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Abstract

The common prior assumption is a convenient restriction on beliefs in games

of incomplete information, but conflicts with evidence that agents publicly dis-

agree in many economic environments. This paper proposes a foundation for

heterogeneous beliefs in games, in which disagreement arises not from different

information, but from different interpretations of common information. I model

players as statisticians who infer an unknown parameter from data. Players

know that they may use different inference rules (and, therefore, may disagree

about the distribution of payoffs), but have common certainty in the predic-

tions of a class of inference rules. Using this framework, I study the robustness

of solutions to a relaxation of the common prior assumption. The main re-

sults characterize which rationalizable actions and which Nash equilibria persist

given finite quantities of data, and provide a lower bound on the quantity of

data needed to learn these solutions. I suggest a new criterion for equilibrium

selection based on statistical complexity—solutions that are “hard to learn” are

selected away.

1 Introduction

In games with a payoff-relevant parameter, players’ beliefs about this parameter,

as well as their beliefs about opponent beliefs about this parameter, are important

for predictions of play. The standard approach to restricting the space of beliefs
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assumes that players share a common prior distribution.1 This assumption is known

to have strong implications, including that beliefs that are commonly known must be

identical (Aumann 1976), and repeated communication of beliefs will eventually lead

to agreement (Geanakoplos & Polemarchakis 1982). These properties conflict not

only with considerable empirical evidence of public and persistent disagreement,2

but also with the more basic, day-to-day, experience that people sometimes come

to different conclusions given the same information.

As a consequence, the following questions arise: When is disagreement a feature

of agent’s beliefs, and how can this disagreement be predicted from the primitives

of the economic environment? Can we relax the common prior assumption to ac-

commodate (commonly known) disagreement in a structured way? Finally, when

are strategic predictions robust to relaxations of the common prior assumption?

Towards the first questions of modeling and predicting disagreement, I propose

a reformulation of incomplete information in which agents form beliefs by learning

from data. I take data be a random sequence of observations, drawn i.i.d. from an

exogenous distribution P , and define an inference rule to be any map from possible

datasets into distributions over the parameter space. (For example, we can think of

data as historical stock prices, and inference rules as maps from possible time-series

of stock returns to distributions over returns next period.)

This perspective on beliefs provides a way to rationalize disagreement—in the

absence of a “privileged” or “correct” inference rule, different interpretations of

common data is not only possible, but even natural.3 The key restriction I impose

to structure this approach is that while agents may learn from data using different

inference rules, they have common certainty in the predictions of a family of plausible

inference rules.4 This assumption is referred to as common inference. In the main

part of the paper, I additionally assume a condition on the family of inference rules

(uniform consistency5) that implies that agents commonly learn the true parameter

1The related, stronger, notion of rational expectations assumes moreover that this common prior

distribution is in fact the “true” distribution shared by the modeler.
2In financial markets, agents publicly disagree in their interpretations of earnings announcements

(Kandel & Pearson 1995), valuations of financial assets (Carlin, Kogan & Lowery 2013), forecasts

for inflation (Mankiw, Reis & Wolfers 2004), forecasts for stock movements (Yu 2011), and forecasts

for mortgage loan prepayment speeds (Carlin, Longstaff & Matoba 2014). Agents publicly disagree

also in matters of politics (Wiegel 2009) and climate change (Marlon, Leiserowitz & Feinberg 2013).
3Indeed, this perspective has been taken in work by Al-Najjar (2009), Gilboa, Samuelson &

Schmeidler (2013), and Acemoglu, Chernozhukov & Yildiz (2015), among others, in various non-

strategic settings (see Section 9.3 for an extended review). I embed these ideas into an incomplete

information game, and study their implications for strategic behavior.
4Reflecting, for example, common cultural experiences or industry-specific norms.
5The property of uniform consistency is satisfied by many families of inference rules, including

any finite inference rule class, as well as certain classes of kernel density estimators with variable

bandwidths, and certain classes of Bayes estimators with heterogeneous priors.
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(see Proposition 1).6 In this framework, complete information is interpreted as a

reduced form for agents having beliefs coordinated by an infinite quantity of data.7

Towards the second question of robustness to the common prior assumption, I

propose a new robustness criterion for strategic predictions based in the quantity of

data that agents need to see. I define a sequence of incomplete information games,

called inference games, which are indexed by a quantity of (public) observations

n < ∞. In each of these games, agents observe n random observations, and form

beliefs satisfying common inference. As the quantity of data n tends to infinity,

this sequence of games (almost surely) converges to the game in which agents have

common certainty of the true parameter value. But for any n < ∞, agents have

different beliefs.

The main part of the paper (Sections 5 and 6) asks: Which solutions of the

limit complete information game persist (with high probability) in these finite-data

inference games? The key object of study is pn(a), the probability that an action

profile a is a solution given n observations. Section 5 characterizes which solutions

have the property that pn(a) → 1 as n tends to infinity; these solutions are said

to be robust to inference. I find that Nash equilibria are robust to inference if and

only if they are strict (Theorem 1), and that the robustness of rationalizable actions

can be characterized using procedures of iterated elimination of strategies that are

never a strict best reply (Theorem 2).

