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Abstract

Post-instrument covariates are often included in IV analyses to address a violation of

the exclusion restriction. We demonstrate that even in linear constant-effects mod-

els with large samples: 1) invariance between IV estimates (with and without post-

instrument covariates) does not imply that the exclusion restriction holds with respect

to the post-instrument covariate, 2) OLS with an omitted variable will often have less

bias than IV with the post-instrument covariate, 3) measurement error in the post-

instrument covariate does not necessarily lead to attenuation, and 4) the bias of OLS

and IV are related. Therefore, if used, IV with a post-instrument covariate should

be paired with OLS, and results should be discussed in concert. We illustrate these

points with a re-analysis of Acemoglu, Johnson, and Robinson (2001), showing that for

the paper’s claims to be valid, at least 35% of the variance in the causal explanatory

variable must be due to measurement error.
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Introduction

Post-instrument covariates are often included in instrumental variables analyses (IV) to

justify the exclusion restriction. For example, of the 155 papers using IV published since

2010 in the American Political Science Review, the American Journal of Political Science,

and the Journal of Politics, we have identified 29 that use post-instrument covariates to

justify the exclusion restriction.1 Furthermore, an important econometrics textbook seems

to advocate the use of this approach (Wooldridge 2010, 94), and the approach was used in

one of the most cited social science papers of the last 20 years (Acemoglu, Johnson and

Robinson 2001). Because detailed discussion of the exclusion restriction is a relatively recent

phenomenon, it is difficult to determine how often post-instrument covariates were used in

the past, but if more than 1/6 of all IV papers use the technique, this constitutes a very

large number of papers in social science journals.

Despite the widespread use of the technique, to our knowledge, formal justification of

its use has been limited to Appendix A of Acemoglu, Johnson, and Robinson (2001), which

provides a large sample bias formula based on a linear simultaneous equations model with

constant effects. In this paper, we use linear constant effects models where bias in the tech-

nique is induced either by unmeasured common causes of outcome and the post-instrument

covariate or by measurement error in the post-instrument covariate. This approach allows us

to compare the bias of this technique to the bias of OLS and IV without the post-instrument

covariate.

The next section presents the model with and without measurement error and presents

large sample bias formulas for the estimators: IV with the post-instrument covariate, IV

without the post-instrument covariate, and OLS. It also presents some general results re-

garding the comparison of these biases. In particular, we show that even when the violation

of the exclusion restriction is due entirely to a measured post-instrument covariate, invari-

ance between IV estimates (with and without this post-instrument covariate) does not imply

that the exclusion restriction holds. We also show the IV will have bias at least as large as

OLS when 1) the instrument has the same magnitude of effect on the causal variable and the

post-instrument covariate and 2) the magnitude of the unmeasured confounding is the same

for the causal variable and the post-instrument covariate. This finding implies that the use

of a post-instrument covariate essentially turns an experimental study (perhaps a natural

experiment) into an observational study. Finally, we provide bias formulas that include the

1We found that out of the 155 papers using IV, 116 explicitly discussed the exclusion restriction. In 25%
of them a covariate was included to address potential violations of the exclusion restriction.
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effects of measurement error on the causal variable and the post-instrument covariate. These

bias formulas show that classical measurement error in the post-instrument covariate does

not necessarily lead to attenuation, and relatedly, measurement error makes it difficult to

predict the sign of the bias.

The application section presents an illustration of these points by re-analyzing the Ace-

moglu, Johnson, and Robinson (2001) (AJR from here on) analysis of the effect of protection

against expropriation on GDP. We show that our model without measurement error confirms

AJRs prediction that an IV estimator with ethnic fractionalization as a post-instrument co-

variate would be likely to have negative bias due to unmeasured common causes of ethnic

fractionalization and GDP. However, we also show that the inclusion of measurement error

(for ethnic fractionalization) in the model is likely to result in positive bias. It is uncertain

whether this positive bias due to measurement error would outweigh the negative bias due

to unmeasured common causes. We also point out that even if we accept AJRs statement of

negative bias, the OLS estimate is smaller than the IV estimate, and therefore OLS would

also have to have negative bias. As AJR suggest, most unmeasured common causes of ex-

propriation and GDP would lead to positive bias, so any negative bias in the OLS estimator

would be due to measurement error in the expropriation variable. We use our measurement

error model to show that these combined assumptions imply that at least 35% of the vari-

ance in the expropriation variable must be due to measurement error. If we instead take

