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Abstract

In this paper, we illustrate that combining ecological data with subsample data in situations in

which a generalized linear model (GLM) is appropriate provides two main benefits. First, by including

the individual level subsample data, the biases associated with ecological inference in GLMs can be

eliminated. Second, available ecological data can be used to design optimal subsampling schemes, so

as to maximize information about parameters. We present an application of this methodology to the

estimation of regional voter turnout rates across racial groups, showing that small, optimally chosen

subsamples can be combined with ecological data to generate precise estimates relative to a simple

random subsample.

1 Introduction

Ecological inference (the attempt to make inference about individuals with aggregate data) is well known

to be problematic in a number of situations, and may often lead to biased estimates. One solution to this

problem is to obtain individual level data, and to make inference based on this data alone. However, it

would be inefficient to ignore the ecological data, since such data are usually aggregated from a large number

of individuals and therefore provide a great deal of information about some function of the parameters.

Furthermore, the ecological data may inform the sampling of individual level data, effectively reducing the

cost of data collection. In this paper, we consider these issues within the framework of generalized linear

models, specifically addressing the following questions: When does ecological inference lead to bias? How

can we correct ecological bias by combining ecological data and subsample data? Finally, if the ecological

data are readily available (as is frequently the case), can we design an optimal subsample of individual level
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data in order to maximize the information about parameters?

The relevant literature can be divided into three groups: those articles that solely describe ecological

inference, those that describe combined inference for aggregate and individual level data, and those that

describe sampling design in the combined framework. The literature on ecological inference is quite large as

it spans a number of disciplines. Reviews of this literature can be found in Wakefield (2004) and Salway

and Wakefield (2004). The literature on combined inference is considerably smaller and can be separated

into those techniques that treat the ecological data as population level information and those that do not.

When treated as population level information, ecological data are often used in either in a generalized

method of moments framework with the ecological data providing extra moment conditions (Imbens and

Lancaster, 1994; Hellerstein and Imbens, 1999), or in a likelihood framework where the ecological data

provide constraints on the maximization of the likelihood (Handcock et al., 2003; Chaudhuri et al., 2006).

When treated as non-population level information, ecological data have been combined with individual

level data in a variety of models. Wakefield (2004) uses a likelihood approach for 2×2 tables, while Steel

et al. (2004) develops the observed information for this same case, and Haneuse and Wakefield (2008) shows

that this approach can be adapted to case-control data. Jackson et al. (2006) develops a model for the

combination of ecological and individual level data when logistic regression is appropriate at the individual

level. In hierarchical linear models, Raghunathan et al. (2003) considers moment and maximum likelihood

estimates of a common within group correlation coefficient, and Steel et al. (2003) considers many variations

of aggregate and individual data combinations, developing the properties of moment estimators in this

framework. The literature on sampling design in the combined framework has received relatively little

attention to date, despite the costs associated with individual level sampling. In the 2×2 table framework,

Wakefield (2004) and Haneuse and Wakefield (2008) show that, conditional on the ecological data, rare case

observations contain most of the information. For linear models, Glynn et al. (2008) showed that ecological

bias can be decomposed into terms based on group intercepts, group slopes, and confounding, and that

optimal subsampling design conditional on ecological data can eliminate the bias from these sources while

maximizing precision.

In this paper we extend the results of Glynn et al. (2008) to generalized linear models, showing that the

problems of ecological bias are similar in this more general framework, and that subsample data can be

used to correct this bias in a combined likelihood approach. However, the specification of ecological bias,

and the specification of a combined likelihood are complicated by the non-linearity of these models, and

therefore we frame much of the discussion in a Poisson regression example with two binary covariates. The

non-linearity of these models causes further problems for optimal design, because it is rarely possible to

specify the necessary information equations in closed form. Again, we address the question of optimal design

in the context of Poisson regression with two binary covariates and in the context of logistic regression with
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a single binary covariate. The paper is organized in the following manner. In Section 2 we discuss ecological

bias in generalized linear models. Section 3 demonstrates the problems of ecological bias in generalized linear

models with an illustrative example based on regional voter turnout data in the US. In Section 4 we describe

a method for the alleviation of ecological bias through combined data maximum likelihood estimation for

the generalized linear model, and we provide an example of Poisson regression with two binary covariates. In

Section 5, we describe optimal subsample design conditional on the ecological data; we also provide a number

of design examples; including a general look at subsample design for the linear model and some specific design

questions for Poisson and logistic regression. Section 6 presents an application of the combined estimation

and design results to the US regional voter turnout data. We conclude the paper with a discussion of possible

applications and future work in Section 7.

2 Ecological Bias in Generalized Linear Models

Within the framework of generalized linear models, ecological bias is unavoidable in all but a small number of

special cases. We first define the data at the individual level, assuming that we could potentially observe the

triples (xij , yij , z
c
ij) for individuals j = 1, ..., ni in groups i = 1, ...,m, where yi = (yi1, ..., yini) is the vector

of responses from group i, xi = (xi1, ..., xini) is the vector of univariate exposure/covariates from group i,

zc
i = (zc

i1, ..., z
c
ini

) is the vector of confounders, and n =
∑m

i=1 ni represents the “full data” sample size. We

assume that we observe ecological data that consists of the group averages (xi, yi) for groups i = 1, ...,m,

and we may observe zc
i for groups i = 1, ...,m. Furthermore, we assume that the ni observed triples in group

i represent i.i.d. values produced by some process, and we are interested in the parameters of this process.

Within this framework, we consider one of three models:

E[yij |xi, zc
i ] = g(β0i + βwxij) (1)

E[yij |xi, zc
i ] = g(β0i + βwixij) (2)

E[yij |xi, zc
i ] = g(β0i + βwixij + zc

ij), (3)

where g(·) is a non-linear, monotonic link function. In (1), we assume that the linear predictor of each

group has a different intercept, but a common within-group slope. For the remainder of this paper, we will

refer to β0i and βw as intercepts and slopes, even though they are not intercepts and slopes in the linear

model sense. In (2), we assume that each group may have distinct intercepts and slopes. In (3), we assume

that in addition to having distinct intercepts and slopes, zc
ij acts as a confounder so that E[zc

ij |xij ] 6= E[zc
ij ].

We do not parametrize the final term as it represents the combination of all possible confounding variables

and their effects, i.e. zc
ij =

∑K
k=1 βkizijk. These three models are nested, in that (1) is a special case of (2),

which is a special case of (3).

In general, the non-linearity of these models prevents the explicit derivation of their ecological counterparts,
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and in general, the derived form will not have the same link function. We define naive ecological models as,

E[yi|xi] = g(βe
0i + βe

wxi) (4)

E[yi|xi] = g(βe
0i + βe

wixi) (5)

E[yi|xi, zi] = g(βe
0i + βe

wixi + ze
i ) (6)

The non-linearity of g(·) causes a number of problems for ecological inference. First, the equations above

show that ecological inference will not identify the individual level model parameters, and therefore we have

little hope of an unbiased ecological estimate. Second, for the models (2) and (3), it is difficult to select a sin-

gle parameter of interest. We might assume that some combination of the βwi parameters will be of interest,

but the exact combination will depend on the link function and the research question. Finally, the ecological

estimate will not in general have a closed form solution, and therefore, we cannot explicitly derive the bias.