In practice, agents only observe restricted amounts of data. Thus, strategic

behavior in the limit (as the quantity of data grows arbitrarily large) may not be the

most interesting criterion for predictions in real economic environments. I suggest

next that we can provide a measure for how robust a solution is by looking at how

much data is required to support the solution. In Section 6, I provide lower bounds

on pn(a) for Nash equilibria (Proposition 2) and rationalizable actions (Proposition

3). For both solution concepts, the quantity of data required depends on several

features:

First, it depends on a cardinal measure of strictness of the solution. Say that

an action profile is a δ-strict NE if each agent’s prescribed action is at least δ better

than his next best action; and say that an action profile is δ-strict rationalizable if it

can be rationalized by a chain of best responses, in which each action yields at least

6This assumes implicitly that the unknown parameter can be identified in the data. In the

proposed framework, disagreement may persist even given infinite quantities of data if the parameter

is not identified.
7Recent papers have argued that agreement need not occur even in an infinite data limit. For

example, Acemoglu, Chernozhukov & Yildiz (2015) show that asymptotic beliefs need not agree

when individuals are uncertain about signal distributions. I assume agreement given infinite data

in the main part of the paper to emphasize the question of when (sufficient) agreement occurs given

finite data. In Section 7.1, I show that this is a stronger assumption than is necessary for the main

results.
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δ over the next best alternative. This parameter δ turns out to determine how much

estimation error the solution can withstand—the higher the degree of strictness (the

larger the parameter δ), the less data agents need to see.

Second, the quantity of data required depends on the “diversity” of the infer-

ence rules. When agents have common knowledge of a smaller set of inference rules,

or when these inference rules diverge less in their predictions given common data,

then fewer observations are needed to coordinate beliefs. Conversely, lack of com-

mon knowledge over what constitutes a reasonable interpretation of data serves to

prolong disagreement. Thus, this criterion provides a formal sense in which the

common prior assumption is less appropriate for predicting strategic interactions

across cultures, nations, and industries.

Finally, the quantity of data required depends on the “complexity” of the learn-

ing problem. I do not provide a universal notion of complexity; instead, the relevant

determinants are seen to vary with the choice of inference rules. For many classes

of inference rules, an important determinant is dimensionality, and I provide several

concrete examples to illustrate this. In these cases, predictions in the limit complete

information game are less robust when payoffs are a function of a greater number

of covariates.

These comparative statics are, in my view, a key advantage to modeling be-

liefs using the proposed framework. When agents learn from data, possibly using

different inference rules, then channels for disagreement emerge that are comple-

mentary to (and distinct from) the traditional channel of differential information.

In particular, the amount of common knowledge over how to interpret data, and the

“dimensionality” or “complexity” of the unknown parameter, are both crucial to

determining dispersion in beliefs. These sources for disagreement have potentially

new implications for policy design and informational design: for example, summary

statistics may facilitate coordination by reducing the complexity of information (and

thus, coordinating beliefs).

The final sections proceed as follows: Section 7 examines several modeling choices

made in the main text, and discusses the extent to which the main results rely on

these choices. In particular, I look at relaxations of uniform consistency (Section

7.1), the introduction of private data (Section 7.2), and the introduction of limit

uncertainty (Section 7.3).

Section 8 surveys the related literature. This paper builds a bridge between the

body of work that studies the robustness of equilibrium and equilibrium refinements

(Fudenberg, Kreps & Levine 1988, Carlsson & van Damme 1993, Kajii & Morris

1997, Weinstein & Yildiz 2007), and the body of work that studies the asymptotic

properties of learning from data (Cripps, Ely, Mailath & Samuelson 2008, Al-Najjar

2009, Acemoglu, Chernozhukov & Yildiz 2015).

Section 9 concludes.
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2 Example

I begin by illustrating ideas with a simple coordination game, in which two farmers

decide simultaneously whether or not to adopt a new agricultural technology—for

example, a new pest-resistant grain. Continued production of the existing grain

results in a payoff of 1
2 . Transitioning alone to the new grain results in a payoff of

0, since neither farmer can individually finance the distribution and transportation

costs of this new grain. Finally, coordinated transition results in an unknown payoff

of θ, which I will assume for simplicity takes the value θ = 1 if crop yield is high,

and θ = −1 if crop yield is low. The payoffs to this game are summarized below:

Adopt Not Adopt

Adopt θ, θ 0, 1
2

Not Adopt 1
2 , 0

1
2

1
2

When should we predict coordination on adoption of the new grain?

In the standard approach, all uncertainty about the new grain is described by

a state space Ω, and we assume that agents share a common prior over Ω. In the

absence of any private information about the new grain, this approach implies that

the two farmers have an identical belief over its future yield. But predicting yields

of a new kind of crop is not easy: crop yield is a function of many environmen-

tal conditions—the soil structure, light exposure, quantity of rain, etc. I propose

an alternative perspective for modeling their beliefs to capture the role that this

complexity may play in determining disagreement between agents.