AJRs preferred IV estimate (without inclusion of ethnic fractionalization) as the true value

of the effect, then nearly 50% of the variance in the expropriation variable must be due to

measurement error. If we additionally allow for some of the potential unmeasured common

causes of GDP and expropriation variable suggested by AJR, the percentage of variance in

the expropriations variable due to measurement error would need to be greater that 50% in

order to rationalize the results.

In the final section, we discuss the implications of these results for practice. We first

discuss our result that conditioning on a post-instrument covariate turns an experiment

or a natural experiment into an observational study, and we discuss some alternatives to

this approach. We next discuss reporting standards that should be upheld when such an

observational study is deemed worthwhile. Finally, we highlight the fact that all of the

results in this paper are in the context of linear constant effects models. We point readers

to literature that addresses exclusion restriction violations in heterogeneous effects models.
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Models for bias formulas and comparison

Model without measurement error

We are interested in situations in which a researcher wants to estimate the effect of an

explanatory variable x on a dependent variable y but worries about an unmeasured common

cause of x and y, classical measurement error in x. In the simplest linear model case, we

have

(1) y = β0 + βxx+ ε0,

with E[ε0] = 0 and cov(x, ε0) 6= 0.

In order to address this problem, the researcher considers using a variable z as an in-

strument. For an instrumental variables (IV) regression to give consistent estimates of βx,

two conditions must hold: the instrument must be related to x (cov(x, z) 6= 0) and it must

not be related to other determinants of y (cov(z, ε0) = 0). Unfortunately, the researcher

is concerned that z violates the second condition, by having an effect on y through w, an

observed variable available to the researcher. Our goal is to determine the consequences of

including w as a control in the IV regression.

To fix ideas, consider an example from Angrist (1990), whose identification strategy has

inspired several studies of political attitudes and behaviour (e.g. Bergan 2009; Erickson and

Stoker 2011; Davenport 2015). The author is interested in estimating the effect of serving

in the Vietnam war on the earnings of men. Angrist notes that men who have a low draft

lottery number were more likely to serve in the war and uses functions of this number as

instruments of military service in an earnings linear model.

Although, the number that determines draft eligibility is chosen randomly, there could

be some concerns about the validity of the exclusion restriction. Those who received a low

number in the lottery could have chosen to stay in school to obtain a deferment (Angrist

1990, 330). Alternatively, employers of low number holders could have invested less in

training these employees knowing that they were more likely to be drafted (Wooldridge

2010, 94). Both of these situations create a direct link between salaries and lottery numbers,

which invalidates the exclusion restriction. If information on job training or education were

available, should we control for those variables in the earnings equation? Wooldridge (2010)

points out that not doing so would violate the condition cov(z, ε0) = 0 that is needed for

4



consistent estimation of the effect of interest (Wooldridge 2010, 94, 95). Can this justify the

inclusion of these variables as additional controls?

As we will see below, the fundamental problem with this approach is the possibility that

w, the variable that captures the direct link between the instrument and the outcome, is

itself affected by the error term. This possibility is represented by the dashed arrow from

ε to w in Figure 1, which summarizes the situation of interest. In the previous example,

measures of on the job training taken some time after the lottery or educational attainment

could take the role of w. Arguably, both of these variables are also influenced by innate

ability, parents’ levels of education, and other unobserved determinants of income.

εz

x

w

y

Figure 1: Model’s graphical representation

In order to asses the relative value of “fixing” the IV estimation by controlling for w, we

also consider as an alternative ordinary least squares (OLS) estimates. The new model for

y used in both the fixed IV and the OLS approach is then

y = β0 + βxx+ βww + ε.

There are a couple important observations about the model in Figure 1. First, we do not

have an arrow from x to w. If we did, then βx could not be interpreted as the total effect

of x on y. Second, while we do have an arrow from w to x, this could be replaced with an

unmeasured common cause of x and w without changing the results that follow.