However, we will see from examples that the sources of linear ecological bias considered in Glynn et al. (2008)

(correlated intercepts, correlated slopes, quadratically related slopes, and confounding) will result in bias for

GLMs. Using a Poisson regression with g(·) = exp(·), Figure 1(a) shows an example of (1) with two groups

where the intercepts for each group are negatively correlated with the covariate averages for each group.

The ecological data are represented by the solid squares, and it is clear, that the slope of the regression curve

through these points has a negative slope, as opposed to the positive slopes within the individual groups.

Figure 1(b) shows an example of (2) with two groups where the intercepts happen to be equal and the

slopes for each group are negatively correlated with the covariate averages for each group. The ecological

data are represented by the solid squares, and it is clear that the slope of the regression curve through these

points will have a negative slope, as opposed to the positive slopes within each of the two individual groups.

As discussed previously, it may be difficult to specify the exact combination of the two slopes that would be

of interest to the researcher. However, this negative ecological slope will not correspond to any reasonable

combination of these two positive slopes. Figure 1(c) again shows an example of (2), but with three groups

in which the slopes for each group are quadratically related but uncorrelated with the covariate averages for

each group. The slopes (and intercepts) for the two outer groups are the same and positive, while the slope

for the middle group is negative. The ecological Poisson regression, represented by the dashed line, results

in a slope which is greater than all three, and hence cannot represent any reasonable combination of the three.

It is not surprising that the sources of linear ecological bias can lead to bias in generalized linear models

since g(·) is monotonic and can be approximated by a linear function over some ranges of the lin-

ear predictor space. However, even in the absence of the sources of bias in Figure 1, ecological bias in

GLMs can still occur. We demonstrate this using a simplified model with common parameters across groups.

Suppose we assume a simplified model with common slopes and intercepts across groups. The individual
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Figure 1: Sources of ecological bias: (a) Intercept bias, group intercepts correlated with covariate group
means. (b) Slope bias, group slopes correlated with covariate group means. (c) Slope bias, group slopes
quadratically related to covariate group means. Solid lines are the within group Poisson regression lines.
Dashed lines are the ecological Poisson regression lines.

level model and corresponding ecological model are given by:

E[yij |xi, zc
i ] = g(β0 + βwxij) (7)

E[yi|xi] = g(βe
0 + βe

wxi), (8)

where the parameters β = (β0, βw) are the same across groups. Loosely following equation (3.5) from

Sheppard (2003), the ecological estimating equation based on (8), Ue(β), will be biased for the unbiased

individual level estimating equation, U(β), and the bias in the ecological parameter estimates (β̂e − β) can

be approximated with a first-order Taylor series expansion of the biased estimating equation about the true

value of the parameter. For example, in Poisson regression, g(·) = exp(·) and the aggregate model (Prentice

and Sheppard, 1995),

E[yi|xi] =
1
ni

ni∑
j=1

exp(β0 + βwxij) (9)

does not match the ecological model,

E[yi|xi] = exp(βe
0 + βe

wxi) (10)

Therefore, an unbiased estimating equation, U(β), can be written as the sum of the biased ecological esti-
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mating equation, Ue(β), and its bias, b(β),

U(β) =
m∑

i=1

[
1
xi

]yi −
1
ni

ni∑
j=1

exp(β0 + βwxij)


=

m∑
i=1

[
1
xi

]yi − exp(β0 + βwxi) + exp(β0 + βwxi)−
1
ni

ni∑
j=1

exp(β0 + βwxij)


=

m∑
i=1

[
1
xi

]
(yi − exp(β0 + βwxi))

+
m∑

i=1

[
1
xi

]exp(β0 + βwxi)−
1
ni

ni∑
j=1

exp(β0 + βwxij)


= Ue(β) + b(β),

and the ecological bias in the parameter estimate can be approximated by the first-order Taylor series

expansion,

β̂e − β ≈ E[U ′
e(β)]−1b(β)

where,

E[U ′
e(β)] = −

[ ∑m
i=1 exp(β0 + βwxi)

∑m
i=1 xiexp(β0 + βwxi)∑m

i=1 xiexp(β0 + βwxi)
∑m

i=1 x2
i exp(β0 + βwxi)

]

E[U ′
e(β)]−1 = − 1

D

[ ∑m
i=1 x2

i exp(β0 + βwxi) −
∑m

i=1 xiexp(β0 + βwxi)
−
∑m

i=1 xiexp(β0 + βwxi)
∑m

i=1 exp(β0 + βwxi)

]

and where,

D =
m∑

i=1

exp(β0 + βwxi)×
m∑

i=1

x2
i exp(β0 + βwxi)−

(
m∑

i=1

xiexp(β0 + βwxi)

)2

Since we are primarily interested in βw, we can write the approximate bias for the ecological estimator as,

βw − β̂e
w ≈ 1

D

[
m∑

i=1

xiexp(β0 + βwxi)

]
×

m∑
i=1

exp(β0 + βwxi)−
1
ni

ni∑
j=1

exp(β0 + βwxij)


− 1

D

m∑
i=1

exp(β0 + βwxi)×

 m∑
i=1

xi

exp(β0 + βwxi)−
1
ni

ni∑
j=1

exp(β0 + βwxij)


(11)

Hence, ecological bias in the simplified model depends on the distribution of the covariate, as will be true in

general. If xij = xij′ for all j 6= j′, then exp(β0 +βwxi) = 1
ni

∑ni

j=1 exp(β0 +βwxij) for all i, and (11) is zero.

We can further simplify (11) with the approximation 1
ni

∑ni

j=1 exp(β0 + βwxij) ≈ exp(β0 + βwxi) + 1
2βws2

xi
,
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where s2
xi

is the sample variance of the covariate within group i. The simplified approximate bias can be

written as,

βw − β̂e
w ≈ 1

D

m∑
i=1

xiexp(β0 + βwxi)×
m∑

i=1

exp(β0 + βwxi)

1− 1
ni

ni∑
j=1

exp(1/2β2
ws2

xi
)


− 1

D

m∑
i=1

exp(β0 + βwxi)×
m∑

i=1

xiexp(β0 + βwxi)

1− 1
ni

ni∑
j=1

exp(1/2β2
ws2

xi
))


(12)

We see that the approximate bias in the slope parameter depends on the variability of the group specific

sample variances. In particular, if s2
xi

= s2
xi′

for all i 6= i′, then the
(
1− 1

ni

∑ni

j=1 exp(1/2β2
ws2

xi
)
)

multiplier

factors out of (12) and the bias for the slope parameter is approximately zero. Furthermore, Richardson

et al. (1987) and Wakefield (2003) showed that when xij is Gaussian, dependence is necessary between sxi

and xi in order for pure specification bias (Greenland, 1992) to be present.

