Enhancing astronomers' appreciation for high-dimensional data (visualization)

SIDEREUS NUNCIUS

On the third, at the seventh hour, the stars were arranged in this sequence. The eastern one was I minute, 30 seconds from Jupiter; the closest western one 2 minutes; and the other western one was East $* 0 *$ * West
10 minutes removed from this one. They were absolutely on the same straight line and of equal magnitude.
On the fourth, at the second hour, there were four stars around Jupiter, two to the east and two to the west, and arranged precisely
East * * $\quad * \quad *$ West
on a straight line, as in the adjoining figure. The easternmost was distant 3 minutes from the next one, while this one was 40 seconds from Jupiter; Jupiter was 4 minutes from the nearest western one, and this one 6 minutes from the westernmost one. Their magnitudes were nearly equal; the one closest to Jupiter appeared a little smaller than the rest. But at the seventh hour the eastern stars were only 30 seconds apart. Jupiter was 2 minutes from the nearer eastern
East ** $\quad *$ West
one, while he was 4 minutes from the next western one, and this one was 3 minutes from the westernmost one. They were all equal and extended on the same straight line along the ecliptic.
On the fifth, the sky was cloudy.
On the sixth, only two stars appeared flanking Jupiter, as is seen
East

$$
* \bigcirc *
$$

in the adjoining figure. The eastern one was 2 minutes and the western one 3 minutes from Jupiter. They were on the same straight line with Jupiter and equal in magnitude.
On the seventh, two stars stood near Jupiter, both to the east, arranged in this manner.

Notes for \& re-productions of Siderius Nuncius, Galileo Galilei, c. 1610
Alyssa A. Goodman
Center for Astrophysics | Harvard \& Smithsonian • Raddliffe Insitiute for Advanced Study

Enhancing astronomers' appreciation for high-dimensional data (visualization)

January 11, 1610

Galileo's New Order, A WorldWide Telescope Tour by Goodman, Wong \& Udomprasert 2010
WWT Software Wong (inventor, MS Research), Fay (architect, MS Research), et al., now open source, hosted by AAS
see wwtambassadors.org for more on WWT Outreach

A Random Sumple of Images from the Astrophysical Journal, 2019

「astronomy

image explorer

Enter search term(s)

Q Search
HOME ABOUT HELP \& GUIDES

YOU SELECTED

publications:

X The Astrophysical Journal

SEARCH TERM(S)
Search abstract, title, caption

AUTHOR

Search author

PUBLICATIONS

- The Astrophysical Journal 523,615 The Astronomical Journal 104,577 The Astrophysical Journal 66,147 Supplement Series
The Astrophysical Journal 48,227 Letters

CONTENT TYPE

Images $(520,169)$
Images with astrometry (15) Videos $(2,809) \square$ Figure sets (595) Interactive figures (42)

Age distribution of the

APOGEE red clump stars .

Radial metallicity profile of the observed data...

Same as Figure 3, but for the cases of (a) and

Galactocentric radius

distribution of the red c...

Size evolution of the Milky Way's low- α stellar.

Projected baselines (uv plane) of the VLTI/GRAV...

Distance-dependent fraction of observed red clu..

Predicted SDSS r-band surface brightness profil.

Visibility data for FU Ori taken with VLTI/GRAV..

Model star formation rate as a function of time

Predicted half-light radius as a function of lo...

Combined fluxes (dots) of FU
Ori and FU Ori St.

Continuum images of FU Ori (and S) taken with A..

The present-day half-mass radii of stars with a.

Star formation history

Radial profile of the mean stellar age in the G.

But, what if...

33 Data-Driven Documents

Vega - A Visualization Grammar

Vega-Lite - A Grammar of Interactive Graphics

33 Data-Driven Documents

Vega-Lite - A Grammar of Interactive Graphics

The "Paper" of the Future

Alyssa Goodman, Josh Peek, Alberto Accomazzi, Chris Beaumont, Christine L. Borgman, How-Huan Hope Chen, Merce Crosas, Christopher Erdmann, August Muench, Alberto Pepe, Curtis Wong + Add author x Re-arrange authors

A 5-minute video demonsration of this paper is available at this YouTube link.