Results without measurement error

Let σi denote the standard deviation of variable i and ρij denote the correlation between vari-

ables i and j, where i, j ∈ {w, x, y, z}. The next result allows us to compare the probability

limits of the estimates of βx.
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Proposition 1. The probability limits of IV estimates of βx with and without w and the

OLS estimates with w for the model in Figure 1 are:

plim β̂IV no w
x = βx +

σwρzwβw
σxρzx

,

plim β̂IV w
x = βx −

σερzwρwε
σx(ρzx − ρxwρzw)

,

plim β̂OLS w
x = βx +

σε(ρxε − ρxwρwε)
σx(1− ρ2xw)

.

The result indicates that there are two conditions that make β̂IV w
x consistent for βx: if

w and ε are uncorrelated, or if w and z are uncorrelated. The first of these is hypothetically

possible. The second is ruled out by the assumption that the instrument is related to the

dependent variable through w. The result shows that if w is affected by the error, it is

possible to obtain worse estimates by running an IV regression even when the instrument

is not related to y through different channels than x and w. Notice also, that many of the

parameters of these bias terms can be estimated with data. In fact, the only parameters that

cannot be estimated are βw, σε, ρxε, and ρwε. Furthermore, σε appears in the numerator of

the bias terms that include w, so in order to assess relative bias of these two estimators, one

only need to provide a statement about the relative values of ρxε and ρwε. Knowledge of the

sign of these correlations and the fact that they are in the interval [−1, 1] can also provide

the researcher with the ability to determine bounds for the relative biases.

Even in the absence of a particular data set, we can say some things about the relative

size of these bias terms. First, when the scaled effect of w on y equals the negative of the

scaled confounding of w and y, the plim of the IV without w will equal the plim of the IV

with w.

Corollary 1. If σwβw
ρzx

= − σερwε
(ρzx−ρxwρzw) , then plim β̂IV no w

x = plim β̂IV w
x .

Importantly, it is possible for these plims to be equal with ρzw 6= 0 and βw 6= 0, and therefore

it is possible for IV with and without w to produce similar estimates, even when there is an

exclusion restriction violation through w.

Second, consider the simple case where |ρxε| = |ρwε| and |ρzx| = |ρzw|, and where we

remove any arrows between x and w, the first condition states that confounding is equally

bad for x and w, and the second condition would hold if z is an equally strong instrument

for x and w. We obtain the following result:

Corollary 2. If |ρxε| = |ρwε| and |ρzx| = |ρzw| then
∣∣∣Bias(β̂OLSx )

∣∣∣ ≤ ∣∣∣Bias(β̂IVx )
∣∣∣.
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This result implies that OLS has less large-sample bias than IV with a post-instrument

covariate when x and w are similar in the sense described above. Therefore, in order for IV

with a post-instrument covariate to be preferred to OLS, one would need to estimate ρzx

and ρzw, and then argue that ρwε was sufficiently small vis-a-vis ρxε. We have never seen

such an analysis conducted. Additionally, what this result makes clear is that IV with a

post-instrument covariate is in the same class of methods as OLS with a potentially omitted

variable, and therefore should be considered a type of observational study.

Measurement error

In this section we explore situations in which measurement error affects the explanatory

variables x and w while maintaining all other relationships between variables as described

by the model in Figure 1. In particular,

x̃ = x+ ux(2)

w̃ = w + uw,

where the tilde denotes observed variables, and ux and uw are zero-mean measurement errors

of x and w with variances σ2
ux and σ2

uw . We focus on the case of classical measurement error,

in which the measurement errors are not related to the true value of the explanatory variables

(E[xux] = E[wuw] = E[wux] = E[xuw] = 0). We further assume that the measurement error

terms are not correlated with the error term in the population model, ε, the instrument, z,

nor each other (E[uxuw] = E[uxε] = E[uwε] = E[zuw] = E[zux] = 0).

It is well known that instrumental variables regression with a valid instrument (one that

satisfies E[zx] 6= 0 and E[zε0] = E[zux] = 0) can give us consistent estimates of βx with

a population model (1) even when we only observe x̃. We are now interested in studying

the question of how the IV estimates perform when there is a violation of the exclusion

restriction and we control for an additional variable w̃ that captures the alternative link

(other than through x) between the instrument and the outcome. The following proposition

gives expressions characterizing large sample bias of such approach.