This example with g(·) = exp(·) illustrates that a non-linear individual level model can result in ecological

bias without the effects of intercepts bias, slope bias, or confounding bias that were necessary for ecological

bias in the linear model. This result and Figure 1 motivate the use of individual level data for the estimation

of individual level parameters. However, while the individual level data provides identification of the pa-

rameters, the ecological data can provide precision when combined with the individual data. Furthermore,

in many applications, the ecological data will represent an aggregation of all available individual level

observations, and therefore any subsample will be dependent on this data. This dependence provides an

opportunity for optimal subsample design, because the ecological data are typically available prior to any

subsampling. In the following sections, we describe the combination of ecological and subsample data with

two goals in mind: estimation of individual regression parameters and optimal subsample design for the

estimation of these parameters. There may be some applications where the researcher is only interested in

combinations of the individual level parameters, but to simplify the goals of this chapter, we assume that

estimates of all parameters are needed.

3 US Voter Turnout Data

Political scientists, policy makers, and campaign strategists want to know who votes (Burden, 2000). How-

ever, readily available data sources cannot fully answer this question. As a motivating example, we consider

comparing white versus non-white turnout rates in the southern states versus the rest of the US. In the

notation of the previous section, a logistic regression is appropriate for this example with i indexing the two

regions and j indexing eligible voters within these regions. The dependent variable (yij) takes the value one

7



Table 1: The ANES data in counts by region

Turnout Counts by Region
Region Not Vote/Vote Non-white White
Non-southern Not Vote 41 75

Vote 43 238
Southern Not Vote 32 27

Vote 48 90

if eligible voter j in region i voted and zero otherwise, while the independent variable (xij) takes the value

one if eligible voter j in region i is white and zero otherwise. The probability that eligible voter j in region

i voted, can be written in logistic regression formulation,

E[yij |xij ] =
exp(β0i + βwixij)

1 + exp(β0i + βwixij)
, (13)

where we allow the slopes to vary by region. Of course, most applications would utilize more complex

definitions for the groups, and possibly more covariates, but this simple example will serve to ellucidate the

main points of this paper.

Ecological and individual level data sources are available for this model. Ecological data can be obtained

from the census and the voter rolls, while the American National Election Study (ANES) provides survey

data on individuals. For the reasons stated in the previous section, the ecological data are insufficient to

estimate the parameters of (13), The ANES data is also problematic because people who did not vote tend

to lie to interviewers when asked about their voting history (Anderson and Silver, 1986; Abelson et al.,

1992). However, for most of this paper, we treat the ANES data (Table 1) as the gold standard. Figure 2

shows the results of ecological bias for this example based solely on the ANES data. The regional averages

for the southern and non-southern states are plotted as S and NS respectively. Clearly these two points

cannot be used to estimate all of the parameters in (13), however, we could use these points to get an

indication of the “white effect”. The dashed curve represents the predicted probabilities from a logistic

regression fitted to these two points, and ecological inference from this regression leads us to conclude that

there is no predicted difference in the probability of voting for white and non-white eligible voters. The

solid curves represent the predicted probabilities for the southern and non-southern states after fitting (13)

with the individual level ANES data. This analysis shows a positive and highly significant “white effect”,

with insignificant differences between the slopes and the intercepts of the two regions. Therefore, if we

assume that the ANES data are the gold standard, ecological inference will lead us to incorrectly conclude

that there is no difference in voting probabilities between whites and non-whites.

Of course, the ANES response data are not the gold standard, and we see from Table 1 that the turnout

proportions are much higher than the true proportions we would get from the ecological data. At the
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Figure 2: The regional turnout and white/non-white proportions from the ANES for the southern and non-
southern states are plotted as S and NS respectively. The dashed curve represents the predicted probabilities
of voting based on the ecological logistic regression. The solid curves represent the predicted probabilities of
voting based on the within group logistic regressions.

individual level, it is often possible to validate these numbers by cross checking the “not vote/vote” answers

of survey respondents against the names on the voting rolls for the corresponding election (Traugott, 1989;

Silver et al., 1986). However, this strategy can be quite expensive, because many districts do not have easily

accessible records. In the remaining sections of this paper, we illustrate a general methodology that can be

utilized to reduce the cost of such studies by using ecological data to design small subsamples of expensive

gold standard data such that the combined data will provide precise and accurate estimates.

4 Estimation for Generalized Linear Models with Ecological and

Subsample Data

We assume that the individual level model can be written as,

f(y, X) =
m∏

i=1

ni∏
j=1

fi(yij |Xij)fi(Xij), (14)

so that individuals are independent of each other, but distributions can be different across groups. In

regression, we are only interested in the parameters from the distribution of y given X, and the factorization

of (14) allows us to extract this conditional distribution without specifying a distribution for the covariates.

In this sense, regression is always at least semi-parametric. We assume that the conditional distribution has
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a generalized linear model form,

f(y|X) =
m∏

i=1

ni∏
j=1

exp {(yijθij − b(θij))/a(φi) + c(yij , φi)} (15)

where yij is the response for individuals j = 1, ..., ni in groups i = 1, ...,m, θij = Xijβi is the linear predictor,

βi is the vector of regression parameters for group i with p elements, and Xij is the row of the covari-

ate matrix for individual j in group i. In (14), the (yij , Xij) pairs are seen as generated by some i.i.d. process.

Suppose that ni is quite large for all i, and that instead of having observations on all ni individuals within

each group, we only have observations on ki << ni individuals for groups i = 1, ...,m. Also suppose that we

have ecological data; specifically, the ecological response sums yi+ ≡
∑ni

i=1 yij and the vector of ecological

covariate sums Xi+ ≡
∑ni

i=1 Xij for groups i = 1, ...,m. In order to estimate the parameters of (15), we

need to write down the joint distribution of the subsample and the ecological data. However, to simplify the

discussion, we will start with the assumption that we observe the entire covariate matrix within each group

i. Since we are only interested in the parameters of (15), this assumption allows us to base estimation and

inference on the distribution for subsample and ecological response values (ys
i , yi+) conditional on the full

covariate matrix (Xi) within each group. Prentice and Sheppard in Prentice and Sheppard (1995) propose a

similar model in which aggregate response data is combined with a sample of covariates. We further simplify

the task if we remove the subsampled response values from the ecological response in order to eliminate

the dependence. We write the response sum minus the subsampled response sum as y
(−s)
i+ , and this sum is

independent of the subsampled response vector. Within a single group, we can suppress the i notation, and

the distribution of the response subsample, ecological data, and full data on the covariate matrix can be

written as,

f(ys, y
(−s)
+ |X;β, φ) =

k∏
j=1

[exp {(yjθj − b(θj))/a(φ) + c(yj , φ)}]× f(y(−s)
+ |X;β, φ) (16)

where,

f(y(−s)
+ |X;β, φ) =

∫
f(y+, yk+2, ..., yn|X;β, φ)dyk+2 · · · dyn

Notice that we adopt the notational convention that a semi-colon separates parameters from random vari-

ables and that the integral is taken over yk+2, ..., yn. This is because yk+1 is determined by y+ and yk+2, ..., yn.

