Increasing Returns to Scale Without Sorting or Agglomeration Economies

Andres Gomez-Lievano

Postdoc at the Center for International Development, Harvard University

With:

Vladislav Vysotsky, Imperial College London José Lobo, Arizona State University

Contact info:

Email: andres gomez@hks.harvard.edu

Twitter: @GomezLievano

CONTEXT & RESEARCH STUDY

A well-established fact:

Urban *Increasing Returns to Scale* (IRS) or the "city size premium"

- i.e., larger cities offer higher productive advantages than smaller cities
 - Rosenthal-Strange (2004), Duranton-Puga (2004), Henderson (2003), Combes-Duranton-Gobillon-Puga-Roux (2012), Combes-Duranton-Gobillon (2008), Combes-Duranton-Gobillon-Roux (2010), Combes-Duranton-Gobillon-Puga-Roux (2012), Glaeser-Maré (2001), Gould (2007), Baum-Snow-Pavan (2012), Roca-Puga (2012), ...

$$\delta = \frac{\Delta y/y}{\Delta n/n} \approx 0.05$$

Figure 1: Mean earnings and city size

Total production:

$$F(\lambda n) > \lambda F(n)$$

Total production:

$$F(\lambda n) > \lambda F(n)$$

Total production:

$$F(\lambda n) > \lambda F(n)$$

$$f(\lambda n) > f(n)$$

Total production:

$$F(\lambda n) > \lambda F(n)$$

$$f(\lambda n) > f(n)$$

Total production:

$$F(\lambda n) > \lambda F(n)$$

$$f(\lambda n) > f(n)$$

- Several efforts to answer:
 - Why are individuals more productive (or earn higher wages) on average in larger cities?

Total production:

$$F(\lambda n) > \lambda F(n)$$

$$f(\lambda n) > f(n)$$

- Several efforts to answer:
 - Why are individuals more productive (or earn higher wages) on average in larger cities?
- Two general mechanisms for the city size premium:
 - Sorting of inherently productive individuals
 - Local (static or dynamic)
 positive externalities, e.g.,
 agglomeration economies
 which make individuals more
 productive

Empirical Challenges

Handbook of Regional and Urban Economics, Volume 5A ISSN 1574-0080, http://dx.doi.org/10.1016/B978-0-444-59517-1.00005-2

CHAPTER 5

The Empirics of Agglomeration Economies

Pierre-Philippe Combes*,†,‡, Laurent Gobillon^{‡,§,¶,||}

*Aix-Marseille University (Aix-Marseille School of Economics), CNRS & EHESS, Marseille, France †Economics Department, Sciences Po, Paris, France

"The most important concerns are about endogeneity [...], the choice of a productivity measure [...], and the roles of spatial scale, firms' characteristics, and functional forms."

[‡]Centre for Economic Policy Research (CEPR), London, UK

[§]Institut National d'Etudes Démographiques, Paris, France

Paris School of Economics, Paris, France

The Institute for the Study of Labor (IZA), Bonn, Germany

Empirical Challenges

Handbook of Regional and Urban Economics, Volume 5A ISSN 1574-0080, http://dx.doi.org/10.1016/B978-0-444-59517-1.00005-2

CHAPTER 5

The Empirics of Agglomeration Economies

Pierre-Philippe Combes*,†,‡, Laurent Gobillon^{‡,§,¶,||}

"The most important concerns are about endogeneity [...], the choice of a productivity measure [...], and the roles of spatial scale, firms' characteristics, and functional forms."

We claim there is an additional challenge

^{*}Aix-Marseille University (Aix-Marseille School of Economics), CNRS & EHESS, Marseille, France †Economics Department, Sciences Po, Paris, France

^{*}Centre for Economic Policy Research (CEPR), London, UK

[§]Institut National d'Etudes Démographiques, Paris, France

Paris School of Economics, Paris, France

The Institute for the Study of Labor (IZA), Bonn, Germany

Our contribution:

- A 3rd mechanism other than sorting or local effects that generates IRS
- Methodological suggestion to reveal this effect in the estimation of the elasticity.

