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ABSTRACT

A variety of arguments strongly suggest that the density of the universe is no more than a tenth of the value
required for closure. Loopholes in this reasoning may exist, but if so, they are primordial and invisible, or
perhaps just black.

Subject heading: cosmology

Desist from thrusting out reasoning from your
mind because of its disconcerting novelty. Weigh
it, rather, with a discerning judgment. Then, if it
seems to you true, give in. If it is false, gird
yourself to oppose it. For the mind wants to dis-
cover by reasoning what exists in the infinity of
space that lies out there, beyond the ramparts of
this world. . . . Here, then, is my first point. In all

and is related to the mean density of matter

3H,?
Po = 4"2; qo - (3)

It is useful to define a critical density p, and a dimen-
sionless density parameter (2, by

dimensions alike, on this side or that, upward or 2
downward through the universe, there is no end. pe = 3H, ) O = Po _ 8”6’20 . (4)
[LUucreTIUS] 8wG Pe 3H,

so that
I. PARAMETERS
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At what scales does gravity truly play the
key role in the story of star formation?



Star Formation Unbound
A Modest Suggestion

= Suppose molecular clouds are not bound

= Just part of the mostly atomic flow that

“[1 will now propose becomes molecular for a while

heresy...] Suppose molecular = Collisions, turbulence causes a small fraction
clouds are not bound.” (few percent) to become bound dense clumps

—Neal Evans, Olympian Symposium, = The rest of the molecular gas rejoins the
May 29, 2018 atomic flow

= Galactic feedback keeps ISM stirred up,
unbound
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ABSTRACT

After studying how line width depends on spatial scale in low-mass star-forming regions, we propose

that “dense cores” (Myers & Benson 1983) represent an inner scale of a self-similar process that charac-
terizes larger scale molecular clouds.

"Coherent
Core"

F1G. 10.—An illustration of the transition to coherence. Color and shading schematically represent velocity and density in this figure. On large scales,
material (labeled chaff) is distributed in a self-similar fashion, and its filling factor is low. On scales smaller than some fiducial radius, the filling factor of gas
increases substantially, and a coherent dense core, which is not self-similar, is formed. Due to limitations in the authors’ drawing ability, the figure emphasizes
a particular size scale in the chaff, which should actually exhibit self-similar structure on all scales ranging from the size of an entire molecular cloud complex

down to a coherent core.
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Figure 5. Fitting curves of the urban expansion and road network density.
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Abstract: Urban expansion has become a widespread trend in developing countries. Road networks
are an extremely important factor driving the expansion of urban land and require further study.

To investigate the relationship between road networks and urban expansion, we selected Beijing,
New York, London, and Chicago as study areas. First, we obtained urban land use vector data
through image interpretation using a remote sensing (RS) and geographic information systems

(GIS) platform and then used overlay analysis to extract information on urban expansion. A road
network density map was generated using the density analysis tool. Finally, we conducted a spatial
statistical analysis between road networks and urban expansion and then systematically analyzed
their distribution features. In addition, the Urban Expansion-Road Network Density Model was
established based on regression analysis. The results indicate that (1) the road network density
thresholds of Beijing, New York, London, and Chicago are 18.9 km/km2, 37.8 km/km2, 57.0 km/km2,
and 64.7 km/km2, respectively, and urban expansion has an inverted U-curve relationship with road
networks when the road network density does not exceed the threshold; (2) the calculated turning
points for urban expansion indicate that urban expansion initially accelerates with increasing road
network density but then decreases after the turning point is reached; and (3) when the road density
exceeds the threshold, urban areas cease to expand. The correlation between urban expansion and
road network features provides an important reference for the future development of global cities.
Understanding road network density offers some predictive capabilities for urban land expansion,
facilitates the avoidance of irregular expansion, and provides new ideas for addressing the inefficient
utilization of land.

Keywords: geography; regression analysis; urban expansion; road networks
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Circumstellar Disk Extrasolar System




Circumstellar Disk Extrasolar System
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Star-Forming “Globule” Circumstellar Disk Extrasolar System
i .
Star Cluster -
- ; 3 Alves, Lombardi & Lada 2007
e

~— Today: what's (really) happening here? ——

Number of Stars of each Mass

Stellar Mass



Mugne’nc Flelds
O GfﬂVIiy

Y.iChemical &k ST e S A e ST W
. Jransformations * o ' ‘

SRLE o B WG ST
Turbulence " *, Oufflows - A%
. . (Rundom.KlnencEnergy) .' . ' & WlndS i '

. . - : , . . . g 3 . - . . L ) .
’ : : - - - * . » v o ¥ e >
A ’ 54 . o . ' 3 & PR ; : : . - 'a
. . : 4 : . ‘ .
e - . e L ' Y 2 e ~ - - - ;

o AR s A
» e e
v 9

_!magc; Credii:_.' Jonathan Foster & Jaime Pineda _C.fA/CC.DMPL'ETE; D.,eep M,ég_qcah MG gl sHERBPGE Boggc s WS



(74 VI Y+ +

Gravity vs. Turbulence + Magnetic fields.+ Jels 't;0.0Myr=0.00t,,
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“Inefficient star formation through turbulence, magnetic fields and feedback” (Federrath 2015)



Stella Oftther says. . .

