wakefield
(2004a). The outline of this paper is as follows. In Section 2 we describe the fundamental
difficulties of ecological inference, summarize some approaches to this inferential problem,
and describe a data set that will be used to illustrate the various issues raised throughout the
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paper. In Section 3 we describe the so-called convolution likelihood. Section 4 describes the
Bayesian approach to inference, including subsections on prior specification and predictive
distributions. The latter links the parameters of the model to the observables (unobserved
counts), and is of great importance in political science applications (where there has been
confusion between unobservable probabilities in a hypothetical super population model, and
the samples fractions in the study population, which are potentially observable) as empha-
sized above. Section 5 describes the various computational schemes that have been suggested
in the context of ecological inference. Section 6 presents a sensitivity analysis in the context
of the Louisiana data, while we consider the combination of aggregate and individual data
in Section 7. A concluding discussion rounds out the paper in Section 8.

2 The Fundamental Difficulty of Ecological Inference

To motivate our discussion we introduce a specific data set for which Y = 0/1 represents
the event Democrat/Republican registration, and X = 0/1 the event Black/White. The
data were collected in the U.S. state of Louisiana in 1990 and are available in each of the 64
counties of that state. These data are ideal for illustration of methods, since they are one of
the few sources for which the individual level data are available.

Figure 1 gives an initial look at the ecological data. In panel (a) we give a histogram of
the fraction black, and observe that in the majority of counties this fraction is less than 0.5.
Panel (b) gives the proportion registered Republican against the fraction black, with a least
squares line added to indicate the linear association. The general trend is that the proportion
registered Republican decreases as the proportion black increases. The obvious explanation is
that blacks are less likely to register Republican. Alternative explanations exist, however, in
particular the same pattern could be observed if whites are less likely to register Republican
if in a predominantly black county, if blacks are more likely to register Republican in a
predominantly white county, or if individual race is an unimportant predictor of registration
behavior, and instead an individual’s behavior, whether black or white, is predicted by the
proportion of blacks in the area. In each of these scenarios the proportion black/white in an
area is an example of a contextual variable, a variable reflecting characteristics of individuals
in a shared environment. To help explain the results that follow panels (c) and (d) give
the fractions black and white who register Republican against the fraction black, again with
least squares lines added. Note that it would not have been possible to produce these two
plots without the individual level data which we have in this special case. We see that the
fraction black who register Republican decreases across counties as the fraction black in the
counties increases, hence it seems plausible that some contextual variable is driving black
Republican registration (e.g. income). We also see that the proportion white who register
Republican increases across counties as the fraction black in the counties increases. This is
consistent with the explanation that whites in areas with large numbers of blacks are more
fearful of affirmative action policies, and register/vote accordingly.

Hence Figure 1(b) understates the extent to which blacks are less likely to register Republican
than whites, which is an example of what Selvin (1958), called the ecological fallacy: incorrect
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Figure 1: Across 64 counties of Louisiana: (a) Histogram of fraction of population that are
black; (b) fraction registered Republican versus fraction black, (c) fraction black registered
Republican versus fraction black, (d) fraction white registered Republican versus fraction
black.
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inference concerning individual effects gleaned from aggregate data. In an extreme case, the
aggregate relationship could be the reversal of the true individual relationship, a phenomenon
closely related to Simpson’s paradox (Simpson, 1951), see Wakefield (2004c) for further
discussion. The ecological fallacy had been discussed in the sociology literature before 1950,
but Robinson (1950) provided an extremely lucid account, which explained the subsequent
influence of the paper, in deterring the analysis of ecologic data. Recently, Robinson’s paper
has been revisited, within a multilevel framework (Subramanian et al., 2009b,a) and critiqued
(Oakes, 2009; Firebaugh, 2009; Wakefield, 2009).

We now introduce some notation, in the context of the Louisiana data, in order to ease
description of models that have been suggested for ecologic data. For a generic individual,
Y = 0/1 will denote the event that an individual is unregistered/registered (the response),
and X = 0/1 the event that an individual is of black/white race (the predictor). Table
1 describes the notation that we will use throughout the paper; Y0i, Y1i are the Y = 1
individuals from covariate group X = 0, 1, respectively, in area i. In an aggregate situation
we do not observe the internal counts Y0i, Y1i. The fundamental difficulty of ecological
inference is that we are interested in these two quantities, but it is their sum Yi only, that
we observe.

Y = 0 Y = 1
x = 0 Y0i N0i

x = 1 Y1i N1i

Ni − Yi Yi Ni

Table 1: Table summarizing data in area i; in an ecological study the margins only are
observed.