In (16), f(y(−s)
+ |X;β, φ) is a convolution likelihood over the not subsampled response values (y(−s)). For

some GLMs, this distribution can be written in closed form (e.g. in Poisson regression (y+|X;β, φ) ∼

Pois
(∑n

j=1 exp(Xjβ)
)
. And for any discrete response GLM, this distribution can be written as a sum over

all possible values for the individual response data such that the ecological response sum is achieved. Let y∗j

represent a possible value for yj and y
(−s)∗
+ =

∑n
j=k+1 y∗j be the possible ecological response sums. Also let
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{y(−s)∗ : y
(−s)∗
+ = y+} be the set containing the possible values for the not subsampled response values that

will sum up to the ecological response sum. Then the combined distribution for a discrete response GLM

can be written as,

f(ys
i , y

(−s)
+ |Xi;β, φ) =

k∏
i=1

[exp {(yjθj − b(θj))/a(φ) + c(yj , φ)}]

×
∑

{y(−s)∗:y
(−s)∗
+ =y+}

k∏
i=1

[
exp

{
(y∗j θj − b(θj))/a(φ) + c(y∗j , φ)

}]
(17)

Unfortunately, we will usually not observe the entire covariate matrix. Instead we observe only the vector

of ecological covariate sums and the covariate matrix for the subsample. Therefore, we are faced with two

choices on how to proceed. First, we can assume that the design matrix is drawn from a distribution whose

parameters we must estimate. Second, we can interpret the design matrix as a finite population whose

parameters we must estimate. Both approaches can be useful in different circumstances, and both present

difficulties.

If we assume that the design matrix is drawn from a distribution, then we must model the distribution of

X and treat the parameters of this distribution as nuisance parameters. For example, suppose that the

design matrix has one continuous covariate Xj =
[

1 xj

]
, we could model this covariate as Gaussian

with parameters (µx, σ2
x). Furthermore, in the random draw interpretation, the ecological covariate sums do

not provide population level information about (µx, σ2
x). Instead, X+ is just an aggregation of draws, and

the researcher will need to develop the joint distribution of X+ and Xs. Therefore, in this interpretation

(µx, σ2
x) are the nuisance parameters that we must estimate along with the parameter of interest (β).

We now consider a multivariate example that was treated in Richardson et al. (1987), Jackson et al. (2006),

and Wakefield and Salway (2001). Suppose the design matrix has two binary variables so that Xj =[
1 xj zj

]
. In this case there are many possible parameterizations of the joint distribution of x and z,

with three parameters being required. For example, we could take as the nuisance parameters the odds ratio

and the marginal probabilities for one of the two binary variables.

xj |zj ∼ind Bern (expit(γ0 + γ1zj)) (18)

zj ∼iid Bern(γ2) (19)

Again, the ecological covariate sums do not provide population level information about γ, and the researcher
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Table 2: Example with two binary covariates. The internal cells of the table represent the counts of the
four unique row types within X. These would typically not be included for ecological data. The margins
represent the sums over these totals, which would be included in the ecological data.

n00 n01 n− x+
n10 n11 x+

n− z+ z+ n

will need to develop the joint distribution of X+ and Xs. This can be done with the convolution likelihood

of Wakefield (2004) and the hybrid likelihood of Haneuse and Wakefield (2008).

If we utilize the second interpretation of the design matrix as a finite population, then effectively, we must

estimate the rows that were not included in the subsample. The order of these rows will not matter, since

y
(−s)
+ does not reference a specific ordering of the rows in X(−s). However, we will be unable to estimate

the composition of the rows in X(−s), unless, Xs contains enough information about the unique rows in

X(−s). Specifically, the parameters that need to be estimated are the counts of unique row types in the

matrix X =
{

Xs ∪X(−s)
}

, where Xs is known. These counts can be seen as nuisance parameters that we

need to estimate in order to estimate β and φ.

For example, if the design matrix has two binary variables Xj =
[

1 xj zj

]
, then there are only four

unique types of row in the design matrix: n00 is the number of observations in the full data with xj = 0

and zj = 0, n10 is the number of observations in the full data with xj = 1 and zj = 0, n01 is the number of

observations in the full data with xj = 0 and zj = 1, and n11 is the number of observations in the full data

with xj = 1 and zj = 1. We can estimate these counts using the corresponding subsample counts: k00, k10,

k01, and k11.

As we can see from this example, in order for this method to work, there has to be a limit on the number

of unique rows. Specifically, if one of the covariates is continuous, then all the rows of X are potentially

unique, and Xs does not provide enough information about X(−s). However, we receive extra information

about X from the ecological covariate sums. In the finite population interpretation, these sums (X+) provide

population level information about X, and if we restrict ourselves to discrete covariates (or discretize any

continuous covariates), then the ecological covariate sums provide population level information about the

counts of the unique row types. In our example with two binary covariates, the four unique types of

rows in the design matrix can be represented by the 2 × 2 table shown in Table 2 in which the ecological

covariate sums X+ =
[

n x+ z+

]
specify the margins. Since we do not observe the internal cell counts

(n00, n01, n10, n11), we only have partial information about the design matrix as specified by the margins of

the table. However, n00 +n01 +n10 +n11 = n, n10 +n11 = x+, and n01 +n11 = z+, so the dimensionality of

the distribution of the design matrix has been reduced further, and we can write the unknown internal cell

12



counts in terms of a single cell. For example, writing the unknowns in terms of n11 gives,

n01 = z+ − n11

n10 = x+ − n11

n00 = ni − x+ − (z+ − n11).

and the nuisance parameter has been reduced to n11 which has support over the integers between

max(0, x+ + z+ − n) and min(x+, z+). Therefore, in this example, the ecological sums have reduced the

dimensionality of the parameter space from four unknown counts to one unknown count, and the subsample

design matrix (Xi
s) is only needed to estimate this final count. Notice the difference in interpretation

between y+ and X+; yj is seen as generated by an independent process, and therefore y+ has a distribution,

whereas we only care about the finite population distribution of X and therefore X+ is population level

information for this finite population. In the remainder of this paper, we utilize both the random draw

interpretation and the finite population interpretation depending on the task at hand. In general, we utilize

the random draw interpretation for estimation and the finite population interpretation for design.

If we denote the vector of unknown counts for unique row types in X as nX , then we can incorporate the

ecological covariate information into the likelihood with an indicator function,

f(X+;nX) =

{
1 if nX ⇒ X+

0 otherwise
(20)

Utilizing (16) and the finite population interpretation of X, inference can be achieved with the joint distribu-

tion of the subsample and ecological data, treating the unknown counts for unique row types as parameters.

The joint distribution is given by

f(ys, y
(−s)
+ ,Xs, X+;nX , β, φ) =

k∏
j=1

[exp {(yjθj − b(θj))/a(φ) + c(yj , φ)}]

× f(y(−s)
+ |X+,nXs ;nX , β, φ)

× f(nXs |X+;nX)× f(X+;nX) (21)

where, θj = Xjβ. Utilizing (16) and the random draw interpretation of X, inference can be achieved by

integrating over a complete data likelihood that has been factored into the known and the unknown parts.