“In terms of your analogy of migration to cities | have work In
progress with Kaitlin Kratter, Rachel Smullen (U of AZ grad student)
and Aaron Lee (post-doc with me here), where we track the
formation and evolution of cores in MHD simulations using
dendrograms. Basically, we're finding that some cities have very
volatile population growth while others carry on quietly with no
rapid migration from the outside.”
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Ophiuchus

slide sequence courtesy of Hope Chen, from his Phl defense talk



Many Cores in Ophiuchus

d.
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slide sequence courtesy of Hope Chen, from his Phl defense talk






Ophiuchus

IN an amateur astronomer’s picture, early 21st century




Ophiuchus

(in far-infrared images taken by Herschel Space Observatory)

slide sequence courtesy of Hope Chen, from his PhD defense talk



slide sequence courtesy of Hope Chen, from his PhD defense talk
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Ophiuchus
(in Ha observed as part of the SHASSA)

R/G/B = 500/350/250 um

slide sequence courtesy of Hope Chen, from his Phl defense talk



Ophiuchus

(in Ha and far-infrared)

R/G/B = 500/350/250 ym

slide sequence courtesy of Hope Chen, from his PhD defense talk
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slide sequence courtesy of Hope Chen, from his PhD defense talk
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Bubbles
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Figure 30. Schematic picture of size, mass, momentum, and energy distribution of shells in Perseus. The radius of each circle (and position) are proportional to the
radius (and location) of the shell in the cloud, while the ring thickness is proportional to the expansion velocity (see the legend on the upper right corner). Shells with
a confidence level of 3 or less (from Table 4) are indicated by a dashed white line. Candidate powering sources with a BS spectral type or later are shown as white
star symbols, while those with earlier spectral type (i.e., high-mass stars) are shown as black (filled) star symbols. Candidate sources with no known spectral type (but
known «) are shown as red stars. The relative mass, momentum, and Kinetic energy of the shells are shown in the three horizontal bars (where the colors indicate the
value for each shell). The total outflow mass, momentum, and kinetic energy of the molecular outflows in Perseus (from Arce et al. 2010) are shown for comparison.

Arce et al. 2011
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Ophiuchus

(in Ha and far-infrared)

R/G/B = 500/350/250 ym

slide sequence courtesy of Hope Chen, from his PhD defense talk



Ophiuchus
(in Ha / far-infrared / X-ray)

R/G/B = 500/350/250 ym

slide sequence courtesy of Hope Chen, from his PhD defense talk



Ophiuchus
(in Ha / far-infrared / 13CO J=1-0)
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slide sequence courtesy of Hope Chen, from his PhD defense talk
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" The Physical Properties of Observed (and
Synthetic!) Large-Scale Galactic Filaments

Catherine Zucker (Harvard-Smithsonian Center for Astrophysics)
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ernysse, GUIAE & caveats, from Andi Burkert

here is a simulation of the formation of the Nessi filament. The line-of-sight is the x-coordinate. So
we see Nessie in the y-z plane.

We impose a gravitational potential well in the y-direction, located at x=0=z. Gas enters the
potential well from the negative x-axis and then gets trapped

and generated the filament. White dots show the stars forming in the filament. Feedback is
included. At some point the filament mass becomes so massive

that it collapses onto itself and forms a dense star cluster. In reality tidal shear would prevent that
from happening.

The 3 movies show the gas and stars in x-y, x-z and y-z projection. As the movies are too large to
send via email, here is a link where you can download them:

log column density
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ABSTRACT

After studying how line width depends on spatial scale in low-mass star-forming regions, we propose

that “dense cores” (Myers & Benson 1983) represent an inner scale of a self-similar process that charac-
terizes larger scale molecular clouds.

"Coherent
Core"

F1G. 10.—An illustration of the transition to coherence. Color and shading schematically represent velocity and density in this figure. On large scales,
material (labeled chaff) is distributed in a self-similar fashion, and its filling factor is low. On scales smaller than some fiducial radius, the filling factor of gas
increases substantially, and a coherent dense core, which is not self-similar, is formed. Due to limitations in the authors’ drawing ability, the figure emphasizes
a particular size scale in the chaff, which should actually exhibit self-similar structure on all scales ranging from the size of an entire molecular cloud complex

down to a coherent core.