In the social science ecological inference literature the inference problem has often been
treated as the imputation of the missing data, Y0i, Y1i, and due to this perspective, approaches
have often implicitly adopted a finite sampling view. Here we utilize a hypothetical infinite
population of exchangeable blacks and whites within each area as the primitive modeling
object, and define the parameter pji to be the fraction of race j in area i that register. With
this viewpoint an estimate of this probability, p̂ji, is not equal to the true (but unobserved)
fraction registered, Yji/Nji, which we denote by p̃ji. In a finite sample view if Yji were
observed then inference is complete since the population has been observed. In contrast, in
the infinite population view, even if Yji is observed, uncertainty concerning pji will remain
(though may be small if Nji is large). However, while the infinite population model takes
pji to be the primary parameter of interest, note that this model can still be used to make
predictions about the fractions p̃ji if these are of interest. Section 4.3 discusses this in greater
detail.

To see the indeterminacy of ecological inference more clearly we write, for area i,

Yi
Ni

=
Y0i + Y1i

Ni

=
Y0i

N0i

× N0i

Ni

+
Y1i

N1i

× N1i

Ni
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which may be rewritten as
q̃i = p̃0i × xi + p̃1i × (1− xi), (1)

where q̃i is the fraction registered, p̃0i and p̃1i are the black and white fractions registered,
and xi and 1−xi are the proportions black and white respectively. In an ecological data set,
q̃i and xi are observed while p̃0i and p̃1i are not. From (1) we see that the observed q̃i are
consistent with many true fractions p̃0i, p̃1i. The bounds of Duncan and Davis (1953), may
be written in terms of q̃i and xi:

max

{
0,
q̃i − (1− xi)

xi

}
≤ p̃0i ≤ min

{
1,
q̃i
xi

}

max
{
0,
q̃i − xi
1− xi

}
≤ p̃1i ≤ min

{
1,

q̃i
1− xi

}
In terms of the underlying probabilities pji, there is no constraint beyond 0 < pji < 1. This
is a crucial difference between the finite sample and infinite sampling views. Figure 2 shows
the admissible ranges for p̃0i and p̃1i for the Louisiana data via a so-called tomography plot.
We see that for the blacks in particular there is a great deal of uncertainty. The open circles
correspond to the true fractions, which are available for these data.
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Figure 2: Tomography lines for Louisiana data.

Two extreme explanations are consistent with (1). First, following Goodman (1953, 1959)
we may assume that p̃0i and p̃1i are such that

E[p̃ji|xi] = pj, (2)

j = 0, 1 so that the fractions are uncorrelated with xi. The expectation here is with respect
to repeated sampling in areas with proportion of blacks xi. We then have

E[q̃i|xi] = p0 × xi + p1 × (1− xi) = a+ bxi, (3)
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where a = p1 and b = p0 − p1. Although it is only the expectations of the fractions that are
considered constant in (2), the usual way of imputing the internal fractions is to simply take
p̃ji = pj, which is equivalent to a model in which the fractions themselves are constant. This
model has sometimes been described as Goodman regression, but the name ecological regres-
sion is more appropriate as Goodman did not encourage general use of the approach, and
in particular was aware that the ‘constancy assumption’ (2) would often be inappropriate.
The assumption of constancy allows the mean to be derived, but to formulate an estimation
method it would be desirable to derive the variance and covariance of Yi = Niq̃i. In general
it has been assumed that counts in different areas are independent, and various forms for
the variance have been considered. As we will describe in detail in Section 3, a plausible
likelihood leads to Yi following a convolution distribution with variance that depends on p0i

and p1i.

A very simple model, termed the ‘nonlinear neighborhood model’ (Freedman et al., 1991), is
to assume that p0i = p1i = qi, i.e. to assume that registration and individual race are inde-
pendent. This allows the table to be collapsed, and inference is straightforward. Freedman
(2001) states that in this model, ‘...behavior is determined by geography not demography’.
A specific version of the nonlinear neighborhood model, the ‘linear neighborhood’ model,
was also described by Freedman et al. (1991) and makes the assumption that E[p0i|xi] and
E[p1i|xi] are identical but depend on the proportion black via the linear form

E[p0i|xi] = E[p1i|xi] = E[qi|xi] = a+ bxi, (4)

which is identical to (3) though the interpretation and imputed internal cells are drastically
different under the two models, which was the motivation for Freedman et al. (1991) to
introduce the model, to illustrate the fundamental unidentifiability of ecological inference.
Other regression-type approaches, with a non-parametric flavor, are described by Chambers
and Steel (2001).

