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Diversity of: Shapes, Colors, and Siz@s.

Artist: Ahmed Farid. Title: Urbanization (Oil on canvas, 2012)
From: http://almasargallery.com/ahmed-farid-urban-diversity-11-may-30-may-2013-solo-exhibition



Diversity and the Puzzle of Cities

Sharing,
e.g., goods,
facilities,
risk

Increasing returns
To scale

Matching, e.g.,
employers and
employees

Natural amenities

Economies of
scale

Learning, e.g.,
knowledge

spillovers

Lower transaction/
transportation costs

Cultural amenities

See Puga (2010, JRS)
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Simple Null Model
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The interplay between city sizes and their
internal heterogeneity determines:

* how we should measure productivity,

* and the statistical properties of the
aggregate output.



Facing the Heterogeneity

Are cities finite
systems that violate
the Law of Large
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Gomez-Lievano, Vysotsky, and Lobo (2014, in preparation)
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1. Knowledge as major economic driver.

e« Romer (1986, 1990), Lucas (1988), Glaeser et al. (1995), Rauch (1993), Jones & Romer (2010)

2. Diversity of skills, (complementary to
specialization):

o Marshall (1890) vs. Jacobs (1969)
o Glaeser (1992); Faggio, Silva & Strange (2013-Dec, Working Paper)
o Quigley (1998), Beaudry & Schiffauerova (2009)

eM;

3. Population size matters: ”ﬂﬁ
TWT 1

Sveikauskaus (1975); O hUallachain (1999); Bettencourt et al. (2007a, 2007b, 2010); Bettencourt
(2013).
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Measurement of Knowledge

Stock of knowledge Knowledge is spatially
localized

 E.g., Jaffe etal. (1993)

e Educational attainment

* Embodied in technology .
* “tacit knowledge”

* “Total Factor Productivity”
(A) * People move with less

difficulty than their ideas

— (See Breschi & Lissoni, 2001a,b,
2004, 2009; Klepper & Sleeper,
2005; Klepper, 2010; Hausmann,

Neffke, Otto, 2013)



Conceptually, the economic output of an entire
city (a system-wide property) should not be
understood using the average properties of
individuals (e.g., years of schooling)



What citizens do

 Creative Class (Florida, 2004)

* |nventors



Obstacles to Economic Development

* Are the counts of
‘creatives’ and inventors
constrained in urban
areas?

Gomez-Lievano, Bettencourt, Stolarick, Strumsky, Lobo
(2014, in submission)




Assumption

The ability of a city to “learn” is constrained by
its capacity to attract creative and inventive
individuals (Florida, 1995, Futures).



More than 70% explained by urban
population
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Findings: a distributional account

Constraints to growth (e.g.,
Black & Henderson, 2003).

Why P(N) ~ PL with EC ?

— Extensive literature (recently:
Berry & Okulicz-Kozaryn, 2012; Hsu,
2012; loannides & Skouras, 2013;
Gonzalez-Val et al., 2013)

Divergence (e.g.,  hUallachain,
1999; Berry & Glaeser, 2005).

Why P(Y/N) ~ Lognormal ?
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Why is this important?

.\Whereas normally distributed RVs often arise from random
additive processes

X, + X, + X, +..=“X,OR X, OR X, OR ...”

.... lognormal RVs arise, often, from random multiplicative
pProcesses:

X,* X,* X;* ... = “X, AND X, AND X,;AND ...”

* Jaynes, 2003; Frank, 2009; Frank and Smith, 2011
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and come from a large number of effects
acting multiplicatively

* Hidalgo et al. (2007), Hidalgo & Hausmann (2009), Neffke et al. (2013, Working Paper),
Neffke & Henning (2013);

* Muneepeerakul, Lobo, Shutters, Gomez-Lievano, Qubbaj (2013);

o Hausmann & Hidalgo (2011)
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 “Size”, “Heterogeneity” and “Structure”
* Policies and Distributions

“Urban dynamics, as can be seen, are the ultimate noisy

social science problem”
— Storper et al. (2012, JRS, p. 4)
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Question

Does the acquisition of skills (“lego pieces”),

constrained by the space of products and the
existing set of skills in the city,
conditioned on the population
size (# of lego pieces),

generate lognormal distributions in output?
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Playing with a model of the world

Hausmann & Hidalgo (2011)’s conceptual | expand H&H’s model in two

framework:
ways:

e Skills are represent non-tradable

capabilities. _
 Persons are carriers of skills. 1. I'willmodel a process of
. 1 person = “1 pbyte” acquisition of skills (pbytes).
A pbyte “counts” for economic

development only when it is different

from the others. 2. | will model what cities
* Products require different pbytes. produce, as a step to know

e Countries/Cities that possess many
different pbytes will be able to
produce many different, and more
complex products

how much they produce.