Proposition 2. The probability limits of IV and OLS estimates of βx including w̃ when

1. Explanatory variables are measured with error according to (2),

2. Measurement errors are not correlated with true values of explanatory variables,
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3. Measurement errors are not correlated with the instrument, error term, ε, nor each

other, and

4. All other variable relationships are as described by the model in Figure 1

are:

plim β̂OLS w
x = βx

(
1−

σ2
ux

σ2
x̃(1− ρ2x̃w̃)

)
+
σε(ρx̃ε − ρx̃w̃ρw̃ε)
σx̃(1− ρ2x̃w̃)

+
σ2
uwρx̃w̃βw

σx̃σw̃(1− ρ2x̃w̃)
,

plim β̂IV w
x = βx +

σ2
uwρzw̃βw

σx̃σw̃(ρzx̃ − ρx̃w̃ρzw̃)
− σερzw̃ρw̃ε
σx̃(ρzx̃ − ρx̃w̃ρzw̃)

.

Note that, when using OLS, the estimate is not going to be necessarily biased towards

zero as in the typical case of classical measurement error when w̃ is not included.2 We

also see that including w̃ in the instrumental variable regression, adds a term in the bias

expression that is proportional to the variance of the measurement error of w and to its

effect on the outcome. Note that the sign of this term depends on βw and not βx, hence

unlike with OLS, including w̃ in the analysis will not necessarily bias the IV estimate toward

zero. This indicates that a researcher trying to address a potential violation of the exclusion

restriction by adding a regressor should not only be concerned about potential unmeasured

common causes of y and w (or reverse causality), but also about measurement error in the

added regressor. In the next section we discuss how these results can be used in an applied

setting.

Illustrative Application

AJR are interested in estimating the effects of institutions on economic performance. Their

dependent variable, y, is GDP per capita in 1995. Their main explanatory variable, x, is an

index of protection against expropriation. As discussed in their article, an analysis based on

OLS regressions is unlikely to give accurate estimates of the effect of institutions on GDP per

capita, since: 1) it is difficult to account for all common causes of institutions and economic

performance, 2) there is the possibility that economic performance can determine the ability

2In that case the relevant expression is

plim β̂OLS
x = βx

(
1−

σ2
ux

σ2
x̃

)
= βx

(
σ2
x

σ2
x + σ2

ux

)
.

8



Table 1: Estimates of the Effects of Institutions on Economic Performance

OLS IV

Explanatory variables (1) (2) (3)

Protection against expropriation 0.46 0.94 0.74
Ethnolinguistic fragmentation -1.3 -1.02

First stage results
Log European settler mortality -0.71 -0.64

Column (1) corresponds to Model (7) Table 6 Panel C in
AJR, column (2) corresponds to Model (1) Table 4 Panels
A and B in AJR, and column (3) corresponds to Model
(7) from Table 6 Panels A and B in AJR.

of governments to protect property rights, and 3) the index against expropriation is measured

with error and cannot capture all institutional arrangements that lead to property right

protection and subsequent economic prosperity. To address these issues, AJR propose as an

instrument of the index of expropriation the mortality rates of settlers in the colonization

period, z. AJR argue that in places were Europeans faced higher mortality rates, Europeans

could not settle and were more likely to impose extractive economic institutions on the

native population—the majority in those places. Institutional persistence explains why this

instrument would still explain variation in current indexes of expropriation.

AJR are aware of potential violations of the exclusion restriction and their paper presents

as robustness tests a number of results in which they include as controls variables that provide

alternative links between the settler mortality rate and GDP per capita (other than through

economic institutions). To illustrate how to apply our results, we consider AJR’s estimates

from Tables 4 and 6 and Appendix A and focus on the regressions which include as a control

a measure of ethnolinguistic fragmentation, which takes the role of w. AJR point out that

ethnolinguistic fragmentation can be considered endogenous in a GDP per capita regression,

which makes it a good candidate for this illustration.3 Table 1 reproduces their relevant

results here.