The assumption that q̃i is uncorrelated with xi may be a major problem in some applica-
tions; see Freedman et al. (1998, 1999); Freedman (2001)) for examples. A further problem
with ecological regression is the assumption that the estimated fractions are not allowed to
vary across areas so that between-area variability is not acknowledged. Least squares proce-
dures are known to provide consistent estimates of regression parameters under a range of
distributions of the errors, but are also known to be very poor at providing predictions of
observable quantities. For prediction some knowledge of the distribution of the error terms
is required. The great benefit of the hierarchical approach that was popularized by King
(1997) is that between-area differences in fractions are assigned a distribution, so allowing
variability in the estimates of race-specific fractions across areas.

To conclude, in this section we have reviewed how two competing explanations with vastly
different interpretations and inferential implications lead to an identical mean function. To
overcome this unidentifiability and estimate 2m quantities from m observables, it is clear
that any approach that is considered must make assumptions (or incorporate additional
information). It is not immediately apparent, but also true that some of the assumptions
from any approach will be uncheckable from the aggregate data alone. In all observational
studies untestable assumptions such as ‘no unmeasured confounding’ are required for causal
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interpretations (e.g. even Figures 1 (c) and (d) are not sufficient to derive the full causal
story). If causal inference is the goal of an ecological study, this problem is particularly
acute since the amount of information concerning quantities of interest is much smaller than
in typical individual-level observational studies (e.g. Figure 1 (b) provides less information
than Figures 1 (c) and (d)).

3 The Convolution Likelihood

In the previous section we simply derived the form of the marginal mean of the fraction
registered Republican under various assumptions. In this section we describe a likelihood
function under a plausible sampling scheme, and compare this with various (often implicit)
likelihoods that have been used in the ecological literature. Recall that

p0i = Pr(Y = 1|x = 0, i) and p1i = Pr(Y = 1|x = 1, i) (5)

are the population probabilities in area i, i = 1, ...,m. Returning to Table 1 we first note that
if Y0i and Y1i were observed then if we were to assume that each of the N0i black individuals
in area i have independent Bernoulli responses with probability p0i, and each of the N1i

white individuals in area i have independent Bernoulli response with probability p1i, then

Yji|pji ∼ Binomial(Nji, pji),

j = 0, 1, i = 1, ...,m. Under this sampling scheme, if Y0i and Y1i are unobserved then the
sum Yi follows a convolution of these binomial distributions:

Pr(Yi|p0i, p1i) =
ui∑

y0i=li

(
N0i

y0i

)(
N1i

Yi − y0i

)
py0i

0i (1− p0i)
N0i−y0ipYi−y0i

1i (1− p1i)
N1i−Yi+y0i (6)

where
li = max(0, Yi −N1i) , ui = min(N0i, Yi). (7)

These values correspond to the admissible values that Yi can take, given the margins in Table
1. McCullagh and Nelder (1989) consider this likelihood under the assumption that p0i = p0

and p1i = p1, see also Achen and Shively (1995, p. 46).

We now briefly examine the shape of the likelihood for a single table. Plackett (1977) showed
that the maximum likelihood estimate of the log odds ratio in a single table in which the
margins only are observed is ±∞, which corresponds to p0i = 0 or 1 and/or p1i = 0 or
1. Steele et al. (2004) work with the convolution directly and report that the maximum
likelihood estimator lies at the endpoint of the tomography line.

In King et al. (1999) the alternative model

Yi|p0i, p1i ∼ Binomial{Ni, p0ixi + p1i(1− xi)} (8)

was considered. As in King (1997), this produces a likelihood that is constant along the
tomography line (an intuitively appealing feature given the implicit lack of information on
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the internal cells of the table). However, the underlying individual-level model should be
viewed as an approximation in this context since it assumes sampling independently Ni

individuals each with probability p0ixi + p1i(1− xi).

In contrast, the convolution likelihood assumes that we sample N0i individuals with prob-
ability p0i and N1i individuals with probability p1i, i = 1, ...,m. As Ni → ∞ with xi and
q̃i constant, this convolution likelihood function becomes concentrated along the tomogra-
phy line with an asymmetric U-shape, with the maximum at one endpoint. At first, this
non-constancy of the likelihood may seem counterintuitive (given the lack of information).
However, an MLE on the boundary of the parameter space is an indication of a poorly be-
haved likelihood function. Furthermore, if uniform priors are placed on the probabilities p0i

and p1i, this likelihood implies a flat posterior predictive distribution for p̃0i and p̃1i along the
associated tomography line. Therefore, the convolution likelihood produces constancy for
the predicted fractions ({p̃0i, p̃1i} instead of {p0i, p1i}), but only produces constancy when
the assumption of “no information” is made about p0i and p1i.