Learning from Data. In the proposed model, farmers predict the future yield

of the new crop based on how it previously fared in other environments. There

are r < ∞ relevant environmental conditions (soil structure, light,. . . ). For this

example, let us assume that each condition takes a value in the interval [−c, c], and

that the true relationship between environmental conditions in [−c, c]r and crop

yields (high or low) is given by the following deterministic function:

π(x) =

{
High if x ∈ [−c′, c′]r

Low otherwise
∀ x ∈ [−c, c]r

where c′ ∈ (0, c). That is, crop yields are high under conditions in [−c′, c′]r, and low

otherwise. (See Figure 1 below for an illustration of this relationship with r = 2.)

It is common knowledge that there is a (hyper-)rectangular region of favorable

environmental conditions (high yield), and a remaining region of unfavorable condi-

tions. The farmers do not, however, know the exact regions. Instead, they observe

the common data

(x1, π(x1)), . . . , (xn, π(xn)),
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high yield

low yield

light exposure

soil structure

c0

c

c0 c

Figure 1: Two relevant attributes (r = 2). Yield is high under environmental conditions

in [−c′, c′]2, and low otherwise. Farmers do not know the high yield region (shaded).

where xi are identically and independently drawn from a uniform distribution on

[−c, c]r. That is, farmers observe crop yields in n different sampled environments.

From this data, farmers infer a partitioning π̂ that correctly classifies every obser-

vation, and use this inferred relationship to predict whether the yield will be low or

high in their region. For simplicity, let us take this region to be described by the

origin.

The key observation is that many rectangular partitionings will perfectly fit

the data; some of which may have different predictions at the origin. This creates

room for potential (rational) disagreement. (Figure 2 illustrates two such partition-

ings based on an example dataset.) Say that a strategic prediction is robust if it

holds without further assumption regarding which partitioning either farmer infers,

or which partitioning he believes the other farmer to infer. When is coordinated

adoption robust?

Robustness. Let us first clarify this criterion as follows. Every realization of

the data pins down a set of predictions, each of which is consistent with some

rectangular partitioning that exactly fits the data. Now, suppose only that this set

of predictions is common certainty—that is, both farmers put probability 1 on this

set of predictions, believe that the other puts probability 1 on this set of predictions,

and so forth.8 This defines a set of possible (hierarchies of) beliefs that either farmer

8 Formally, define Π to be the family of functions

π̂(x) = π̂
(
x1, . . . , xr

)
=

{
1 if xk ∈ [ck, ck] for every k = 1, . . . , r

0 otherwise
∀ x ∈ X ,

parametrized by the tuple (c1, c1, . . . , cr, cr) ∈ R2r. This defines the class of all axis-aligned hyper-
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low yield

high yield

?

c0

c

c0 c

light exposure

soil structure

Figure 2: Circles indicate low yields, and squares indicate high yields. The two rectangles

identify partitionings (predict high yield if x is contained within the rectangle, and low yield

otherwise) that exactly fit the data.

could hold.

The key object of interest will be the probability that data is realized such that

Adopt is rationalizable given any belief in this set. This probability is a function of

the quantity of data n and of the number of conditions r; I will write it as p(n, r),

and refer to it as the plausibility of coordination on adoption.

Claim 1. For every quantity of data n ≥ 1, number of environmental conditions

r ≥ 1, and constants c, c′ ∈ R+,

p(n, r) =

(
1−

[
2

(
2c− c′

2c

)n
−
(
c− c′

c

)n])r
.

Proof. See appendix.

This claim has several implications.

Observation 1. Coordinated adoption is more plausible when the quantity of data

n is larger.

From Claim 1, we see that p(n, r) is increasing in n. Indeed, p(n, r)→ 1 as the

quantity of data n tends to infinity (for fixed r). Thus, if farmers observe crop yields

in sufficiently many different environments, then coordinated adoption is arbitrarily

plausible.

rectangles. Agents have common certainty in the set

{π̂(0) : π̂ ∈ Π and π̂(xk) = π(xk) ∀ k = 1, . . . n}.
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Observation 2. Coordinated adoption is less plausible when the number of envi-

ronmental conditions r is larger.

From Claim 1, we see that p(n, r) is decreasing in r when n is sufficiently large.9

In fact, p(n, r) → 0 as the number of environmental conditions r tends to infinity

(for fixed n). This suggests that coordinated adoption is less plausible when crop

yield depends purely on a single environmental condition, than when it depends on

a high-dimensional set of covariates.

Observation 3. Coordinated adoption is less plausible when the set of inference

rules is larger.