Using their data, we compute ρzw finding it positive and ρzx̃−ρx̃w̃ρzw̃, which is negative.4

3Unlike many papers that add post-instrument controls, AJR’s report OLS estimates as well as IV results
for all specifications, discuss whether the added regressors can be correlated to the error term in the main
model, and make available their data for replication.

4The computed values of these correlations and standard deviations are: ρx̃w̃ = −0.22, ρzw̃ = 0.49, ρzx̃ =
−0.52, σx̃ = 1.47, σw̃ = 0.32, which imply ρzx̃ − ρx̃w̃ρzw̃ = −0.41.
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Therefore, if we assume, as in AJR, that ρw̃ε < 0 and that there is no measurement error in the

added regressor (σuw = 0), Proposition 2 concurs with the AJR analysis that the instrumental

variables analysis that includes ethnolinguistic fragmentation should have negative bias.5

However, if we allow for the possibility of measurement error in ethnolinguistic fragmentation,

then this result is not so straightforward. We see from Proposition 2 that we will still get

negative bias from the third term of the plim for the IV estimate with w̃. However, if we

also believe that ethnolinguistic fragmentation has a negative effect on GDP (βw < 0), then

the second term of this plim will be positive. This means that the overall sign of the large

sample bias will depend on the relative magnitudes of the effect (βw), the confounding (ρwε),

and the measurement error (σ2
uw).

Our results that account for measurement error also allows us to relate the previous

observations to the bias in OLS and to explain possible sources of differences between OLS

and IV estimates. First note in Table 1 that AJR’s OLS estimate of the effect of institutions

is smaller than the IV estimate that conditions on ethnic fractionalization and also that of the

model that does not include this variable as an additional regressor. The only explanation

AJR give for negative bias in OLS is the result of attenuation bias in the OLS estimates

caused by measurement error in the institutions variable. Using Proposition 2, we examine

under what conditions measurement error in the institution variable is consistent with those

differences. An inspection of the plim for OLS in Proposition 2 together with our computed

correlations, indicates that the third term in that expression is positive. Moreover, the

second term in the expression of the plim for OLS is likely positive as well, since ρx̃ε will be

positive and possibly larger than ρx̃w̃ · ρw̃ε (we estimate ρx̃w̃ = −0.22). What would be the

minimum variance in the measurement error of the institutional variable that is consistent

with the observed differences between the OLS and IV estimates?

To answer that question, we set the two last terms in the expression of the plim for OLS

(which are likely positive as described above) to zero. We then use the AJR IV estimate in the

model that includes ethnolinguistic fragmentation in place of βx and solve for σ2
ux to obtain

0.77. This means that, given that the overall variance of the institutions variable is the sum

of the true variance and the measurement error variance, measurement error must account

for at least 35% (≈ 0.77
1.472

) of the variation in the observed institutions variable to rationalize

the observed difference between IV and the OLS estimates. Clearly, we could have chosen

a different estimate of βx to compute that minimum measurement error variance. If we use

5Their analysis of the effects of including an endogenous regressor, unlike ours, assumes the main ex-
planatory variable of interest to be strictly exogenous.
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instead AJR’s baseline estimate of 0.91, the measurement error in the institutions variable

must make up nearly 50% (≈ 1.05
1.472

) of the total variance. These observations indicate that

for classical measurement error to account for an OLS estimate in our model as small as the

one obtained by AJR, such measurement error has to be quite large.

It is important to note that the previous analysis relies on assumptions highlighted in

Proposition 2 that are inline with classical measurement error. Other assumptions regarding

correlations of measurement errors and the explanatory variables and error ε have the po-

tential to affect these observations. We do believe, however, that this assumptions provide

a first step to analyze this application in a way that is consistent with reasonable scenarios

for the situation of interest as well as with AJRs own assumptions.

Discussion and conclusion

Instrumental variables regression methods allow researchers to address estimation challenges

like unobserved heterogeneity, classical measurement error, and reverse causality. As many

have pointed out (e.g. Bartels 1991; Sovey and Green 2011), whether the method delivers

accurate results depends on the tenability of its assumptions. Here, we have studied one way

in which researchers have dealt with potential violations of the exclusion restriction. We

find that although it is possible for researchers to fix violations of the exclusion restriction

or provide robustness by controlling for additional variables, doing so requires a number

of assumptions. When these do not hold, the IV estimates can be worse than what the

researcher would obtain running an OLS regression.