1 Preamble

A variety of research on human cognition demonstrates that humans learn and communicate best when more than one processing system (e.g. visual, auditory, touch) is used. And, related research also shows that, no matter how technical the material, most humans also retain and process information best when they can put a narrative "story" to it. So, when considering the future of scholarly communication, we should be careful not to do blithely away with the linear narrative format that articles and books have followed for centuries: instead, we should enrich it.

Much more than text is used to commuicate in Science. Figures, which include images, diagrams, graphs, charts, and more, have enriched scholarly articles since the time of Galileo, and ever-growing volumes of data underpin most scientific papers. When scientists communicate face-to-face, as in talks or small discussions, these figures are often the focus of the conversation. In the best discussions, scientists have the ability to manipulate the figures, and to access underlying data, in real-time, so as to test out various what-if scenarios, and to explain findings more clearly. This short article explains-and shows with demonstrations-how scholarly "papers" can morph into long-lasting rich records of scientific discourse, enriched with deep data and code linkages, interactive figures, audio, video, and commenting.

Konrad Hinsen 3 days ago - Puolic

Many good suggestions, but if the goal is "long-lasting rich records of scientific discourse", a more careful and critical attitude towards electronic artifacts is appropriate. I do see it concerning videos, but not a word on the much more critical situation in software. Archiving source code is not sufficient: all the dependencies, plus the complete build environment, would have to be conserved as well to make things work a few years from now. An "executable figure" in the form of an IPython notebook wil...

more

Merce Crosas 3 days ago - Public
Konrad, good points; this has been a concern for the community working on reproducibility. Regarding data repositories, Dataverse handles long-term preservation and access of data files in the following way: 1) for some data files that the repository recognizes (such as R Data, SPSS, STATA), which depend on a statistical package, the system converts them into a preservation format (such as a tab/CSV format). Even though the original format is also saved and can be accessed, the new preservation format gua...
more
Konrad Hinsen 1 day ago • Public
That sounds good. I hope more repositories will follow the example of Dataverse. Figshare in particular has a very different attitude, encouraging researchers to deposit as much as possble. That's perhaps a good strategy to change habits, but in the long run it could well backlire when people find out in a few years that 90% of those deposits have become useless.

Christine L. Borgman 4 months ago - Private

"3D PDF" (Nature, 2009)

Alyssa A. Goodman ${ }^{1,2}$, Erik W. Rosolowsky ${ }^{2,3}$, Michelle A. Borkin ${ }^{1} \dagger$, Jonathan B. Foster ${ }^{2}$, Michael Halle ${ }^{1,4}$, Jens Kauffmann ${ }^{1,2}$ \& Jaime E. Pineda ${ }^{2}$

Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size $\sim \mathbf{0 . 1}$ parsecs) inside molecular clouds collapse to form star-plus-disk systems ${ }^{1}$. But self-gravity's role at earlier times (and on larger length scales, such as ~ 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function ${ }^{2}$. Here we report a 'dendrogram' (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by ${ }^{13} \mathrm{CO}$ observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact 'pre-stellar cores' traced by peaks of dust emission ${ }^{3}$ are projected on the sky within one of the dendrogram's self-gravitating 'leaves'. As these peaks mark the locations of already-forming stars, or of those probably about to form,
overlapping features as an option, significant emission found between prominent clumps is typically either appended to the nearest clump or turned into a small, usually 'pathological', feature needed to encompass all the emission being modelled. When applied to molecular-line

Data Collectior

Dat

Possible Wave Models
Best Fit Wave Model
co Gas (Local)
Gould's Belt (Perrot \& Grenier 2003)
Green 2019 3D Dust
Local Arm Fit (Reid+2016)
Major Cloud Catalog
Maser Catalog (Reid $+2014,2016$) Sagittarius Arm Fit (Reid+2016)
Tenuous Connections
Sun
Subsets
t Layers - 3D Volume Rendering