The probability p(n, r) weakly decreases for every n and r as we expand the

set of possible interpretations of the data. For example, suppose we assume that it

is common knowledge that the region of high crop yields is described by a rotated

rectangle, instead of axis-aligned rectangles as assumed above. This weakly expands

the room for possible disagreement, since there are datasets such as the one in the

figure below

high yield

low yieldc0

c

c0 c

where every axis-aligned rectangle partitioning predicts high yield at the origin,

but some rotated rectangle partitioning predicts low yield.10 This suggests that

coordinated adoption is more plausible when extrapolation from past crop yields is

coordinated by external means—for example, a common culture, or a common set

of heuristics.

9A sufficient condition is

2

(
2c− c′

2c

)n
−
(
c− c′

c

)n
<

1

r
.

10Since the set of rotated rectangle partitionings includes the set of axis-aligned rectangle par-

titionings, clearly if every partitioning in the former set predicts that rebellion will be successful,

then every partitioning in the latter set will as well.
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Takeaways. Under the proposed approach, prediction of coordinated adoption

of the new grain is more plausible when agents have previously observed few trial

instances of the new crop, when the determinants of crop yield are high-dimensional,

and when there is not a common approach to extrapolating from past yields. In the

main body of the paper, I generalize the ideas in this example, proposing a model

in which agents have common certainty in the predictions of an arbitrary class of

inference rules, and a robustness criterion for equilibria and rationalizable actions

in all finite normal-form games.

3 Preliminaries and Notation

3.1 The game

Consider a set I of I < ∞ agents and finite action sets (Ai)i∈I . As usual, let

A =
∏
i∈I Ai. The set of complete information (normal-form) games defined on

these primitives is the set of payoff matrices in U := R|I|×|A|. Let Θ ⊆ Rk be a

compact set of parameters and fix a metric d0 on Θ such that (Θ, d0) is complete

and separable. I will identify these parameters with payoff matrices under a map g

satisfying:

Assumption 1. g : Θ→ U is a bounded and Lipschitz continuous embedding.11

This map g can be interpreted as capturing the known information about the

structure of payoffs. For example, in the game presented in Section 2, players know

that payoffs belonged to the parametric family of payoffs

a1 a2

a1 θ, θ 0, 1
2

a2
1
2 , 0

1
2 ,

1
2

but do not know the value of θ. Notice that identifying payoffs with parameters in

this way is without loss of generality, since we can always take Θ := U and set g

to be the identity map. For clarity of exposition, I will sometimes write u(a, θ) for

g(θ)(a), or ui(a, θ) for the payoffs to agent i. Finally, denote the true value of the

parameter by θ∗, and suppose that it is unknown.

Remark 1. It is also possible to interpret θ as indexing a family of distributions over

payoffs; for example, θ may be the mean of a normal distribution with a fixed vari-

ance. In this case, g maps parameters in Θ to expected payoffs under the distribution

determined by θ.

11A map is an embedding if it is a homeomorphism onto its image.
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3.2 Beliefs

Now let us define beliefs on Θ.

Type space. For notational simplicity, consider first I = 2. Following Branden-

burger & Dekel (1993), recursively define

X0 = Θ

X1 = X0 × (∆(X0))

...

Xn = Xn−1 × (∆(Xn−1))

and take T0 =
∏∞
n=0 ∆(Xn). An element (t1, t2, . . . ) ∈ T0 is a complete description

of beliefs over Θ (describing the agent’s uncertainty over Θ, his uncertainty over his

opponents’ uncertainty over Θ, and so forth), and is referred to as a type.

This approach can be generalized for I agents, taking X0 = Θ, X1 = X0 ×
(∆(X0))I−1, and building up in this way. Mertens & Zamir (1985) have shown

that for every agent i, there is a subset of types T ∗i (that satisfy the property of

coherency12) and a function κ∗i : T ∗i → ∆
(
Θ× T ∗−i

)
such that κi(ti) preserves the

beliefs in ti; that is, margXn−1
κi(ti) = tni for every n. Notice that T ∗−i is used here

to denote the set of profiles of opponent types.

The tuple (T ∗i , κ
∗
i )i∈I is known as the universal type space. Other tuples (Ti, κi)i∈I

with Ti ⊆ T ∗i for every i, and κi : Ti → ∆(Θ × T−i) represent alternative (smaller)

type spaces. Finally, let T ∗ = T ∗1 × · · · × T ∗I denote the set of all type profiles, with

typical element t = (t1, . . . , tI).

Remark 2. Types are sometimes inference ruleed as encompassing all uncertainty

in the game. In this paper, I separate strategic uncertainty over opponent actions

from structural uncertainty over Θ.

Topology on types. Let T ki = ∆(Xk−1) = ∆(Θ×T k−1
−i ) denote the set of possible

k-th order beliefs for agent i.13 The uniform-weak topology on T ∗i , proposed in Chen,

di Tillio, Faingold & Xiong (2010), is the metric topology generated by the distance

dUWi
(
ti, t
′
i

)
= sup

k≥1
dk
(
ti, t
′
i

)
∀ ti, t′i ∈ T ∗i ,

where d0 is the metric defined on Θ (see Section 2.1)14 and recursively for k ≥ 1, dk

12margXn−2
tn = tn−1, so that (t1, t2, . . . ) is a consistent stochastic process.