If we write n
(−s)
X as the unknown counts for unique row types in X(−s), then the complete data likelihood

13



is given by

f(ys,Xs,n
(−s)
X , y+, X+;β,γ) = f(ys,Xs,n

(−s)
X , y

(−s)
+ , X

(−s)
+ ;β,γ)

= f(ys|Xs;β)

× f(y(−s)
+ |n(−s)

X ;β)

× f(nXs ;γ)

× f(n(−s)
X |X(−s)

+ ;γ)

× f(X(−s)
+ ;γ) (22)

where n
(−s)
X must be averaged over. In principle, (21) or (22) can be used as a basis for estimation

and inference. For estimation in the finite population interpretation, we need only maximize over the

values of (nX , β, φ) in order to obtain the MLE. For inference, we can use a profile likelihood where the

nuisance parameters nX have been profiled out. Since the likelihood for any given nX is well behaved,

the profile likelihood will just be the maximum of these individual likelihoods over the range of (β, φ).

In the random draw interpretation, we utilize the EM algorithm, taking expectations over the unknown

n
(−s)
X values. For inference in the random draw interpretation, we use the standard EM approaches to in-

ference, but note that an MCMC approach is straightforward with the n
(−s)
X values being auxiliary variables.

4.1 Example: Poisson Regression with Two Binary Covariates

For a Poisson regression with two binary covariates and an additive model (we continue to supress the i

notation),

λ
(−s)
+ =

n∑
j=k+1

exp(Xjβ)

= (n00 − k00)eβ0 + (n01 − k01)eβ0+βc

+ (n10 − k10)eβ0+βw + (n11 − k11)eβ0+βc+βw ,

and φ = 1. Therefore, in the finite population interpretation, (21) simplifies to,

f(ys|Xs;β, φ) =
k∏

j=1

Pois(exp(Xjβ))

f(y(−s)
+ |nXs ;nX(−s) , β, φ) = Pois

(
λ

(−s)
+

)
f(nXs |X+;nX) =

(
n11
k11

)(
n−n11
k−k11

)(
n
k

) (23)
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where n11 is an unknown parameter, and n01 = z+ − n11, n10 = x+ − n11, and n00 = n− x+ − (z+ − n11).

In the random draw interpretation for this example, n
(−s)
X |X(−s)

+ has the non-central hypergeometric distri-

bution of McCullah and Nelder (1989). The joint distribution of X
(−s)
+ in this example can be parameterized

by factoring f(x(−s)
+ , z

(−s)
+ ;γ) into f(x(−s)

+ |z(−s)
+ ;γ) × f(z(−s)

+ ;γ), where f(x(−s)
+ |z(−s)

+ ;γ) has the binomial

convolution distribution of Wakefield (2004) and f(z(−s)
+ ;γ) follows a binomial distribution. The complete

data likelihood simplifies to

f(ys,Xs,n
(−s)
X , y+, X+;β,γ) =

k∏
j=1

{Pois (yj |λj)}

× Pois
(
y
(−s)
+ |λ(−s)

+

)
× Multinom(k00, k10, γ01, k11, k00; γ10, γ01, γ11)

× NCHyperGeo

(
n

(−s)
11 |n− k, X

(−s)
+ ,

γ11γ00

γ10γ01

)
× BinConvolution(x(−s)

+ |z(−s)
+ , n− k;γ)

× Bin(z(−s)
+ |n− k; (γ01 + γ11, γ00 + γ10)

where the distribution of the not subsampled row counts follows the non-central hypergeometric distribution

and the distribution of the ecological counts follows a binomial convolution.

5 Optimal Subsample Design for Generalized Linear Models Con-

ditional on Ecological Data

For optimal design conditional on the ecological data, we must carefully consider the information available to

the researcher at the time of the subsample. We know that the ecological data are available, but most design

schemes will also require some information on individual covariate values. For example, if white/non-white

is a covariate, and we would like to sample based on this covariate, we need to be able to choose to sample

whites or non-whites. There are a number of scenarios where this may be feasible. First, it may be possible

to obtain a sampling frame based on full or partial data for all the covariates. With a full sampling frame,

design is based on the distribution of the subsampled response values conditional on the ecological response

and individual covariate values because the sampling frame provides the full design matrix. In the second,

more realistic scenario without a full sampling frame, it may be possible to perform a two stage sampling

design where individuals are sampled at random, and we choose whether or not to sample response values

from these individuals based on their covariates. For example, the ANES data provides a probability

sample of eligible voters. If we want to obtain the true “not vote/vote” status of these eligible voters, one

could subsample among the ANES respondents and crosscheck against the voting rolls for the names of

selected respondents. A two stage sample will slightly complicate the analysis, but any real application
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will likely be further complicated (e.g. with demographic covariates, the inclusion of data from the Public

Use Microdata Survey (PUMS), Ruggles et al. (2004) will often be desirable). That being said, results for

optimal subsample design based on a sampling frame for the full design matrix and the results from the

previous section provide the building blocks for a more complicated analysis. In this section, we present

results for design in the sampling frame context.

If a sampling frame is available for the covariate data, then design questions will be based on the distribution

of subsample response data conditional on the ecological response data and the individual covariate data.

We assume that we can sample within each group, therefore independence between groups is preserved, and

we can consider the distribution for a single group, again supressing the i notation.

f(ys|y+,X) =
f(ys, y+|X)

f(y+|X)

=
f(ys, y

(−s)
+ |X)

f(y+|X)

=
f(ys|X)× f(y(−s)

+ |X)
f(y+|X)

=
f(ys|Xs)× f(y(−s)

+ |X(−s))
f(y+|X)

(24)

Notice that in this design scenario, the design matrix is known, and we don’t need to estimate the counts

of unique row types. Also notice that redundancy in the subsampled responses and ecological responses

allows us to re-write the joint distribution in terms of the subsampled responses and the sum of the “not

subsampled” responses, which in turn allows the numerator of (24) to factor in the same manner as (21).

The slight complication here is that we need to divide by the distribution of the ecological sum.

5.1 Example: The Linear Model

Subsample design is relatively easy in the linear model because sums of normals in this framework only

depend on sums of the covariates, f(y+|X+;X, β, φ) = f(y+|X+;β, φ), and therefore,

y+|X+ ∼ N(X+β, nσ2)

y
(−s)
+ |X(−s)

+ ∼ N(X(−s)
+ β, (n− k)σ2)

ys|Xs ∼ind Nk

(
Xsβ, σ2Ik

)
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If we have a sampling frame for the entire covariate matrix, (24) simplifies to

f(ys|y+,X;β, φ) =
f(ys|Xs;β, σ2)× f(y(−s)

+ |X(−s);β, σ2)
f(y+|X;β, σ2)

=
f(ys|Xs;β, σ2)× f(y(−s)

+ |X(−s)
+ ;β, σ2)

f(y+|X+;β, σ2)
,

where the second step occurs because of the linear model. If we denote covariate vectors of averages as

X ≡ 1
nX+ and the centered covariate subsample matrix as Xs − X, then the Fisher information about β

can be written as

I(β) =
1
σ2

(
XsT Xs +

1
n− k

(X(−s)
+ )T X

(−s)
+ − 1

n
(X+)T X+

)
=

1
σ2

(
XsT Xs +

1
n− k

(X+ −Xs
+)T (X+ −Xs

+)− 1
n

(X+)T X+

)
=

1
σ2

(
(Xs − X)T (Xs − X) +

1
n− k

[
k

n
(X+)T X+ − 2(Xs

+)T X+ +
n

k
(Xs

+)T Xs
+

])
=

1
σ2

(
(Xs − X)T (Xs − X) +

nk

n− k
(X

s −X)T (X
s −X)

)
(25)

where (25) is the matrix version of the design result from Glynn et al. (2008). In order to maximize

information about β, we want to subsample widely varying covariate values whose averages are far away

from the ecological averages.