Lego analogy inspired by:
TEDxBoston - César A. Hidalgo - Global Product Space
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Model (currently).

1. The matrix C starts empty.

2. The matrix P is Bernoulli-filled (with prob. g),
and fixed.

3. For each city (i.e., row) in C,
i. arandom skill is added,

ii. and lost with a certain probability.

4. We calculate the matrix X of output



Will the model reproduced data?

N, T
t t
Ye = Z ch

p=l —— Pr(y. | pop.) ~ Lognormal

Ng
POPc  — Zoca,
a=1 —



Profiles of P(Y|N)
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Table 1: US urban areas, sorted by population size, that have counts, in inventors or creatives, that are outside a z = 3.07 sigma interval around the log-meann, i.e.,
y ¢ [e#‘(“}‘“’“’(”),e““"”Z CFI(""")]. The numbers shown in the Population and Inventors columns are estimated averages from 2008-2010, although all values representing counts
have been rounded to the nearest integer. The value z = 3.07 corresponds to a log-deviation such that 1—®(z) < 1/938. The random variables and their values are for inventors
I and i, for creatives C' and e, respectively

Name of Urban Area Population (n) Inventors (i) Most probable I P(I >iln) Creatives (¢) Most probable C' P(C > ¢n)
Los Alamos, NM (Micro) 17,899 213 1 0. 5,502 1,697 0.
Mountain Home, ID (Micro) 26,926 1,027 2 0. 2,801 2,751 0.562
Clewiston, FL (Micro) 39,109 8 4 0.626 1,976 3,848 0.999
Clovis, NM (Micro) 47,009 1 5 0.999 4,504 4,461 0.577
Eagle Pass, TX (Micro) 53,302 1 7 1. 4,398 5,144 0.834
Palm Coast, FL (Metro) 94,755 44 15 0.426 4,040 8,058 L.
Lake Havasu City-Kingman, AZ (Metro) 200,447 43 43 0.82 10,940 21,603 0.999
Merced, CA (Metro) 253,198 37 59 0.924 13,650 27,633 0.999
Ocala, FL (Metro) 330,780 69 87 0.873 17,620 37,218 L.
Durham-Chapel Hill, NC (Metro) 498 511 1,692 155 0.028 128,900 57,900 0.001
McAllen- Edinburg-Mission, TX (Metro) 758,064 36 279 0.999 60,400 87,582 0.963

San Jose-Sunnyvale-Santa Clara, CA (Metro) 1,818,864 24,531 052 0. 396,820 240,275 0.033




C
city 1
city 2

P
pl
p2

al a2 a3 a4 a5 __

1

1

0

0

1

0

1

0

1

1

al a2 a3 a4 ab

0

1

0

0

1

0

0

0

1

0

Example
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City 1 has skills {1,2,5}
City 2 has skills {2,4,5}

Product 1 requires {2,5}
Product 2 requires {4}

City 1 only produces
Product 1

City 2 produces Both
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Figure 5: Model 1: Evolution of the M?"' matrix of cities versus products. The model assumes a fixed set of
products uniquely defined by their set of capabilities. In each time-step, each city acquires a new random capability
previously missing. If the capability allows the city to produce a new product, the capability is fixed, otherwise it is lost
(until it acquires it again by chance in the future). Here, N. = 300, Np = 1000, Ng = 50, r = 0, and ¢ = 0.13. The
Mep elements are sorted in the same order throughout all steps from most diversified city to the least, and from the most
ubiquitous product to the least, as they appear in the last time-step.




The following relationship has to hold if we want
a confidence (1-¢) that Y/N is close to the mean
of the process

(ae®)N" > ¢(r) (NE 1|+ N""/z\/\/ar[yl])
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Urban Economies and Occupation Space: Can They Get
“There” from “Here’?

Rachata Muneepeerakul'?*, José Lobo’', Shade T. Shutters''?>, Andrés Goméz-Liévano®?,
Murad R. Qubbaj’
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State University, Tempe, Arizona, United States of America, 3 Center for Social Dynamics and Complexity, Arizona State University, Tempe, Arizona, United States of
America, 4 School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America

Abstract

Much of the socioeconomic life in the United States occurs in its urban areas. While an urban economy is defined to a large
extent by its network of occupational specializations, an examination of this important network is absent from the
considerable body of work on the determinants of urban economic performance. Here we develop a structure-based
analysis addressing how the network of interdependencies among occupational specializations affects the ease with which
urban economies can transform themselves. While most occupational specializations exhibit positive relationships between
one another, many exhibit negative ones, and the balance between the two partially explains the productivity of an urban
economy. The current set of occupational specializations of an urban economy and its location in the occupation space
constrain its future development paths. Important tradeoffs exist between different alternatives for altering an occupational
specialization pattern, both at a single occupation and an entire occupational portfolio levels.
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“Harmony” between occupations
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Scaling relationships
(sensu Stat. Mech.)
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