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Well-managed perennial pasture: 
Setting the gold standard for 
ecosystem services 
 
The goal of ecosystem service markets is to incentivize 
agricultural practices that purify air and water, build 
soils, retain nutrients, support pollinators, recycle 
wastes, build soils, recharge groundwater, mitigate 
droughts and floods, and help stabilize climate. One 
significant shortcoming is that most current markets pay 
for changes in farming practices, while the technology 
needed to measure outcomes is in formative stages and 
many of these markets do not verify results.  

The rapidly evolving market for carbon credits is an 
example of these ecosystem service markets, with 
farmers and landowners receiving payments for practices aimed at stabilizing climate by accumulating and 
storing carbon in soil. The effectiveness of various agricultural practices in delivering this and other ecosystem 
services is currently the focus of intense research and discussion, as is the appropriate monetary value of the 
services delivered. The single most effective agricultural practice for delivering an array of ecosystem services 
while returning a sustainable income to farmers is managed grazing of perennial pastures (see box next page).   

Well-managed pastures provide superior ecosystem services 
Ecosystem services provided by well-managed pastures include clean water, flood reduction, biodiversity, soil 
retention, and soil carbon storage resulting from continuous living vegetation cover and improved soil health 
(refs. 2, 8, 10, 16, 29, 31). Table 1 compares estimates of multiple ecosystem services provided by managed 
grazing and annual cropping systems with and without cover crops for a typical farm in central Wisconsin.  

Table 1. Estimated ecosystem service values provided by three agricultural systems typical of Wisconsin. 

Ecosystem process 
(ecosystem service) Units 

Corn-Soy 
(tilled, no  

cover crop) 

Corn-Soy 
(no-till &  

cover crop) 

Pasture 
(managed 
grazing) References 

Soil carbon stored  
(climate stabilization) tons CO2eq/ac/yr -1.03a .74b + 0.25c = 0.99 5.3d 18b, 28c 27 a, 

30d 
Soil erosion  
(water quality) lb soil/ac/yr 4200 3000 0 26 

Phosphorus runoff  
(water quality) lb P/ac/yr 2.0 1.5 0.2 26 

Nitrate loss  
(water quality) lb N/ac/yr 28.6a 18.0b 8.9c 5b, 14a, 16c 

Storm runoff  
(flood reduction) 

in. H2O from a 5-
in rain in 24 h 3.3 2.8 2.1 6 

Grassland bird habitat  
(biodiversity) nesting pairs/ac 0.04a 0.2a 2.6b 1a, 32b 

Pollinator habitat  
(biodiversity) 

0 (poor) to 10 
(best) 1.5 1.5 – 2.5 5.0 – 6.0 7, 9, 17, 20, 

21, 22, 25, 34 
 
Profitability of livestock systems incorporating managed grazing 
Livestock raised on well-managed pastures not only deliver superior ecosystem services, but also can be more 
profitable. Economic data in Table 2 were collected on a per-acre basis for crop systems and on a per-cow basis 
for livestock systems (33). A typical dairy farm in the region averages 138 cows and 453 acres or approximately 
3.3 acres per cow (24). Per-acre income estimates for livestock systems were calculated by dividing per-cow 
annual income estimates for managed grazing ($510) and confinement ($355) by average acres per cow. Income 
was higher with both dairy systems compared to annual corn-soy production. Federal payments and crop 
insurance subsidies deter both crop and livestock farmers from taking land out of corn and soybean production 
by significantly reducing the financial risk associated with producing these crops.  



November 2021 
 

    

Table 2. Average income (2016-2020) of annual cropping systems and dairy operations in Wisconsin, 
Illinois, and Minnesota. Data compiled from the University of Minnesota’s Center for Farm Financial 
Management farm financials database (FINPACK, ref. 33). 

Income Source 
Corn-Soy, 

conventional 
Corn-Soy, no-till 

w/cover crops 
Managed 

grazing dairy 
Confinement 

dairy 
Net income from farm 
operations (w/o federal 
payments or crop insurance) 

$40.27/ac/yr $45.50/ac/yr  $155.16/ac/yr  $107.93/ac/yr 

Federal payments and crop 
insurance 

$34.79/ac/yr (corn) 
$27.82/ac/yr (s0y) 

$48.53/ac/yr (corn) 
$26.47/ac/yr (soy) 

$34.03/ac/yr 
(all crops) 

$42.79/ac/yr 
(all crops) 

Ecosystem services valuation 
A variety of means are used to establish the economic value of each 
ecosystem service (3, 12, 19, 23). The value to society is different from 
what the market is willing to pay or currently paying (Table 3). 
National carbon markets are being established by private companies, 
governments, and non-profits and are currently highly variable. 
Local and regional markets for phosphorus, water quality trading, 
and wetland mitigation have been in existence since the 1980s. 
Markets for biodiversity, flood control and other ecosystem services 
are yet to be established. Current payment ranges are listed in the 
table below and are subject to change. For several of these ecosystem 
services, neither valuations nor markets are established. 
Table 3. Estimated value and current payment rates for 
ecosystem services. 

Ecosystem process  
Estimated value 

to society 
Current 
payment Refs. 

Soil carbon storage $52/ton CO2 eq $10-$30/ac 15 
Soil retention  $3.78/ton soil none 13 
Phosphorus retention $29/lb P $30-$90/lb 35 
Nitrate retention  $0.36/lb N none 11 
Storm runoff & flood 
reduction ? none  

Grassland bird habitat  
(biodiversity) ? none  

Pollinator habitat  ? none  

Investing in ecosystem services?   
Choose managed grazing 
Because society places value on clean water and healthy soil, new 
ecosystem service markets can reward farmers who balance 
production and environmental protection. They can also encourage 
farmers to make changes toward more regenerative practices by 
reducing the financial risk associated with making changes to their 
farm businesses. The most effective means of generating multiple 
ecosystem services in agriculture is through well-managed grazing of 
perennial pastures. Investing in managed grazing systems is a win-win-win for the environment, the farmer, and 
the community. 
Authors: Laura K Paine, Grassland 2.0 Outreach Coordinator; Dr. Randall Jackson, UW-Madison Grassland Ecologist; Dr. Zach 
Raff, UW-Stout Environmental Economist; Dr. Eric Booth, UW-Madison Ecohydrologist; Dr. Claudio Gratton, UW-Madison 
Entomologist; Aislin Gibson, Harvard University Sustainability and Environmental Management Master’s Degree candidate; Dr. 
David LeZaks, Senior Fellow Croatan Institute; Dr. Sarah Lloyd, UW-Madison Rural Sociologist; Dr. Carl Wepking, UW Madison Soil 
Microbiologist  

For more information, visit grasslandag.org or contact Laura Paine at lkpaine@gmail.com. 
Ecosystem services markets are evolving. This document will be updated as new information becomes available. If 

references are not attached to this version, a complete list of references is available at grasslandag.org. 
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