It is clear that the data in one table alone gives limited information concerning p0i, p1i or p̃0i,
p̃1i, since we only have a single observation, Yi. However, in most applications, ecological
data from multiple areas is available.

4 Bayesian Inference

4.1 Priors

Following King (1997) a number of authors have developed hierarchical approaches in which,
rather than reduce the dimensionality of the models as was described in the previous section,
the full 2m parameters are retained but the probabilities/fractions, are assumed to arise from
a bivariate distribution.

At the second stage of the King (1997) model it is assumed that the pair p̃0i, p̃1i arise from
a truncated bivariate normal distribution, hence imposing identifiability. King (1997) views
the truncated bivariate normal distribution as the likelihood while we have referred to the
tomography lines as providing the first stage of the model, with the truncated bivariate
normal the second stage of the model. Inference is initially carried out via MLE for the
five population parameters, using numerical integration, and then simulation is used to
make more refined inference. Priors may be placed on the population parameters (that
characterize the truncated normal) to give a Bayesian model. In common with the majority
of approaches, it is assumed that the pairs of fractions form an independent sample from the
second stage distribution (here the truncated bivariate normal), see Haneuse and Wakefield
(2004) for a hierarchical model with spatial dependence between the probabilities. The model
in its most basic form also assumes that the fractions are uncorrelated with xi. The latter
may be relaxed (see King 1997, Chapter 9), via the introduction of contextual effects (in
King et al. (2004) it is recommended that such effects be included), but reliable estimation of
both individual and contextual effects is crucially dependent on the existence of substantive
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prior information (see the example in Wakefield (2004c), for a further demonstration of this).
The freely-available EzI software (Benoit and King, 1998) may be used to implement the
truncated normal model, and its extensions.

At the second stage, King et al. (1999) assume that p0i and p1i are independent with

pji|aj, bj ∼iid Beta(aj, bj). (9)

The third and final stage of the model consists of exponential priors, Exp(λ) on aj, bj,
j = 0, 1, where λ−1 is the mean of the exponential. Specifically, in the example considered it
was assumed that these exponential priors had mean 2 (λ = 0.5), a choice which may not be
desirable in many instances because it often produces a prior for each probability which is
very strongly U-shaped (since beta priors with aj < 1, bj < 1 are themselves U-shaped, and
an exponential with mean 2 has a 0.39 probability of being less than one). This is discussed
more fully in Wakefield (2004c), in particular see Figure 6. Choosing much smaller values
of λ, for example, λ = 0.01, produces almost uniform priors on the probabilities, though we
would not universally recommend a particular hyperprior, given the sensitivity of inference
it should be context specific. As the number of tables decreases and the x distribution
becomes more asymmetric this problem becomes more and more acute. The ideal situation
is for substantive information to be available for prior specification. The strong dependence
on the third stage prior is in stark contrast to the usual generalized mixed model case for
which there is far less dependence (except for priors on variance components, where again
care must be taken with small numbers of units). Here we emphasize that the form of the
prior should be examined through simulation. Specifically, for generic second stage, p(p|φ,
and third stage, p(φ):

1. For fixed φ, simulate φ(s) ∼ p(φ), for s = 1, ..., S.

2. Simulate p(s) ∼ p(p|φ(s)), for s = 1, ..., S.

3. Examine graphical and numerical summaries of the collection {φ(s), s = 1, ..., S}.

This procedure will be illustrated shortly.

The model given by (9) does not allow dependence between the two random effects (note this
is distinct from the independence between pairs of random effects in different areas, which
is also assumed) though it is conjugate (giving a marginal distribution for the data that is
beta-binomial) which may offer some advantage in terms of computation. The model also
allows area-level covariates to be added at the second stage.

Wakefield (2004c) proposed, as an alternative to the beta model, a second stage in which
the logits of the registration probabilities arose from a bivariate normal distribution; this
model was introduced for the analysis of a series of 2× 2 tables when the internal cells were
observed by Skene and Wakefield (1990). Specifically, a reasonably general form is

θ0i = log

(
p0i

1− p0i

)
= µ0 + β0zi + δ0i

θ1i = log

(
p0i

1− p0i

)
= µ1 + β1zi + δ1i (10)
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with
δi ∼ N2(0,Σ),

where

δi =

[
δ0i
δ1i

]
and Σ =

[
Σ00 Σ01

Σ10 Σ11

]
. (11)

Hence θ0i and θ1i denote the logits of the probabilities p0i and p1i in table i, so that
pji = exp(θji)/{1 + exp(θji)}, j = 0, 1. In the specification (10), zi represent area-level
characteristics (and may, in principle, include xi) and β0, β1 are (ecological) log odds ratios
associated with these variables.