13Working only with types in the universal type space, it is possible to identify each Xk with its

first and last coordinates, since all intermediate information is redundant.
14In Chen et al. (2010), Θ is finite and d0 is the discrete metric, but this construction extends to

all complete and separable (Θ, d0).

10



is the Prokhorov distance15 on ∆
(

Θ× T k−1
−i

)
induced by the metric max{d0, dk−1}

on Θ× T k−1
i .

Common p-belief. Define Ω = Θ× T ∗ to be the set of all “states of the world,”

such that every element in Ω corresponds to a complete description of uncertainty.

Following Monderer & Samet (1989), for every E ⊆ Ω, let

Bp(E) := {(θ, t) : κi(ti)(E) ≥ p for every i} , (1)

describe the event in which every agent believes E ⊆ Ω with probability at least p.

Common p-belief in the set E is given by

Cp(E) :=
⋂
k≥1

[Bp]k (E).

The special case of common 1-belief is referred to in this paper as common certainty.

I use in particular the concept of common certainty in a set of first-order beliefs.

For any F ⊆ ∆(Θ), define the event

EF := {(θ, t) : margΘ ti ∈ F for every i} , (2)

in which every agent’s first-order belief is in F . Then, C1(EF ) is the event in which

it is common certainty that every agent has a first-order belief in F . The set of

types ti given which agent i believes that F is common certainty is the projection of

C1(EF ) onto T ∗i .16 Since this set is identical across agents, I will refer to this simply

as the set of types with common certainty in F .

3.3 Solution concepts

Two solution concepts for incomplete information games are used in this paper.

Interim Correlated Rationalizability (Dekel, Fudenberg & Morris 2007). For

every agent i and type ti, set S0
i [ti] = Ai, and define Ski [ti] for k ≥ 1 such that

ai ∈ Ski [ti] if and only if ai ∈ BRi

(
margΘ×A−i π

)
for some π ∈ ∆(Θ × T−i ×

A−i) satisfying (1) margΘ×T−i π = κi(ti) and (2) π
(
a−i ∈ Sk−1

−i [t−i]
)

= 1, where

15Recall that the Levy-Prokhorov distance ρ between measures on metric space (X, d) is defined

ρ(µ, µ′) = inf
{
δ > 0 : µ(E) ≤ µ′

(
Eδ
)

+ δ for each measurable E ⊆ X
}

for all µ, µ′ ∈ ∆(X), where Eδ = {x ∈ X : infx′∈E d(x, x′) < δ}.
16Notice that when beliefs are allowed to be wrong (as they are in this approach), individual

perception of common certainty is the relevant object of study. That is, agent i can believe that a

set of first-order beliefs is common certainty, even if no other agent in fact has a first-order belief

in this set. Conversely, even if every agent indeed has a first-order belief in F , agent i may believe

that no other agent has a first-order belief in this set.
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Sk−1
−i [t−i] =

∏
j 6=i S

k−1
j [t−j ]. We can interpret π to be an extension of belief κi(ti)

onto the space ∆(Θ × T−i × A−i), with support in the set of actions that survive

k−1 rounds of iterated elimination of strictly dominated strategies for types in T−i.

For every i, define

S∞i [ti] =

∞⋂
k=0

Ski [ti]

to be the set of actions that are interim correlated rationalizable for agent i of type

ti, or (henceforth) simply rationalizable.

Interim Bayesian Nash equilibrium. Fix any type space (Ti, κi)i∈I . A strategy

for player i is a measurable function σi : Ti → Ai. The strategy profile (σ1, . . . , σI)

is a Bayesian Nash equilibrium if

σi(ti) ∈ argmax
a∈Ai

∫
Θ×T−i

ui(ai, σ−i(t−i), θ)dκi(ti) for every i ∈ I and ti ∈ Ti.

In a slight abuse of terminology, I will say throughout that action profile a is an

(interim) Bayesian Nash equilibrium if the strategy σ with σi(ti) = ai for every

ti ∈ Ti is a Bayesian Nash equilibrium.

4 Learning from Data

What are agent beliefs over the unknown parameter (and over opponent beliefs over

the unknown parameter), and how are they formed? In this section, I describe a

framework in which beliefs are formed by learning from data.

Say that a dataset is any sequence of n observations z1, . . . , zn, sampled i.i.d.

from a set Z according to an exogenous distribution P . Throughout, I use Zn
to denote the random sequence corresponding to n observations, and zn to denote

a typical realization (or simply Z and z when the number of observations is not

important).

The key assumption of my approach is a restriction on the possible types that

agents can have following rationalization of the data. I begin by introducing a few

relevant concepts. Define a inference rule to be any map µ : z 7→ µz from the set

of possible datasets17 to ∆(Θ), the set of (Borel) probability measures on Θ. Fix a

family of inference rules M .

Definition 1. For every dataset z, say that

Fz = {µz : µ ∈M} ⊆ ∆(Θ)

is the set of plausible first-order beliefs.