- Our contribution:
 - A 3rd mechanism other than sorting or local effects that generates IRS
 - Methodological suggestion to reveal this effect in the estimation of the elasticity.
- Which mechanism?

- Our contribution:
 - A 3rd mechanism other than sorting or local effects that generates IRS
 - Methodological suggestion to reveal this effect in the estimation of the elasticity.
- Which mechanism?
 - Not a causal mechanism!

Our contribution:

- A 3rd mechanism other than sorting or local effects that generates IRS
- Methodological suggestion to reveal this effect in the estimation of the elasticity.
- Which mechanism?
 - Not a causal mechanism!
 - ... A statistical effect.

- Our contribution:
 - A 3rd mechanism other than sorting or local effects that generates IRS
 - Methodological suggestion to reveal this effect in the estimation of the elasticity.
- Which mechanism?
 - Not a causal mechanism!
 - ... A statistical effect.

 A general sketch of the mechanism we are highlighting:

When

- X, such as wages, productivity, etc., is "unevenly distributed" (i.e., high inequality), and
- the sizes of cities are not "large enough",

- Our contribution:
 - A 3rd mechanism other than sorting or local effects that generates IRS
 - Methodological suggestion to reveal this effect in the estimation of the elasticity.
- Which mechanism?
 - Not a causal mechanism!
 - ... A statistical effect.

 A general sketch of the mechanism we are highlighting:

When

- X, such as wages, productivity, etc., is "unevenly distributed" (i.e., high inequality), and
- the sizes of cities are not "large enough",

Then

- Our contribution:
 - A 3rd mechanism other than sorting or local effects that generates IRS
 - Methodological suggestion to reveal this effect in the estimation of the elasticity.
- Which mechanism?
 - Not a causal mechanism!
 - ... A statistical effect.

 A general sketch of the mechanism we are highlighting:

When

- X, such as wages, productivity, etc., is "unevenly distributed" (i.e., high inequality), and
- the sizes of cities are not "large enough",

Then

- The Law of Large Numbers fails, and
- The aggregate Y = sum(X) per city displays IRS.

The take-home message of the research

- Wages are unequal → change the null model:
 - The expectation from empirical exercises should not be the absence of IRS.

 The convergence of the law of large numbers must be taken into account when studying IRS.

STATEMENT OF THE PROBLEM

A very simple model

- Assumption 1.0: Let a city be defined as the collection of n individuals, i = 1, ..., n. We ignore physical proximity.
- Assumption 2.1: Let each citizen i in the city be defined by a large set of innate, not directly observable, characteristics, ξ₁⁽ⁱ⁾,...,ξ_S⁽ⁱ⁾, where S ≫ 1, and ξ_s⁽ⁱ⁾ are independent and identically distributed (i.i.d.) positive random variables with finite mean and variance, for all i = 1,...,n and s = 1,...,S. The i.i.d. assumption here removes the possibility of any interaction or correlation between individuals.
- Assumption 2.2: Let the output of individual i be $X_i = \prod_{s=1}^{S} \xi_s^{(i)}$. Because of Assumption 2.1, X_i are i.i.d. random variables.
- Assumption 3.0: Let the total output of the city be $Y(n) = \sum_{i=1}^{n} X_i$. Hence, the output of each city is the sum of heterogeneous independent individual contributions.

In few words: In a city with individuals *i=1,..., n*, wages are *i.i.d.* lognormal

$$X_i \sim \mathcal{LN}(\ln(x_0), \sigma^2)$$

A very simple model

Assumption 1.0: Let a city be defined as the collection of n individuals, i = 1, ..., n. We ignore physical proximity.

Assumption 2.1: Let each citizen i in the city be defined by a large set of innate, not directly observable, characteristics, ξ₁⁽ⁱ⁾,...,ξ_S⁽ⁱ⁾, where S ≫ 1, and ξ_s⁽ⁱ⁾ are independent and identically distributed (i.i.d.) positive random variables with finite mean and variance, for all i = 1,...,n and s = 1,...,S. The i.i.d. assumption here removes the possibility of any interaction or correlation between individuals.