A third stage hyperprior adds priors on µ0, µ1 and Σ (and β0, β1 if there are covariates). It
is difficult to gain information on the covariance term Σ01 and so from this point onwards
we assume that Σ01 = 0. Without substantive information for the registration-race data,
Wakefield (2004c) chose logistic priors with location 0 and scale 1 for µ0 and µ1, since these
induce uniform priors on exp(µj)/{1 + exp(µj)} (the median of the registration probability
for race j across the population of areas). Since G(z) ≈ (cz) with c = 16

√
3/(15π) and

where G(z) = (1 + e−z)−1 is the CDF of a logistic random variables, as an alternative we
may specify normal priors with mean 0 and standard deviation 1/c.

For the precisions Σ−1
00 ,Σ

−1
11 we specify gamma distributions Ga(a, b) (where the parameter-

ization is such that the mean is given by a/b). In the WinBUGS manual the priors Ga(0.001,
0.001) are often used for precisions within a hierarchical model. This choice is not to be
recommended in general (that is, for all applications); here it is a very poor one (and leads
to marginal priors for the probabilities that are highly U-shaped). We follow a previously
suggested procedure (Wakefield, 2009) which we briefly describe for a generic log odds ratio
in area i, δi ∼iid N(0,Σ) with Σ−1 ∼ Ga(a, b). We integrate over Σ to find the marginal
distribution p(δi) which is a t distribution with d = 2a degrees of freedom, location zero, and
scale Σ = b/a. To construct a prior distribution we require a careful interpretation of δi, or
more informatively, exp(δi) which is the perturbation of the odds of Republican registration
from the median of the distribution of the odds of Republican registration across all areas.
Hence we may refer to exp(δi) as a residual odds, since it is relative to the median odds
across areas. We give a range for exp(δi). In particular, for the range (1/R,R) we use the
relationship ±td0.025

√
σ = ± logR, where tdr is the 100× r-th quantile of a Student t random

variable with d degrees of freedom, to give a = d/2, b = (logR)2d/2(td1−(1−q)/2)
2. We choose

d = 1, to give a Cauchy marginal distribution. As an example, for a 95% range of [0.1, 10]
we obtain a = 0.5, b = 0.0164.

We illustrate the prior simulation strategy with the priors µ ∼ N(0, 1/c2), Σ−1 ∼ Ga(0.5, b),
with θi = µ + δi, and δi ∼ N(0,Σ). We take three values of b, corrsponding to 95%
ranges of [0.9, 1.1], [0.5, 2] and [0.1, 10] (which correspond to b = 0.000028, 0.00149, 0.0164,

respectively). Figure 3(a) gives the marginal distribution of median(p) = exp(µ)
1+exp(µ)

, which is
close to uniform, in line with the theory outlined above. These priors are applied in Section
6.
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Figure 3: Simulations from the N(0, 1/c2) × Ga(0.5, b) prior. Panel (a) gives the marginal
distribution of the median odds of Republican registration. Panels (b), (c) and (d) gives
the residual odds of Republican registration (across areas) with ranges [0.9, 1.1], [0.5, 2] and
[0.1, 10], respectively.
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4.2 Derivation of the posterior distribution

In the Bayesian approach all unknown quantities are assigned prior distributions and the
posterior distribution reflects both these distributions and the information in the data that
is contained in the likelihood. In the hierarchical models described in Section 4.1 two stage
priors are specified, with the first stage of the prior assuming a common form for the pairs
of probabilities, and the second stage assigning hyperpriors to the parameters of this form.
Letting pi represent the pair of table specific probabilities, and φ a generic set of hyperpa-
rameters upon which the second stage of the prior depends, we have:

π(p1, ...,pm,φ|y1, ..., ym) ∝ p(y1, ..., ym|p1, ...,pm,φ)× π(p1, ...,pm,φ)

with

p(y1, ..., yn|p1, ...,pm,φ) =
m∏
i=1

p(yi|pi),

by conditional independence of counts in different areas, and

π(p1, ...,pm,φ) = π(p1, ...,pm|φ)× π(φ),

to give the two-stage prior. Under the assumption of independence of the table-specific
parameters (which would not be true if we assumed spatial dependence between these pa-
rameters), we may further write

π(p1, ...,pm|φ) =
m∏
i=1

π(pi|φ).

Hence, under these assumptions, we have the posterior distribution

π(p1, ...,pm,φ|y1, ..., ym) ∝
m∏
i=1

p(yi|pi)×
m∏
i=1

π(pi|φ)× π(φ).