WRAT I HLAMENTS CONTINUE ACRUSS CURE BUUNDARIES?!

blue =VLA ammonia (high-density gas); green=GBT ammonia (lower-res high-density gas); red=Herschel 250 micron continuum (dust)

B5

(Haystack,
GBT,VLA,
Herschel)

Goodman, Chen, Offner & Pineda 2018 in prep.
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(mimicking column density derived from dust emission)
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Probability Distribution

Are the dense structures “cores”? Are they gravitationally bound?
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What, really, 1s a “dense core?”
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Hull, Mocz, Burkhart, Goodman, Girart, Cortes, Hernquist, Springel, Li & Lai 2017.
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POSITION-VELOCITY STRUCTURE OF THE Bo REGION IN PERSEUS
e |

weak NH3 2 strong NH; : |

| W, % e many thanks to Jaime Pineda & Jens Kauffmann for this figure
— — COMPLETE data: 13C0 from Ridge et al. 2006; NHs from Pineda et al. 2010




PUSITION=VELOCITY S TRUCTURE O THE Bo REGION IN PERSEUS
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many thanks to Jaime Pineda & Jens Kauffmann for this figure
COMPLETE data: '3CO from Ridge et al. 2006; NH; from Pineda et al. 2010



o [RONG EVIDENCE FOR "VELOCITY CORERENCE IN DENSE CORES

greyscale shows NH3 velocity dispersion,

arrows show gradient in dispersion
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sUT THEN. WE FOUND SUB-STRUCTURE

THE ASTROPHYSICAL JOURNAL LETTERS, 739:L2 (Spp), 2011 September 20

Dec (J2000)
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Figure 1. Left panel: integrated intensity map of BS in NH3 (1,1) obtained with GBT. Gray contours show the 0.15 and 0.3 Kkms™' level in NH3 (1,1) integrated
intensity. The orange contours show the region in the GBT data where the non-thermal velocity dispersion is subsonic. The young star, BS-IRS1, is shown by the star
in both panels. The outflow direction is shown by the arrows. The blue contour shows the area observed with the EVLA and the red box shows the area shown in the
right panel. Right panel: integrated intensity map of BS in NH3 (1,1) obtained combining the EVLA and GBT data. Black contour shows the 50 mJy beam™' kms™"
level in NH3 (1,1) integrated intensity. The yellow box shows the region used in Figure 4. The northern starless condensation is shown by the dashed circle.

Pineda et al. 2011
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_WE NOW ALSD KNOW THAT Bb IS (RAPIDLY') FORMING A BOUND CLUSTER

doi:10.1038/nature14166

The formation of a quadruple star system with wide

separation

Jaime E. Pineda’, Stella S. R. Offner®?, Richard J. Parker*, Héctor G. Arce®, Alyssa A. Goodman®, Paola Caselli’, Gary A. Fuller®,

Tyler L. Bourke®'® & Stuartt A. Corder'>'?

The initial multiplicity of stellar systems is highly uncertain. A num-
ber of mechanisms have been proposed to explain the origin of binary
and multiple star including core frag ion, disk frag-
mentation and stellar capture'>. Observations show that protostellar
and pre-main-sequence multiplicity is higher than the multiplicity
found in field stars*”, which suggests that dynamical interactions
occur early, splitting up multiple systems and modifying the initial
stellar separations®’. Without direct, high-resolution observations
of forming systems, however, it is difficult to determine the true
initial multiplicity and the d binary formation mechanism.
Here we report observations of a wide-separation (greater than
1,000 astronomical units) quadruple system composed of a young
protostar and three gravitationally bound dense gas condensations.
These condensations are the result of fragmentation of dense gas
fil and each cond ion is expected to form a star on a time-

scale of 40,000 years. We determine that the closest pair will form a
bound binary, while the quadruple stellar system itself is bound but
unstable on timescales of 500,000 years (comparable to thelifetime of
the embedded protostellar phase'). These observations suggest that
filament fragmentation on length scales of about 5,000 astronomical
units offers a viable pathway to the formation of multiple systems.