17∪n≥1Zn, where Zn denotes the n-fold Cartesian product of the set Z.
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This is the set of all distributions over Θ that emerge from evaluating the dataset

z using an inference rule in M . For every dataset z, define Tz to be the set of all

(interim) types for whom Fz is common certainty.18 That is, every type in Tz
has a plausible first-order belief, puts probability 1 on every other agent having a

plausible first-order belief, and so forth. The main restriction below, which I will

refer to from now on as common inference, assumes that following realization of

data z, every agent has a type in Tz.19

Assumption 2 (Common inference). Given any dataset z, every agent i has an

(interim) type ti ∈ Tz.20

Several special examples for the set of inference rules M are collected below.

Example 1 (Bayesian updating with a common prior). Define µ to be the map that

takes any dataset z into the Bayesian posterior induced from the common prior and

a common likelihood function. Let M = {µ}. Then, for every dataset z, the set

Fz consists of the singleton Bayesian posterior induced from the common prior, and

the set Tz consists of the singleton type with common certainty in this Bayesian

posterior.21

Example 2 (Bayesian updating with uncommon priors). Fix a set of prior distri-

butions on Θ and a common likelihood function. Every inference rule µ ∈ M is

identified with a prior distribution in this set, and maps the observed data to the

Bayesian posterior induced from this prior and the common likelihood.

Example 3 (Kernel regression with different bandwidth sequences). Let X ⊆ R be

a set of attributes, which are related to outcomes in Θ under the unknown map

f : X → Θ. Data is of form

(x1, y1), . . . , (xn, yn),

where every xk ∈ X and every yk = f(xk). Suppose that the unknown parameter

θ∗ is the value of the function f evaluated at input x0.

Inference rules in M map the data to an estimate for θ∗ by first producing an

estimated function f̂ , and then evaluating this function at x0. The approach for

estimating f is as follows: Fix a kernel function22 K : Rd → R, and let hn → 0 be

18See the end of Section 3.2 for a more formal exposition.
19The results in this paper follow without modification if we relax this assumption to common

certainty in the convex hull of distributions in Fz. See Lemma 5.
20Notice that this paper takes an unusual interpretation of the ex-ante/interim distinction, which

does not explicitly invoke a Bayesian perspective. In this paper, the role of the prior is replaced by

a data-generating process.
21That is, his first-order beliefs are given by this posterior, and he believes with probability 1

that his opponents’ first-order beliefs are given by this posterior, and so forth.
22K is measurable and satisfies the conditions∫

Rd

K(x)dx = 1
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a sequence of constants tending to zero. Define f̂n,h : X → Θ to be the Nadaraya-

Watson estimator

f̂n,h(x) =
(nhn)−1yk

∑n
k=1K

(
(x− xk)/h

1/d
n

)
(nhn)−1

∑n
k=1K

(
(x− xk)/h

1/d
n

) ,

which produces estimates by taking a weighted average of nearby observations. This

describes an individual inference rule µ.

Now letH be a set of (bandwidth) sequences, each of which determines a different

level of “smoothing” applied to the data. Every inference rule µ ∈ M is identified

with a sequence hn ∈ H. Thus, M is a set of kernel regression estimators with

different bandwidth sequences.

Remark 3. Common inference does not impose an explicit relationship between

agent beliefs and estimators. For example, all of the following are consistent with

common inference:

• Every agent i is identified with an inference rule µi ∈M , and the sequence of

inference rules (µi)i∈I is common knowledge.

• Every agent i is identified with an inference rule µi ∈ M . Agent i knows his

own inference rule µi, but has a nondegenerate belief distribution over the

inference rules of other agents.

• Every agent i is identified with a distribution Pi on M , and draws an inference

rule at random from M under this distribution.

In the main part of this paper, I assume common inference (Assumption 2),

and ask what properties of beliefs and strategic behavior can be deduced from this

assumption alone.

4.1 When do agents commonly learn?

Let us begin by considering the property of common learning. Say that agents com-

monly learn the true parameter θ∗ if, as the quantity of data increases, every agent

believes that it is approximate common certainty that the value of the parameter

is close to θ∗. It will be useful in this section to assign to every agent i a map

ti : z 7→ tiz, which takes the realized data into a type in Tz.

Definition 2 (Common Learning). Agents commonly learn θ∗ if

lim
n→∞

Pn
({

zn : tizn ∈ C
p(Bε(θ

∗))
})

= 1 ∀ i

sup
x∈Rd

‖K(x)‖ = κ <∞

14



for every p ∈ [0, 1) and ε > 0.

That is, for every level of confidence p and precision ε, every agent eventually lbe-

lieves that the ε-ball around the true parameter θ∗ is common p-belief. This defi-

nition is modified from Cripps et al. (2008).23 When does common inference imply

that agents commonly learn the true parameter θ∗?

The following property of families of inference rules M will be useful:

Definition 3 (Uniform consistency.). The family of inference rules M is θ∗-uniformly

consistent if

sup
µ∈M

dP (µZn , δθ∗)→ 0 a.s.

where dP is the Prokhorov metric on ∆(Θ).