Inference follows via consideration of marginal posterior distributions, and predictive distri-
butions. For example π(pi|y1, ..., ym) is the marginal posterior distribution for the pair of
probabilities of Republican registration from table i.

4.3 The Posterior Predictive Distribution

We may also be interested in imputing the missing counts in area i. In particular, this is
often the goal of ecological inference in the social sciences. This type of inference may be
carried out via examination of the predictive distribution

Pr(Y0i|y1, ..., ym) =
∫

Pr(Y0i|pi, N0i, N1i, Ni − yi, yi)× π(pi|y1, ..., yn)dθi.

Note that we only need the distribution for Y0i since the distribution of Y1i = Yi−Y0i, which
is immediately available. The integral averages the distribution of Pr(Y0i|pi, N0i, N1i, Ni −
yi, yi) with respect to the posterior. The distribution of Y0i given the row and column
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margins and the table probabilities, is a non-central (sometimes referred to as an extended)
hypergeometric distribution, see for example, McCullagh and Nelder (1989). Suppose the
odds ratio in the table is given by ψi = p0i(1 − p1i)/p1i(1 − p0i); then Y0i has a non-central
hypergeometric distribution if its distribution is of the form

Pr(Y0i = y0i|ψi, N0i, N1i, Ni − yi, yi) =



(
N0i

y0i

)(
N1i

yi − y0i

)
ψ

y0i
i

∑ui
u=li

(
N0i

u

)(
N1i

yi − u

)
ψu

i

y0i = li, ..., ui,

0 otherwise

(12)

where li = max(0, yi − N1i) and ui = min(N0i, yi). Hence the predictive distribution is an
overdispersed non-central hypergeometric distribution. The above predictive distribution
produces (y0i/N0i, y1i/N1i) pairs that lie along the tomography line, and with flat priors on
the probabilities, this distribution is uniform along the tomography line Wakefield (2004d).
This provides a link with the likelihoods of King (1997) and King et al. (1999), but we
emphasize that the flat distribution is with respect to the fractions, and not for the underlying
probabilities.

5 Computation

Given the lack of identifiability in the posterior distribution, it is not surprising that com-
putation is not straightforward for ecological inference, when analyzed using hierarchical
models. In Wakefield (2004c) an “obvious” augmented data scheme was utilized.

Auxiliary Variable Sampling:

For the missing data y0i, the distribution is an extended hypergeometric distribution with
margins N0i, N1i, yi, Ni − yi, i = 1, ...,m:

Pr(Y0i = y0i|ψi, N0i, N1i, yi) =



(
N0i

y0i

)(
N1i

yi − y0i

)
ψ

y0i
i

∑ui
u=li

(
N0i

u

)(
N1i

yi − u

)
ψu

i

y0i = li, ..., ui,

0 otherwise

(13)

where li = max(0, Y −N1i) and ui = min(N0i, Y ) and ψi = p0i(1−p1i)/p1i(1−p0i) is the odds
ratio in the table. This discrete distribution may be sampled from in an obvious fashion, but
in typical political science/sociology applications the margins are large and so generation is
highly inefficient due to the summation over a large number of terms, each of which contains
factorials. The mode is available in closed form, however, which may be exploited to produce
an improved scheme, see Wakefield (2004c) for details.

Posterior Probability Sampling:

14



Here we are required to sample from the conditional distribution for i = 1, ...,m. If we
assume pji|aj, bj ∼ Be(aj, bj), then this conditional distribution corresponds to the product

Be(y0i + a0, N0i − y0i + b0)Be(y1i + a1, N1i − y1i + b1), (14)

for i = 1, ...,m, and is straightforward to sample from. With a normal second stage dis-
tribution for the logits, the conditional distribution is no longer of standard form but a
Metropolis-Hastings step is easy.

For large table Wakefield (2004c) proposed a normal approximation to the convolution.
WinBUGS code for ecological inference using this normal approximation was given in the Ap-
pendix of Wakefield (2004b). In the JAGS (Just Another Gibbs Sampler) software (Plum-
mer (2009)) there is a a novel distribution dsum that may be used in the ecological inference
context. It may be used in the following way (Plummer, personal communication). The
specification y ∼ dsum(y0, y1) where y is observed and y0, y1 are unobserved discrete-
valued stochastic nodes creates an MCMC sampler that will simultaneously update y0 and
y1, while respecting the constraint y0 + y1== y. In typical social science applications there
are too many possible values of y0 (or y1) to use inversion and so the sampler uses discrete
slice sampling (Neal, 2003) as an alternative.