5.2 Example: Poisson Regression

In our Poisson regression example,

ys|Xs ∼
k∏

j=1

Pois(exp(Xjβ))

y
(−s)
+ |X(−s) ∼ Pois

 n∑
j=k+1

exp(Xjβ)


y+|X ∼ Pois

 n∑
j=1

exp(Xjβ)

 (26)

If the conditional likelihood (24) can be derived, then optimal sampling design can be based on the expected

information from the conditional likelihood. If we also have a sampling frame for the entire design matrix,

(24) simplifies to
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f(ys|y+,X) =
f(ys|Xs)× f(y(−s)

+ |X(−s))
f(y+|X)

=
f(ys|Xs)× f(y(−s)

+ |X(−s)
+ )

f(y+|X+)

If we subsample within each group, the observed information in the group i can be written as

∂2`

∂β
= −

k∑
j=1

XT
j Xje

Xjβ

+

(
y
(−s)
+

λ
(−s)
+

− 1

)
n∑

j=k+1

XT
j Xje

Xjβ −
y
(−s)
+

(λ(−s)
+ )2

n∑
j=k+1

XT
j eXjβ

n∑
j=k+1

Xje
Xjβ

−
(

y+

λ+
− 1
) n∑

j=1

XT
j Xje

Xjβ − y+

λ2
+

n∑
j=1

XT
j eXjβ

n∑
j=1

Xje
Xjβ

=
y
(−s)
+

λ
(−s)
+

 n∑
j=k+1

XT
j Xje

Xjβ − 1

(λ(−s)
+ )

n∑
j=k+1

XT
j eXjβ

n∑
j=k+1

Xje
Xjβ


− y+

λ+

 n∑
j=1

XT
j Xje

Xjβ − 1
λ+

n∑
j=1

XT
j eXjβ

n∑
j=1

Xje
Xjβ

 (27)

Notice that we can factor eβ0 out of the top and bottom of all of these terms, and hence (27) no longer

depends on β0. This is not surprising, because the ecological sums contain all the information about the

overall average. Furthermore, the two terms of (27) can be written as weighted sums of squares if we write

X
w

= 1
λ+

∑n
j=1 Xje

Xjβ and Xw
j =

(
λ

1/2
j (Xj −X

w
)
)

j
for rows j = 1, ..., n and X

w(−s)
= 1

λ+

∑k
j=1 Xje

Xjβ

and X
w(−s)
j =

(
λ

1/2
j (Xj −X

w(−s)
)
)

j
for rows j = 1, ..., k.

∂2`

∂β
=

y
(−s)
+

λ
(−s)
+

(
Xw(−s)T

Xw(−s)
)
− y+

λ+

(
XwT Xw

)
(28)

Therefore, the observed information can be seen as the combination of the weighted sums of squares for the

“not subsampled” covariates and the weighted sums of squares for the full data. From the design standpoint,

we will not know y
(−s)
+ prior to subsampling, so we need to derive the expected information conditional on

the ecological data. Conveniently, y
(−s)
+ |y+ follows a binomial distribution and hence E[y(−s)

+ |y+] =
y+λ

(−s)
+

λ+
.

Therefore, the Fisher information can be written as,

I(β) =
y+

λ+

{(
XwT Xw

)
−
(
Xw(−s)T

Xw(−s)
)}

(29)

The expected information in the subsample conditional on the ecological data provides an objective function

to answer design questions. In general, we want to maximize this information, and we achieve this by max-

imizing the first term and minimizing the second term. The second term can be minimized by subsampling
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covariate values in order to minimize the weighted sum of squares for the “not subsampled” individuals

within group i. The first term cannot be maximized within group i, because all of the elements are fixed by

the ecological data. However, in some cases it will be appropriate to subsample only from a subset of groups,

and this term can tell us about the potential information within each group. With more than one covariate,

I(β) is a matrix, and hence we must define what is meant by maximization. Maximizing the determinant is

one possibility, but we will assume that there is one parameter of interest, and the coefficients on all other

covariates can be thought of as nuisance parameters.

One plausible example with complete information about the design matrix involves a Poisson regression

with a single binary covariate. When we have a single binary covariate, the ecological covariate data will

fully describe the distribution of the covariates. Therefore,
∑n

j=1 λj will be known despite the non-linear

link function, and the joint distribution of the ecological and subsample data has an analytical form. This

form will allow not only estimation, but also derivation of the Fisher Information that will inform optimal

subsample design conditional on the ecological data. However, design will depend on which parameters are

group specific. Therefore, we divide the discussion into two cases: group specific risk ratio and common risk

ratio.

If we utilize a group specific risk ratio (βwi), then we can again supress the i notation by considering a

single group, and
∑n

j=1 λj = nxeβ0+βw +n(1−x)eβ0 , where x is the ecological covariate average within each

group. Furthermore,
∑n

j=k+1 λj = nx(−s)eβ0+βw + n(1− x(−s))eβ0 , where x(−s) is the covariate average for

the individuals who aren’t in the subsample. We can calculate this value from the ecological and subsample

covariate values, therefore, every element of the ecological distribution is known.

The expected information conditional on the ecological data (29) simplifies for binary covariates. Recall that

eβ0 cancels from the information equation, and therefore, βw is the only parameter of interest for group i,

and its expected information is given by

I(βw) = − (n− k)
λ+/n

x(−s)(1− x(−s))eβw

(x(−s)eβw + (1− x(−s)))
+

y+

λ+/n

x(1− x)eβw

(xeβw + (1− x))
(30)

This equation allows us to address a number of optimal design questions, but as in most non-linear design

scenarios, we must specify βw in order to proceed. In general, we can specify an optimal design for each

possible value of βw, and the researcher can choose the appropriate design for a given application. However,

in this example, the optimal design only changes at one point in the parameter space.

In Figure 3 we show the plots of expected information within a single group (i.e. i notation supressed) as

a function of the “not subsampled” covariate average for a group with n = 1000, k = 50, and an ecological

covariate average of 0.3. The vertical lines represent the values we can choose for x(−s). This range depends
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Figure 3: Vertically shifted expected information for different values of βw as a function of the “not subsam-
pled” covariate average. The vertical dashed bars represent the possible values for the “not subsampled”
covariate average, which depends on the ecological covariate average (.3 in this example), the full data size
(n=1000), and the subsample size (k=50): When βw = 0, the optimal design is to choose x(−s) to be as
close to zero as possible. Since subsampling large covariates will make x(−s) smaller, we should subsample
covariates equal to one. When βw = −1, the optimal design is to choose x(−s) to be as close to zero as
possible. Therefore, we should subsample covariates equal to one. When βw = 1, the optimal design is to
choose x(−s) to be as close to zero as possible. Therefore, we should subsample covariates equal to one.
When βw = 2, the optimal design is to choose x(−s) to be as close to one as possible. Therefore, we should
subsample covariates equal to zero.
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on the ecological covariate average, the full data size and the subsample size. In Figure 3 when βw = 0, the

expected information curve is symmetric as a function of the “not subsampled” covariate average. Within

the vertical dashed lines, we maximize the expected information by choosing x(−s) to be as small as possible.