Our findings have a number of implications for practice. First, even when the linear

constant effects model is used, the inclusion of a post-instrument covariate requires a num-

ber of strong theoretical claims, and therefore, researchers may want to use an alternative

approach. One approach is to focus on the estimated effect of the instrument which will not

be invalidated by an exclusion restriction violation. In many cases, the effect of the instru-

ment (sometimes known as the intent-to-treat effect in experimental studies) will have some

theoretical or policy relevance, and therefore when the IV analysis is questionable, this effect

should be emphasized. Another approach is to conduct a sensitivity analysis with respect

to the exclusion restriction (e.g. see Conley, Hansen and Rossi (2012)), as it is possible that

results will be robust to violations of the exclusion restriction.

Second, if conditioning on post-instrument covariates is conducted, the results should be

discussed in a manner similar to other observational studies. Measurement error and unmea-
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sured common causes need to be discussed. Additionally, the corresponding OLS analysis

(or analogous selection on observables analysis) should be reported and the measurement

error and unmeasured common causes in both approaches should be discussed in concert.

The formulas presented in this paper should help with this discussion.

Finally, we note that the entirety of this paper relies on the linear constant effects model.

If the constant effects model is not a reasonable approximation, then there are many potential

parameters of interest from an instrumental variables analysis (Imbens et al. 2014), and

assessment of exclusion restriction violations becomes more complicated. Flores and Flores-

Lagunes (2013) and Mealli and Pacini (2013) provide some strategies in this context and

also surveys of the literature.
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Derivations

Proof of Proposition 1. Assume that all variables have mean zero.6 We start by writing

the expression of the probability limit of β̂OLS in matrix notation,

plim β̂OLS =

[
βx

βw

]
+ E

[
x2 xw

xw w2

]−1

E

[
xε

wε

]
.

After computing the inverse of the variance-covariance matrix, we have

plim β̂OLSx = βx +
E[w2]E[xε]− E[xw]E[wε]

E[x2]E[w2]− E[xw]2

= βx +
E[w2]E[xε]− E[xw]E[wε]

σ2
xσ

2
w(1− ρ2xw)

= βx +
σ2
wσxσε(ρxε − ρxwρwε)
σ2
xσ

2
w(1− ρ2xw)

= βx +
σε(ρxε − ρxwρwε)
σx(1− ρ2xw)

.

Similarly for the plim β̂IV ,

6This is without loss of generality, as shown by Giles (1984).
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plim β̂IV =

[
βx

βw

]
+ E

[
zx zw

xw w2

]−1

E

[
zε

wε

]

plim β̂IVx = βx +
E[w2]E[zε]− E[zw]E[wε]

E[zx]E[w2]− E[zw]E[xw]

= βx +
−E[zw]E[wε]

σxσ2
wσz(ρzx − ρxwρzw)

= βx +
−σ2

wσzσερzwρwε
σxσ2

wσz(ρzx − ρxwρzw)

= βx +
−σερzwρwε

σx(ρzx − ρxwρzw)
,

where we used the fact that E[zε] = 0. Finally for the plim β̂IV now,

plim β̂IV now =
[
βx

]
+ E

[
zx
]−1

E
[
zε0

]
plim β̂IV nowx = βx +

E[zε0]

E[zx]

= βx +
E[z(βww + ε]

E[zx]

= βx +
E[zβww]

E[zx]

= βx +
βwσzσwρzw
σzσxρzx

= βx +
βwσwρzw
σxρzx

where we used the fact that E[zε] = 0.

Proof of Corollary 2. First we examine the case ρxε = ρwε and ρzx = ρzw. The OLS and

IV biases are

∣∣∣Bias(β̂OLSx )
∣∣∣ =

∣∣∣∣ σερwε
σx(1 + ρxw)

∣∣∣∣ ,∣∣∣Bias(β̂IVx )
∣∣∣ =

∣∣∣∣ σερwε
σx(1− ρxw)

∣∣∣∣ .
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Note that ρxw = ρzx · ρzw > 0, and so
∣∣∣Bias(β̂OLSx )

∣∣∣ < ∣∣∣Bias(β̂IVx )
∣∣∣.