10,000 au
I T T N T S S

44 s 40 s 36s 3h47min32s

Right ascension (J2000)

Pineda, Offner, Parker, Arce, Goodman, Caselli, Fuller, Bourke & Corder 2015

Detailed knowledge of the underlying distribution of dense gas is the
key to determining which structures will go on to form stars. Here we
identify the dense gas structures that are most likely to form stars using
the dendrogram technique?'. Dendrogram analysis is a hierarchical struc-
ture decomposition that uses isocontours to identify individual features,
while also determining where these contours merge with adjacent struc-
tures to create a new parental structure. We refer to the smallest scale (and
brightest) structures in the dendrogram as condensations. These are
the most likely places for an individual star to form. Figure 1a shows the
B5 region as seen in dense gas (number density of Hy, n, 2 10* cm™),
with the protostar and the identified gas condensations shown by a star
and circles, respectively. The mass of the well known protostar B5-IRS1
is 0.1 solar masses (Mgyy; ref. 22), while the masses of condensations
B5-Cond1, B5-Cond2 and B5-Cond3 are 0.36 * 0.09 Mgy, 0.26 = 0.12
Mesynand 0.30 % 0.13 Mgy, respectively. Uncertainty in these masses is
dominated by the uncertainty in the temperature used to convert mea-
sured fluxes to masses. The radii of the three condensations are respec-
tively 2,800 AU, 2,300 AU and 2,500 AU, while the projected separations
between the same three condensations and the protostar are 3,300 Au,
5,100 AU and 11,400 AU (see Methods). The half-mass radii of the con-
densations are about half the condensation radii. This, combined with
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WRAT I HLAMENTS CONTINUE ACRUSS CURE BUUNDARIES?!

blue =VLA ammonia (high-density gas); green=GBT ammonia (lower-res high-density gas); red=Herschel 250 micron continuum (dust)

Goodman, Chen, Offner & Pineda 2018 in prep.
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slide sequence courtesy of Hope Chen, from his Phl defense talk



Ophiuchus & laurus

a. Mass-Size Relation b. Linewidth-Size Relation
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slide sequence courtesy of Hope Chen, from his Phl defense talk



At what scales does gravity truly play the
key role in the story of star formation?



Virial Theorem

20 = —(QG T QP>

dispersing confining

slide sequence courtesy of Hope Chen, from his PhD defense talk



Virial Theorem

2Qk = —(Qc + Qp)

dispersing confining

Ophiuchus & laurus

a. Self-Gravity vs. Kinetic Energy b. Amb. Pressure vs. Kinetic Energy

Yy

<“ B5 Core
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slide sequence courtesy of Hope Chen, from his Phl defense talk



Virial Theorem

2Qk = —(Qc + Qp)

dispersing confining

Ophiuchus & laurus

a. Total Confinement vs. Dispersion b. Self-Gravity vs. Amb. Pressure
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B-field map
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Photo credit: C. Hull
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Perseus
in 3-D
(PanSTARRS +
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MAPPING DISTANCES ACROSS THE PERSEUS MOLECULAR CLOUD USING CO
OBSERVATIONS, STELLAR PHOTOMETRY, AND GAIA DR2 PARALLAX
MEASUREMENTS

CATHERINE ZUCKER,! EDWARD F. SCHLAFLY.? JOSHUA S. SPEAGLE,! GREGORY M. GREEN,?
STEPHEN K. N. PORTILLO.! DOUGLAS P. FINKBEINER,! AND ALYSSA A. GOODMAN!

Y Harvard Astronomy, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
2 Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

3Kavli Institute for Particle Astrophysics and Cosmology, Physics and Astrophysics Building, 452 Lomita Mall,
Stanford, CA 9,305, USA

Abstract

We present a new technique to determine distances to major star-forming regions across the Perseus
Molecular Cloud, using a combination of stellar photometry, astrometric data, and 2CO spectral-
line maps. Incorporating the Gaia DR2 parallax measurements when available, we start by inferring
the distance and reddening to stars from their Pan-STARRS1 and 2MASS photometry, based on a
technique presented in Green et al. (2014, 2015) and implemented in their 3D “Bayestar” dust map
of three-quarters of the sky. We then refine the Green et al. technique by using the velocity slices
of a CO spectral cube as dust templates and modeling the cumulative distribution of dust along the
line of sight towards these stars as a linear combination of the emission in the slices. Using a nested
sampling algorithm, we fit these per-star distance-reddening measurements to find the distances to
the CO velocity slices towards each star-forming region. This results in distance estimates explicitly
tied to the velocity structure of the molecular gas. We determine distances to the B5, 1C348, Bl,
NGC1333, L1448, and L1451 star-forming regions and find that individual clouds are located between
~ 275 — 300 pc, with typical combined uncertainties of ~ 5%. We find that the velocity gradient
across Perseus corresponds to a distance gradient of about 25 pc, with the eastern portion of the
cloud farther away than the western portion. We determine an average distance to the complex of
294 + 17 pc, about 60 pc higher than the distance derived to the western portion of the cloud using
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At what scales does gravity truly play the
key role in the story of star formation?
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Hot off the press! Chen et al. 2019...Unbound & in bound clumps!
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Hot off the press! Chen et al. 2019...Unbound & in bound clumps!
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Hot off the press! Chen et al. 2019...Unbound & in bound clumps!
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