The R package MCMCpack package (Martin et al., 2009) contains a function MCMChierEI to
implement the hierarchical model of Wakefield (2004c) with the normal approximation to the
convolution likelihood implemented along with slice sampling. An extension to this work
to the R × C table case is available in the R package RxCEcolInf (Greiner et al., 2009).
This package contains functions to analyze both ecological data alone, or ecological data
supplemented with individual-level data, which is a very important extension, as we discuss
further in Section 7. The methodological extension to the 2 × 2 table cases is described in
Greiner and Quinn (2009). An additional R package, eco is also available and fits models
described in Imai et al. (2008). These models include a close relative of the parametric model
of Wakefield (2004c) and a non-parametric model in which the second stage distribution is
a Dirichlet process prior.

With sampling-based inference, if we can simulate from Pr(Y0i, Y1i|θi, N0i, N1i, Ni − yi, yi)

then it is straightforward to simulate from the predictive distribution, once samples p
(s)
i are

available from π(pi|N0i, N1i, Ni − yi, yi), via

1

S

S∑
s=1

Pr(Y0i, Y1i|p(s)
i , N0i, N1i, Ni − yi, yi).

6 Illustrative Analysis

We analyze the Louisiana data using the hierarchical normal model, and investigate the
sensitivity of inference to the choice of the gamma prior on the precisions of the random
effects distribution. Specifically, following the procedure outlined in Section 4.1 we pick
ranges of: [0.1, 10], [0.2, 5], [0.5, 2], [0.9, 1.1], for the residual odds of Republican registration.
These range from a prior that expexts the probabilities across areas to be tightly clustered
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around the median, to one in which there is much larger variability. In all cases we specify
N(0, (15π/16

√
3)2) priors for µj, j = 1, 2.

We used the MCMChierEI function to carry out inference, and ran the Markov chains for 106

iterations, after discarding 105 iterations as burn-in. We summarize the accuracy of inference
in terms of S0 and S1 where Sj =

∑
i |p̂ji − p̃ji|/p̃ji, j = 0, 1. For the black probabilities we

obtain S0 = 76.1, 72.8, 78.9, 81.6 while for the white probabilities S1 = 4.4, 4.2, 4.6, 4.7. The
first thing to note is that inference for the black proportions is much less accurate, as we might
expect from Figure 2, since there is far less information available. The empirical distribution
of the residual odds may be calculated here (since the individual data are available), and give
95% ranges for blacks and whites of [0.33,2.3] and [0.41,2.9], respectively so that the second
prior is most consistent with the data, which explains the above summaries of S0 and S1.
Figure 4 gives the posterior medians of the fractions registered Republican for blacks and
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Figure 4: (a) Estimated black fraction registered Republican (RR) versus black fraction RR
under the narrow prior, (b) estimated white fraction RR versus white fraction RR under the
narrow prior, (c) estimated black fraction RR versus black fraction RR under the wide prior,
(d) estimated white fraction RR versus white fraction RR under the wide prior.
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Table 2: Summary of notation for the situation in which we have both individual survey
data with sample sizes m0i and m1i, and aggregate marginal data in area i There are Ni

individuals in area i, with yi responding Y = 1, and N0i, N1i individuals with x = 0, 1
respectively.

Survey Data Aggregate Data
Y = 0 Y = 1 Y = 0 Y = 1

x = 0 z0i m0i N0i −m0i

x = 1 z1i m1i N1i −m1i

mi − zi zi mi Ni −mi − (yi − zi) yi − zi Ni −mi

whites, versus the true fractions based on the individual data. The top row is under the prior
with residual odds in the range [0.9,1.1] and the bottom row is under the prior with range
[0.1,10]. We see that the black/white fractions tend to be overestimated/underestimated.
The effect of the prior is most apparent for the black fractions; under the narrower prior the
estimates are virtually identical for all counties. In Figure 2 we saw that in many counties
the bounds on the black fractions were wide, indicating the lack of information.

7 Combination of Individual and Aggregate Data for

the Posterior Predictive

We now consider the situation in which survey data are available, Table 2 illustrates the
notation in this case, the observed counts in area i are z0i, z1i and yi, i = 1, ...,m. When
such survey data are available on a subset of individuals within particular areas then the
resultant product of binomial distributions may be simply combined with the aggregate data
likelihood, with each term being independent, i.e.

L(p0i, p1i) = p(z0i|p0i)× p(z1i|p1i)× p(y?i |p0i, p1i),

where y?i = yi−zi, and each of the first two terms is binomial and the third is the convolution
likelihood.