Assumption 2.2: Let the output of individual i be $X_i = \prod_{s=1}^{S} \xi_s^{(i)}$. Because of Assumption 2.1, X_i are i.i.d. random variables.

Assumption 3.0: Let the total output of the city be $Y(n) = \sum_{i=1}^{n} X_i$. Hence, the output of each city is the sum of heterogeneous independent individual contributions. In few words: In a city with individuals *i=1,..., n*, wages are *i.i.d.* lognormal

$$X_i \sim \mathcal{LN}(\ln(x_0), \sigma^2)$$

Two important characteristics of the lognormal distribution:

(i) Heavy-tailed, but (ii) all moments *finite*:

$$\frac{1}{p_X(x; x_0, \sigma^2) = \frac{1}{x\sqrt{2\pi\sigma^2}}} e^{-\frac{(\ln x - \ln x_0)^2}{2\sigma^2}} - E[X] = x_0 e^{\sigma^2/2} \\
Var[X] = (e^{\sigma^2} - 1)x_0^2 e^{\sigma^2} \\
E[X^k] = x_0^k e^{k^2 \sigma^2/2}$$

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the model display IRS?

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the model display IRS?

 $\lambda > 1$:

$$E[Y(\lambda n)] = E\left[\sum_{i=1}^{\lambda n} X_i\right],$$

$$= \sum_{i=1}^{\lambda n} E[X_i],$$

$$= \lambda n E[X_1],$$

$$= \lambda E[Y(n)].$$

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the model display IRS?

$$\lambda > 1$$
:

$$E[Y(\lambda n)] = E\left[\sum_{i=1}^{\lambda n} X_i\right],$$

$$= \sum_{i=1}^{\lambda n} E[X_i],$$

$$= \lambda n E[X_1],$$

$$= \lambda E[Y(n)].$$

$$E[Y(n)] = Y_0 n^{\beta}$$

with $\beta = 1$ and $Y_0 = \mu$.

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the model display IRS?

$\lambda > 1$:

$$E[Y(\lambda n)] = E\left[\sum_{i=1}^{\lambda n} X_i\right],$$

$$= \sum_{i=1}^{\lambda n} E[X_i],$$

$$= \lambda n E[X_1],$$

$$= \lambda E[Y(n)].$$

$$E[Y(n)] = Y_0 n^{\beta}$$

with $\beta = 1$ and $Y_0 = \mu$.

No IRS

In this model, doubling the size of the city (lambda = 2), doubles total expected wages.

In other words, doubling the size of the city does nothing to the expected individual wages.

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the model display IRS?

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the model display IRS?
- 1. Recognize that in practice what we will measure is *not* **E[Y(n)]**, but **Y(n)**. (i.e., we will estimate **E[X]** with **Y(n)/n**).

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the model display IRS?
- 1. Recognize that in practice what we will measure is *not* **E[Y(n)]**, but **Y(n)**. (i.e., we will estimate **E[X]** with **Y(n)/n**).
- 2. Recognize that in $Y(n) = X_1 + X_2 + \ldots + X_i + \ldots + X_n$ not all terms contribute "equally" to the sum, but rather the sum is "dominated" by a few, **very large**, terms (i.e., the wealthiest individuals).

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the model display IRS?
- Recognize that in practice what we will measure is not E[Y(n)], but Y(n). (i.e., we will estimate E[X] with Y(n)/n).
- 2. Recognize that in $Y(n) = X_1 + X_2 + \ldots + X_i + \ldots + X_n$ not all terms contribute "equally" to the sum, but rather the sum is "dominated" by a few, **very large**, terms (i.e., the wealthiest individuals).
- 3. Suppose, as a 1st approximation, that

$$Y(n) \approx M(n),$$

where $M(n) = \max\{X_1, \dots, X_n\}$

- Let us define the total wages: $Y(n) = \sum_{i=1}^n X_i$
- Does the M(n) display IRS?
- 4. According to the Fisher-Tippett theorem, M(n) has a distribution that converges to a Gumbel under <u>proper normalization</u> $\frac{\text{Analogous to}}{(\sqrt{n}\sigma)^{-1}(Y(n)-\mu n)}$