Remark 4. Say that an individual inference rule µ is θ∗-consistent if dP (µZn , δθ∗)→
0 a.s. Uniform consistency is immediately satisfied by any finite family of θ∗-

consistent inference rules.

Recalling that dP metrizes the topology of weak convergence of measures, this

property says that for every µ ∈ M , the distribution µZn (almost surely) weakly

converges to a degenerate distribution on θ∗. Moreover, this convergence is uniform

in inference rules.

Proposition 1. Every agent commonly learns the true parameter θ∗ if and only if

M is θ∗-uniformly consistent.

The structure of the argument is as follows. From Chen et al. (2010), we know

that convergence in the uniform-weak topology is equivalent to approximate common

certainty in the true parameter. Under θ∗-uniform consistency, it can be shown that

with probability 1, every sequence of types from {TZn}n≥1 converges in the uniform-

weak topology to the type with common certainty in θ∗. This is, loosely, because

possible k-th order beliefs are restricted to have support in the possible (k − 1)-th

order beliefs, so that in fact the rate of convergence of first-order beliefs is a uniform

upper-bound on the rate of convergence of beliefs at every order. The details of this

proof can be found in the appendix.

I assume in the remainder of the paper that M is θ∗-uniformly consistent, so

that beliefs converge as the quantity of data tends to infinity. The next part of the

paper transitions the focus to the stronger property of convergence of solution sets.

23I take ε > 0, so that agents believe it is approximate common certainty that the parameter is

close to θ∗; in Cripps et al. (2008), Θ is finite, so agents believe it is approximate common certainty

that the parameter is exactly θ∗.
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5 Robustness to Estimation

Suppose that action ai is rationalizable for agent i (or, action profile a is an equilib-

rium) in the complete information game in which the true parameter θ∗ is common

certainty. Can we guarantee that action ai (action profile a) remains rationalizable

(an equilibrium) when payoffs are inferred from data, so long as agents observe a

sufficiently large number of observations?

5.1 Concepts

I will first introduce the idea of an inference game. For any dataset z, define G(z) to

be the incomplete information game with primitives I, (Ai)i∈I ,Θ, g, and type space

Tz = (T z
i , κ

z
i )i∈I ,

where T z
i = Tz for every i, and κzi is the restriction of κi (as defined in Section

3.2) to T z
i .24 Notice that if Tz consists only of the type with common certainty of

θ∗, then this game reduces to the complete information game with payoffs given by

g(θ∗).

We can interpret inference games as follows. Suppose the analyst knows only

that agents have observed data z, and that Assumption 2 (Common Inference)

holds. Then, the set of types that any player i may have is given by Tz. Recall

that as the quantity of data tends to infinity, this set Tz converges almost surely

to the singleton type with common certainty in θ∗. So, for large quantities of data,

inference games approximate the (true) complete information game. The question

of interest is with what probability solutions in this limit game persist in finite-data

inference games. This question is made precise for the solution concepts of Nash

equilibrium and rationalizability in the following way.

For any Nash equilibrium a of the limit complete information game, define

pNEn (a) to be the probability that data zn is realized, such that the strategy profile

(σi)i∈I , with σi(ti) = ai ∀ i ∈ I, ti ∈ T zn
i

is a Bayesian Nash equilibrium. Analogously, define pRn (i, ai) to be the probability

that data zn is realized, such that

ai ∈ S∞i [ti] ∀ ti ∈ T zn
i ;

that is, ai is rationalizable for agent i given any type in T zn
i .

Definition 4. The rationalizability of action ai for player i is robust to inference

if

pRn (i, ai)→ 1 as n→∞.
24Notice that κz

i (T
z
i ) = T z

−i for every agent i, so this is a belief-closed type space.
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The equilibrium property of action profile a is robust to inference if

pNEn (a)→ 1 as n→∞.

What is the significance of robustness to inference? Suppose that action ai is

rationalizable when the true parameter is common certainty, and suppose moreover

that this property of ai is robust to inference. Then, the analyst believes with high

probability that ai is rationalizable for all types in the realized inference game, so

long as the quantity of observed data is sufficiently large. Conversely, suppose that

ai is rationalizable when the true parameter is common certainty, but that this

property of ai is not robust to inference. Then, there exists a constant δ > 0 such

that for any finite quantity of data, the probability that ai fails to be rationalizable

for some type in the realized inference game is at least δ. In this way, robustness

to inference is a minimal requirement for the rationalizability of ai to persist when

agents infer their payoffs from data. Analogous statements apply when we replace

rationalizability with equilibrium.

Let us first consider two trivial examples in which robustness to inference imposes

no restrictions. Consider the game with payoff matrix

a1 a2

a1 θ∗, θ∗ 0, 0

a2 0, 0 1
2 ,

1
2

where θ∗ > 0. Is the equilibrium (a1, a1) robust to inference?