Wakefield (2004c) illustrated the benefits of adding individual (survey) data to the ecological
data to gain identifiability. A number of discussants to the paper (Best, 2004; Jackson, 2004;
Salway, 2004) and a subsequent paper (Glynn et al., 2008) suggested that smaller sample
sizes may be all that is needed, and that the design of the survey is an important topic. Here
we touch upon these issues by investigating a number of scenarios.

The first 4 rows of Table 3 report S0 and S1 for survey samples within each area of sizes 1000,
500, 300, 100, respectively. Two sets of results are given in each row, the first set correspond
to the use of the individual-level data only, and the second to the combined individual-
ecologic data. All results were obtained using the AnalyzeWithExitPoll function within
the RxCEcolInf package. Each MCMC run began with a burn-in of 105, with 103 samples
collected subsequently over 106 iterations. In all cases inference is greatly improved when
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Individual Combined
Data Source S0 S1 S0 S1

Ecologic Only — — 78.9 4.6
1000 Samples 22.1 4.0 16.7 0.9
500 Samples 26.2 6.1 15.9 0.8
300 Samples 40.4 8.1 21.7 1.1
100 Samples 73.1 13.4 31.1 1.7
Samples in Half — — 22.0 1.3
Samples in Quarter — — 24.9 1.6
Samples in Eighth — — 29.5 1.6

Table 3: Summaries for the combined survey/ecologic setting. Rows two through five of the
main body show the effects of adding samples of the stated sizes to all areas. Error measures
associated with the individual data only are also given for these rows. The last three rows
report situations in which individual samples of size 500 were sampled from the reported
proportion of areas.

individual-level data supplement the ecologic data. Examination of the resultant estimates
of the probabilities revealed that for low sample sizes bias existed in the estimates but this
was more than offset by the reduction in variance.

Viewed in the opposite direction to the emphasis of this paper, an important observation is
that inference based on the individual data only can be greatly improved by supplementing
the survey data with ecologic information.

In the second stage of our investigation we now fixed the sample size at 500 but only sampled
1/2, 1/4 and 1/8 of areas. Again we see that in all cases inference is hugely improved over
the ecologic only analysis. In fact, note that with samples of size 500 from 8/64 tables (4000
sample size), we achieve better results than with samples of 300 from 64/64 tables (19,200
sample size). Given the additional cost effectiveness of sampling within fewer tables, this
result implies the potential for considerable savings from sampling design in this context.

In Figure 5 we plot the estimates versus the “true” fractions. In the top row these compar-
isons are for the areas with survey data, while in the second row the comparisons are in areas
with no survey data. Although there is clearly bias in the estimates for blacks in particular,
it is far less than in the ecologic only case (compare with Figure 4). This improvement in
estimation with no survey data is due to the hierarchical model which is common to all areas,
thus allowing the areas with surveys to positively impact the areas with no data.

8 Discussion

In this paper, we have shown that it can be unreliable to estimate the pji or p̃ji values with
ecological data. We have also shown that the inclusion of individual level data in the analysis
can mitigate these problems, and that only a small amount of data from a small number of
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Figure 5: Analysis based on subsamples in the first 16 areas only: (a) Estimated black
fraction registered Republican (RR) versus black fraction RR in areas with survey data,
(b) estimated white fraction RR versus white fraction RR in areas with survey data, (c)
estimated black fraction RR versus black fraction RR in areas with no survey data, (d)
estimated white fraction RR versus white fraction RR in areas with no survey data.
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tables may be necessary.

Furthermore, while we have focused on the estimation of pji or p̃ji in this paper, it is straight-
forward to see that the estimation of contextual parameters is not possible from ecological
data alone. Let pji be the proportion of individuals of race j in area i and suppose the
individual-level model is:

pji = aji + bjixi

so that we have both effects due to race in area i, a0i and a1i, and contextual effects, b0i
and b1i. Upon averaging across individuals, to give ecological data we obtain the marginal
area-level probability

pi = xi × p0i + (1− xi)p1i = a1i + xi(a0i + b1i − a1i) + x2
i (b0i − b1i)

which clearly shows the identifiability problem. With a non-linear model (for example a
logistic model), the parameters become identifiable, but only due to the non-linearity and
different non-linear forms will give different answers.

Data and code for all of the examples of the paper are available at:
http://faculty.washington.edu/jonno/cv.html

In Section 7 we showed the benefits of small amounts of individual-level data. In the sim-
ulations we sampled individuals without replacement from black and white populations to
produce a representative sample. In practice selection bias may be present, and without
further information on the nature of this bias, a sensitivity analysis should be performed
that incorporates the uncertainty about selection effects. However, within the framework we
have described such a study is straightforward.
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