$$c_n^{-1}(M_{\mathcal{L}\mathcal{N}}(n) - d_n)$$

5. The term d_n reveals how M(n) scales with n. Specifically for a LN:

$$d_n = E[X_1] \exp\left\{-\frac{\sigma^2}{2} + \sigma\left(\sqrt{2}(\ln(n))^{1/2} - \frac{\ln(4\pi) + \ln(\ln(n))}{\sqrt{8}(\ln(n))^{1/2}}\right)\right\}$$

$$\beta = \frac{\partial \ln(Y(n))}{\partial \ln(n)} \approx \frac{\partial \ln(d_n)}{\partial \ln(n)}$$

$$\beta(n) \approx \frac{\sigma}{\sqrt{2\ln(n)}}$$

SOME INTUITIONS

$$\beta(n) \approx \frac{\sigma}{\sqrt{2\ln(n)}}$$

Balance between 'variance' and population size

For example:

The U.S. CBSA (micro+metros) have sizes between 10⁴ and 10⁷. Hence, we expect a simulation of our model with those city sizes to display IRS for sigmas in the order of 5.

$$\beta(n) \approx \frac{\sigma}{\sqrt{2\ln(n)}}$$

Balance between 'variance' and population size

For example:

The U.S. CBSA (micro+metros) have sizes between 10⁴ and 10⁷. Hence, we expect a simulation of our model with those city sizes to display IRS for sigmas in the order of 5.

RESULTS

Simulating our model

$$\delta = \beta - 1$$

The larger sigma (i.e., variance), the larger the average "city size premium"

Empirical data

- Colombian Social Security 2014 Dataset
- 122,287,562 total observations ("contributions")
- 10,535,587 unique contributors
- 6,792,183 workers (employed or self-employed)
 that have worked at least one full month and have
 thus earned at least a full minimum wage during the
 year.
- 1,127 municipalities

Municipality worker size distribution

Monthly wage distribution

Empirical data

- Colombian Social Security 2014 Dataset
- 122,287,562 total observations ("contributions")
- 10,535,587 unique contributors
- <u>6,792,183 workers</u> (employed or self-employed) that have worked at least one full month and have thus earned at least a full minimum wage during the year.
- 1,127 municipalities

Municipality worker size distribution

Monthly wage distribution

Testing for IRS as a statistical artifact

$$\beta = \beta^{\text{(sorting)}} + \beta^{\text{(aggl. ec.)}} + \beta^{\text{(stat. artifact)}}$$

 The component in the elasticity to city size coming from the statistical effect should be invariant to randomization of people across cities.

- 1. Randomize individuals across municipalities.
- 2. Re-do the regressions.

Balance between sigma and population size in real data

Table 1: Estimation of parameter σ of average monthly wages per city

$$\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\ln(X_i) - \overline{\ln(X_i)} \right)^2}$$

Statistic	N	Mean	St. Dev.	Min	Max
$\log_{10}(\text{Worker pop. size})$	555	3.113	0.625	2.464	6.356
real locations σ	555	0.411	0.079	0.222	0.823
randomized locations σ	555	0.612	0.029	0.505	0.746

Table 2: Results

	Dependent variable: log(Average monthly wage)				
	Real	Randomized	Randomized $(n \le 500)$		
log(Worker population size)	0.060***	0.001	0.031		
,	(0.004)	(0.002)	(0.035)		
Constant	13.315***	14.075***	13.898***		
	(0.029)	(0.011)	(0.206)		
Observations	555	555	172		
\mathbb{R}^2	0.293	0.001	0.005		
Adjusted R^2	0.292	-0.001	-0.001		
Residual Std. Error	0.134 (df = 553)	0.053 (df = 553)	0.074 (df = 170)		
F Statistic	229.668*** (df = 1; 553)	0.681 (df = 1; 553)	0.792 (df = 1; 170)		

Note:

p<0.1; p<0.05; p<0.01

The effect seems to be negligible in Colombian wages.

CONCLUSIONS

 There is a statistical effect which may (or may not) inflate the city size premium

We should adjust for that possibility

THANK YOU

Contact info:

Email: andres_gomez@hks.harvard.edu

Twitter: @GomezLievano