Consider the case ρxε = ρwε and ρzx = −ρzw. The OLS and IV biases are the same∣∣∣Bias(β̂OLSx )
∣∣∣ =

∣∣∣Bias(β̂IVx )
∣∣∣ =

∣∣∣∣ σερwε
σx(1 + ρxw)

∣∣∣∣ .
Similarly, if ρxε = −ρwε and ρzx = ρzw, we have∣∣∣Bias(β̂OLSx )

∣∣∣ =
∣∣∣Bias(β̂IVx )

∣∣∣ =

∣∣∣∣ σερwε
σx(1− ρxw)

∣∣∣∣ .
Finally, if ρxε = −ρwε and ρzx = −ρzw, ρxw = ρzx · ρzw < 0 and

∣∣∣Bias(β̂OLSx )
∣∣∣ =

∣∣∣∣ σερwε
σx(1− ρxw)

∣∣∣∣ ,∣∣∣Bias(β̂IVx )
∣∣∣ =

∣∣∣∣ σερwε
σx(1 + ρxw)

∣∣∣∣ ,
giving us the same strict inequality of the first case.

Proof of Proposition 2. We start by writing the expression of the probability limit of

β̂OLS in matrix notation as before,

plim β̂OLS =

[
βx

βw

]
+ E

[
x̃2 x̃w̃

x̃w̃ w̃2

]−1

E

[
x̃ (−uxβx − uwβw + ε)

w̃ (−uxβx − uwβw + ε)

]
,

where we used the fact that y = (x̃− ux)βx + (w̃ − uw)βw + ε. After computing the inverse

of the variance-covariance matrix, we have
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plim β̂OLSx = βx +
E[w̃2]E[x̃ (−uxβx − uwβw + ε)]− E[x̃w̃]E[w̃ (−uxβx − uwβw + ε)]

E[x̃2]E[w̃2]− E[x̃w̃]2

= βx +
E[w̃2] (−E[x̃ux]βx − E[x̃uw]βw + E[x̃ε])− E[x̃w̃] (−E[w̃ux]βx − E[w̃uw]βw + E[w̃ε])

E[x̃2]E[w̃2]− E[x̃w̃]2

= βx +
σ2
w̃(−σ2

uxβx + σx̃σερx̃ε)− σx̃σw̃ρx̃w̃(−σ2
uwβw + σw̃σερw̃ε)

σ2
x̃σ

2
w̃(1− ρ2x̃w̃)

= βx

(
1−

σ2
ux

σ2
x̃(1− ρ2x̃w̃)

)
+
σε(ρx̃ε − ρx̃w̃ρw̃ε)
σx̃(1− ρ2x̃w̃)

+
σ2
uwρx̃w̃βw

σx̃σw̃(1− ρ2x̃w̃)
.

Similarly for the plim β̂IV ,

plim β̂IV =

[
βx

βw

]
+ E

[
zx̃ zw̃

x̃w̃ w̃2

]−1

E

[
z (−uxβx − uwβw + ε)

w̃ (−uxβx − uwβw + ε)

]

plim β̂IVx = βx +
E[w̃2]E[z (−uxβx − uwβw + ε)]− E[zw̃]E[w̃ (−uxβx − uwβw + ε)]

E[zx̃]E[w̃2]− E[zw̃]E[x̃w̃]

= βx +
σw̃σzρzw̃σ

2
uwβw

σx̃σ2
w̃σz(ρzx̃ − ρxw̃ρzw̃)

+
−σ2

w̃σzσερzw̃ρw̃ε
σx̃σ2

w̃σz(ρzx̃ − ρx̃w̃ρzw̃)

= βx +
σ2
uwρzw̃βw

σx̃σw̃(ρzx̃ − ρx̃w̃ρzw̃)
− σερzw̃ρw̃ε
σx̃(ρzx̃ − ρx̃w̃ρzw̃)

.
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