Since large subsampled covariates will make x(−s) small, we should sample covariates equal to one. This

result shows that rare covariates will provide the most information, when the covariate has a weak effect

on the response count. In Figure 3 when βw = −1, the expected information curve is left skewed as a

function of the “not subsampled” covariate average. Within the vertical lines, we still maximize the expected

information by choosing x(−s) to be as small as possible, therefore, we should sample covariates equal to

one. In fact, the skewness of the expected information function increases the benefit that we get from using

the optimal design. Hence when there is a negative effect and covariate “ones” are rare, then low count

responses are also rare. Therefore, we especially want to sample the rare covariate “ones” because these

will bring us the rare lower count responses on average. In Figure 3 when βw = 1, the expected information

curve is right skewed as a function of the “not subsampled” covariate average. However, the skewness of

this function is not enough to overcome the effect of the ecological covariate average. Within the vertical

lines, we still maximize the expected information by choosing x(−s) to be as small as possible, therefore,

we should sample covariates equal to one. Notice, the right skewness of the expected information function

decreases the benefit that we get from using the optimal design. Hence when there is a small positive

effect and covariate “ones” are rare, the rare covariate bonus, outweighs the expected rare response bonus.

Therefore, we should sample the rare covariate values, even though these will lead to non-rare responses

on average. In Figure 3 when βw = 2, the expected information curve is right skewed to a greater extent

as a function of the “not subsampled” covariate average. Within the vertical lines, we now maximize the

expected information by choosing x(−s) to be as large as possible, therefore, we should sample covariates

equal to zero. Hence the larger right skewness of the expected information changes the optimal design,

and the bonus we get from rare responses outweighs the bonus we get from the rare covariates. Therefore,

we should sample non-rare covariates in order to get rare responses on average. Figure 3 shows that for a

specific data set we should specify a decision rule based on x and our beliefs about βw. Furthermore, for

the case of a single binary covariate, there are only two possible optimal designs, and the βw values that

specify one design or the other partition the parameter space into two parts.

If we additively include a binary confounder to the model and treat the coefficient on this variable (βc) as

a nuisance parameter, then the design problem is to maximize the information about βw while accounting

for our uncertainty about βc. Figure 4 shows a contour plot for maximized expected information for βw

treating βc as a nuisance parameter, with k = 100, n = 1000, n11 = 200, x = .3, z = .6 and βw and βc close

to zero. The heights on the contour plot represent the maximum expected information I(βw) for different

values of the subsampled binary covariate average (xs) and the subsampled binary confounder average (zs)

where the maximization is carried out over the possible values of k11. However, the maximum (represented
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n = 1000, x = .3, z = .6, n11 = 200, ββw = 0.01, and ββc = 0.01
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Figure 4: Maximized expected information for βw treating βc as a nuisance parameter, with k = 100,
n = 1000, n11 = 200, x = .3, z = .6 and βw and βc close to zero. The heights on the contour plot represent
the maximum expected information I(βw) for different values of the subsampled binary covariate average
(xs) and the subsampled binary confounder average (zs) where the maximization is carried out over the
possible values of k11. However, the maximum (represented by the “+”) is on the boundary, and hence k11

is determined by xs and zs. This shows that to maximize I(βw) when βw and βc are close to zero, we should
sample rare values of the binary covariate, and sample the binary confounder in proportions equal to the
ecological proportions.

by the “+”) is on the boundary, and hence k11 is determined by xs and zs. This maximizing value of xs is

one, showing that we replicate the design rule for the one variable case. The maximizing value of zs is 0.6

showing that we should sample the binary confounder in proportions equal to the ecological proportions.

This result is analogous to the linear model result from Glynn et al. (2008). We can produce similar plots

for different values of βw and βc, and as in the one variable case, we have found that this maximizing value

of xs is fairly robust against different parameter values. However, the maximizing value of zs is not robust

to parameter values away from zero.

If we are willing to assume a common risk ratio across groups, then we can choose which group to sample in

addition to the design within each group. We also need to re-introduce the i notation. Re-writing (30) with
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the i notation and a common risk ratio,

I(βw) =
m∑

i=1

{
− (ni − ki)

λi+/ni

x
(−s)
i (1− x

(−s)
i )eβw

(x(−s)
i eβw + (1− x

(−s)
i ))

+
yi+

λi+/ni

xi(1− xi)eβw

(xieβw + (1− xi))

}
(31)

we can choose a group to sample. By examination of (31), we see that large yi+ will maximize the second

term as will large xi(1 − xi) when βw is close to zero. If we were only concerned with this term, we would

often choose a group with large yi+ and xi close to 1
2 . However, we also need to minimize the first term,

and therefore we need a group with a small ni, and x
(−s)
i not close to 1

2 . Given the within group design

rule of the previous paragraph, we will subsample all zeros or ones so as to move x
(−s)
i far away from 1

2 , but

unfortunately, we can move this variable farther away from 1
2 when xi isn’t close to 1

2 . Hence, choosing the

group with the most information depends on a number of factors.

5.3 Example: Logistic Regression

If we use a group specific slopes for logistic regression, we can again suppress the i notation by considering

a single group. In this case, subsample design is described by the following distributions.

f(ys|Xs) =
k∏

j=1

exp(Xjβyj)
1 + exp(Xjβ)

f(y(−s)
+ |X(−s)) =

∑
{y(−s)∗:y

(−s)∗
+ =y

(−s)
+ }

 k∏
j=1

exp(Xjβy∗j )
1 + exp(Xjβ)


f(y+|X) =

∑
{y∗:y∗+=y+}

 n∏
j=1

exp(Xjβy∗j )
1 + exp(Xjβ)

 (32)

where recall that y∗j represents a possible value for yj , y∗+ =
∑n

j=1 y∗j is the possible ecological response sum,

{y∗ : y∗+ = y+} is the set containing the
(

n
y+

)
ways of allocating the y+ ones into the n spots, and y

(−s)∗
+

and {y(−s)∗ : y
(−s)∗
+ = y

(−s)
+ } are the “not subsampled” equivalents.