\square Local Arm Masers (Sun)
\square Sagittarius Arm Masers (Sun)
\square Sun
\square RadWave (Major Cloud Catalog)
\square Tenuous Connections

Plot Options - 3D Volume Rendering

x axis	Pixel Axis 2 [x$]$			$\stackrel{\sim}{*}$
min/max:	38.2241	\rightleftarrows	1160.78	
stretch:				1.00
y axis	Pixel Axis 1 [y]			$\hat{\sim}$
min/max:	38.2241	\rightleftarrows	1160.78	
stretch:				1.00
z axis	Pixel Axis 0 [z]			$\hat{*}$
min/max:	5.95402	\rightleftarrows	193.046	
stretch:				1.00
reference:	Green 2019 3D Dust			$\hat{\sim}$

3D Volume Rendering
glue: glueviz.org
WorldWide Telescope: worldwidetelescope.org

(Publishing) The "Radcliffe" Wave

(embargoed, please do not distribute)

The Path to Newton

The Path to Newton

The Path to Newton

pathto-x.github.io - javascript by Francisco Ortiz

VIENN

2015

"Data,
 Dimensions, Display"

1D: Columns = "Spectra", "SEDs" or "Time Series" 2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings", "2D Movies" 4D: Time Series of Volumes = "3D Movies"

Linked Views of High-dimensional Data

figure, by M. Borkin, reproduced from Goodman 2012, "Principles of High-Dimensional Data Visualization in Astronomy"

Wide Data, "In 3D"

O mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)

13CO (Ridge et al. 2006)mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al.)

Optical image (Barnard I927)

AstronomicalMedicine@|C ~ ~208 C〇MPLETE

2018

Linked Views of High-dimensional Data (tisgiue glue

2015 video by Tom Robitaille, lead glue developer glue created by: C. Beaumont, M. Borkin, M. Breddels, P. Qian, T. Robitaille, and A. Goodman, PI

Linked Views of High-dimensional Data glue
 ${ }^{1 l_{1}{ }^{5} 5}$ giue

Plot Layers - Image Widget
『 5 paws_correct

Plot Options - Image Widget

Data paws_correct		*
- Monochrome	RGB	
Attribute PRIMARY		*
Right Ascension	x	\ddagger
Declination	y	\bullet
Veloc	slice	1:
54		

2014 video by Chris Beaumont, glue developer glue created by: C. Beaumont, M. Borkin, M. Breddels, P. Qian, T. Robitaille, and A. Goodman, PI

频 ${ }^{\text {co }}$ glue

DE ${ }^{4}$ glue DEMO: 5 steps to revealing a wispy veil in 3D

1. "glue" data sets to each other
2. drag data sets to visualize
3. inspect cubes with 2 D sliders
4. adjust color
5. inspect cubes as (superimposed) 3D volumes

+ bonus-comparison with tradifional views \& sliders
sample ALMA (spectral-line) data cubes courtesy of Jorma Harju

No merging of data sets-iust glue them.

An ALMA core

Just drag to visullize, e.g. series of 2D "channel maps."

An ALMA core

Adjust so each tracer is a different color.

Create 3D views...

COMPARISON

tradifional rainbow channel maps

result: happy unicorns

result: previously unknown phenomenon (veil of emission) revealed

33 Data-Driven Documents

Vega-Lite - A Grammar of Interactive Graphics

Data, Dimensions, Display +Dissemination

"Figure 11 - While I appreciate the intention of this figure, it does not aid in the understanding of the result. The main feature of parallel coordinate plots are the steep lines connecting adjacent axes, but these lines have no physical meaning. Additionally, are these the mean values? What's the dynamic range? Your box and whisker diagrams already do a good job of making these comparisons."

Perpendicular Synthetic Observations
(All)

Sun-like Synthetic Observations
(Arm) (Interarm)

Actual Observations
(Bone)

[^0]
h thanks to our sponsors...

[^0]: (GMF) (Herschel) (MST)