If we write S+ =
∑

{y∗:y∗+=y+} e
Pn

j=1(Xjβ)y∗j and S
(−s)
+ =

∑
{y(−s)∗:y

(−s)∗
+ =y

(−s)
+ } e

Pn
i=1(Xjβ)y∗j , and X

w
=∑

{y∗:y∗+=y+}

{
e

Pn
j=1(Xjβ)y∗j

∑n
j=1 y∗j Xj

}
and X

w(−s)
=
∑

{y(−s)∗:y
(−s)∗
+ =y

(−s)
+ }

{
e

Pn
j=1(Xjβ)y

(−s)∗
j

∑n
j=1 y

(−s)∗
j Xj

}
then the observed information can be written as,

∂2`

∂β2
i

=
1

S
(−s)
+

 ∑
{y(−s)∗:y

(−s)∗
+ =y

(−s)
+ }

e
Pn

j=k+1(Xjβ)y∗j

n∑
j=k+1

XT
j y∗j

n∑
j=k+1

y∗j Xj

− 1

S
(−s)
i+

X
w(−s)T

X
w(−s)


− 1

S+

 ∑
{y∗:y∗+=y+}

e
Pn

j=1(Xjβ)y∗j

n∑
j=1

XT
j y∗j

n∑
j=1

y∗j Xj

− 1
Si+

X
wT

X
w

 (33)
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Therefore, the observed information takes on a weighted sum of squares formulation in the same manner

as the Poisson model, Unfortunately, the expected information is not available in closed form, but we can

produce plots similar to those in the Poisson example. Furthermore, for the case of a single binary covariate,

there are again only two possible optimal designs, and the βw values that specify one design or the other

partition the parameter space into two parts. In the application section, we will calculate exact cut-off points

for the US voter turnout example.

6 Application of Estimation and Design Methodology to the US

Voter Turnout Data

In this section we demonstrate the efficacy of the estimation and design methodology with an illustrative

application using the ANES turnout data. We examine a model with a single binary covariate and three

different within region sample sizes: ki = 10, ki = 20, and ki = 30. In order to simplify the discussion, we

assume that the within group subsample sizes are the same across the southern and the non-southern states,

and we assume a common within group slope. We show two main results. First, when the subsample is a

simple random sample from the full data, the combined approach improves the precision for estimates of

the slope parameters slightly. Second, we show that optimal design in the combined approach will provide

substantially increased precision about the slope parameters.

If we believe the true model is a logistic regression with regional intercepts and a common slope for the

white/non-white indicator variable, then the true model can be written as the following:

E[yij |xij ] =
exp(β0i + βwxij)

1 + exp(β0i + βwxij)
, (34)

where xij is a white indicator. We do not know the true values of the parameters, but we can calculate the

full data MLEs (β̂full
w = 0.986, β̂full

0NS = 0.136, and β̂full
0S = 0.310 ).

In this section, we investigate the benefit to be gained from subsampling design conditional on the ecological

data. Additionally, the binary covariate in our example allows a simple solution to the problem of optimal

design. In the following, we show that for a logistic regression with regional intercepts and a common slope

for xij , optimal design in the combined approach will provide substantially increased precision about the

slope parameter. We showed in Section 5 that we can maximize our information about the common within

region slope by carefully subsampling based on covariate values. In the context of our application, the

covariate is binary, and the percentage of white individuals is greater than 50% in all regions. We calculate

that as long as βw < 2.12 for ki = 10, βw < 2.25 for ki = 20 , and βw < 2.42 for ki = 30, the optimal

design is to subsample only non-whites. Since βw is unlikely to be large, we use the design that samples
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Figure 5: Subsampling distributions for β̂w in the single covariate model (34). We employ three estimation
approaches: subsample data based on simple random subsamples (SRS-sub), combined data based on simple
random subsamples (SRS-comb), combined data based on non-white random subsamples (NWRS-comb).
The solid horizontal line represents the full data MLE, and the dashed line represents the ecological estimate:
(a) Ten subsampled individuals in each group (ki = 10), (b) Twenty subsampled individuals in each group
(ki = 20), (c) Thirty subsampled individuals in each group (ki = 30)

only non-whites.

In order to compare the combined estimator under optimal design to the combined and subsample estimators

under simple random sampling, we generated 1000 simple random subsamples (SRS) and 1000 non-white

random samples (NWRS, i.e. random subsamples of non-whites). To simplify, we sampled equal numbers

from within each group, and the process was repeated for three different within-group sample sizes: ki = 10,

20, 30. We then created three sampling distributions: β̂sub
w under SRS (SRS-sub), β̂comb

w under SRS (SRS-

comb), β̂comb
w under NWRS (NWRS-comb). Because of the relatively small sample sizes for the full data set,

we conducted these random samples with replacement in order to approximate the situation where the full

data set is large. The results from this section become stronger if sampling is performed without replacement.

In Figure 5, we see that the NWRS-comb estimator performs better than the SRS-sub and the SRS-com

estimators for all subsample sizes. The solid line represents the true value of the parameter and the dashed

line represents the ecological estimate while the boxplots summarize the sampling distributions for the three

estimators. For all three subsample sizes, the sampling distribution for NWRS-comb is tighter around the

true value of the parameter. Additionally, when ki = 10 and ki = 20 the SRS-sub and the SRS-comb

estimators sometimes generate problematic estimates that are not plausible. These have been removed from

the plot in order to maintain a reasonable scale. The NWRS-comb estimator avoids this problem altogether.

In Table 3 we report effective sample sizes based on the variance ratios from the subsampling distributions.
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Table 3: Effective Sample Sizes for β̂w based on variance ratios from the subsampling distributions. The
problematic estimates for the SRS-sub and SRS-comb estimators have been removed.

Data & Group Size
Subsample Scheme ki = 10 ki = 20 ki = 30
Subsample only (SRS-sub) • • •
Eco plus Subsample (SRS-comb) 11 27 40
Eco plus Non-white Subsample (NWRS-comb) 28 65 127

For all subsample sizes, the SRS-comb estimator effectively buys a few more observations when compared

to the SRS-sub estimator, while the CRS-comb estimator nearly triples the effective subsample size. Addi-

tionally, the problematic estimates for the SRS-sub and SRS-comb estimators have been removed for this

analysis. Therefore, the effective sample sizes reported for the NWRS-comb estimator are conservative. Fur-

thermore, the predicted probabilities (not the odds ratios) are usually the parameters of interest. The use of

the NWRS-comb estimator provides an even greater amount of information about the intercepts, and since

the predicted probabilities are a combination of the slopes and the intercepts, the NWRS-comb estimator

will be far more informative for the predicted probabilities.

7 Discussion

In this paper we introduced the problem of ecological inference in GLMs, developed a maximum likelihood

approach for estimation and inference, and proposed methodology for optimal subsampling design conditional

on the ecological data. While, this methodology was only applied to an illustrative example and hence the

full benefits (and possible drawbacks) were not fully developed, there appears to be great promise for optimal

design conditional on ecological data. In addition to the voter turnout example that was introduced in this

paper, there are a number of potential applications for this methodology in disciplines where ecological

inference is common. This is particularly true in environmental epidemiology where aggregate data are often

available on disease counts, covariates, and some measure of exposure. With rare diseases, Poisson regression

is often appropriate, and hence an estimate of the joint distribution of exposure and covariates is sufficient

to remove ecological bias. Additionally, individual level data are now available for a number of covariates

through the Public Use Microdata Survey (Ruggles et al., 2004). Hence, we need only obtain information

on the distribution of exposure conditional on covariates. Unfortunately, individual level data on exposure

can only be obtained at great cost. The techniques developed in this paper are ideally suited to reducing

this cost.
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