Example 4 (Trivial inference.). Let M consist of the singleton inference rule µ sat-

isfying

µz = δθ∗ ∀ z,

so that µz is always degenerate on the true value θ∗. Then, the set of plausible

first-order beliefs is Fz = {δθ∗} for every z, so that the true parameter θ∗ is common

certainty with probability 1. Thus, the inference game G(z) reduces to a complete

information game, and the equilibrium property of (a1, a1) is trivially robust to

inference.

Example 5 (Unnecessary inference.). Let Θ := [0,∞). Then, action profile (a1, a1)

is a Nash equilibrium for every possible value of θ ∈ Θ. Thus, the strategy profile

that maps any type of either player to the action a1 is a Bayesian Nash equilibrium

for any beliefs that players might hold over Θ. In this way, the family of inference

rules M is irrelevant, and (a1, a1) is again trivially robust to inference.

The two following conditions rule out these cases in which inference is either trivial

or unnecessary.
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Assumption 3 (Nontrivial Inference.). There exists a constant γ > 0 such that

Pn ({zn : δθ∗ ∈ Int(Fzn)}) > γ.

for every n sufficiently large.

This property says that for sufficient quantities of data, the probability that δθ∗

is contained in the interior of the set of plausible first-order beliefs Fzn is bounded

away from 0. Assumption 3 rules out the example of trivial inference, as well as

related examples in which every inference rule in M overestimates, or every inference

rule underestimates, the unknown parameter.25

To rule out the second example, I impose a richness condition on the image of

g. For every agent i and action ai ∈ Ai, define S(i, ai) to be the set of complete

information games in which ai is a strictly dominant strategy for agent i; that is,

S(i, ai) :=
{
u′ ∈ U : u′i(ai, a−i) > u′i(a

′
i, a−i) ∀ a′i 6= ai and ∀ a−i

}
.

Assumption 4 (Richness.). For every i ∈ I and ai ∈ Ai, g(Θ) ∩ S(i, ai) 6= ∅.

Under this restriction, which is also assumed in Carlsson & van Damme (1993)

and Weinstein & Yildiz (2007), every action is strictly dominant at some parameter

value. This condition is trivially satisfied if Θ = U .

In the subsequent analysis, I assume that the family of inference rules M sat-

isfies nontrivial inference, and the map g satisfies richness. These conditions are

abbreviated to NI and R, respectively.

5.2 Bayesian Nash Equilibrium

When is the equilibrium property of an action profile robust to inference? (From

now on, I will abbreviate this to saying that the action profile is itself robust to

inference.)

Theorem 1. Assume NI and R. Then, the equilibrium property of action profile a∗

is robust to inference if and only if it is a strict Nash equilibrium.

The intuition for the proof is as follows. Define UNEa∗ to be the set of all payoffs

u such that a∗ is a Nash equilibrium in the complete information game with payoffs

u. The interior of UNEa∗ is exactly the set of payoffs u with the property that a∗

is a strict Nash equilibrium given these payoffs. I show that as the quantity of

data tends to infinity, agents (almost surely) have common certainty in a shrinking

neighborhood of the true payoffs, so it follows that a∗ is robust to inference if and

only if the true payoff function u∗ = g(θ∗) lies in the interior of UNEa∗ .

25This does not rule out sets of biased estimators. It may be that in expectation, every inference

rule in M overestimates the true parameter; Assumption 3 requires that underestimation occurs

with probability bounded away from 0.
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Proof. First, I show that the interior of the set UNEa∗ is characterized by the set of

complete information games in which a∗ is a strict Nash equilibrium.

Lemma 1. u ∈ Int
(
UNEa∗

)
if and only if action profile a∗ is a strict Nash equilibrium

in the complete information game with payoffs u.

Proof. Suppose a∗ is not a strict Nash equilibrium in the complete information game

with payoffs u. Then, there is some agent i and action ai 6= a∗i such that

ui(ai, a
∗
−i) ≥ ui(a∗i , a∗−i).

Define uε such that uεi(ai, a
∗
−i) = ui(ai, a

∗
−i) + ε, and otherwise uεi agrees with ui.

Then, uε ∈ Bε(u) for every ε > 0, but ai is a strictly profitable deviation for agent

i in response to a∗−i in the game with payoffs uεi . So a∗ is not an equilibrium in this

game. Fix any sequence of positive constants εn → 0. Then, uεn → u as n → ∞,

but uεn /∈ UNEa∗ for every n, so it follows that u /∈ Int(UNEa∗ ) as desired.

Now suppose that a∗ is a strict Nash equilibrium in the complete information

game with payoffs u. Then,

ε∗ := inf
i∈I

(
ui(a

∗
i , a
∗
−i)− max

ai 6=a∗i
ui(ai, a

∗
−i)

)
> 0,

so u ∈ Bε∗(u) ⊆ UNEa∗ , with Bε∗ nonempty and open. It follows that u ∈ Int
(
UNEa∗

)
,

as desired.

Next, I show that a∗ is robust to inference if and only if the true payoff function

is in the interior of the set UNEa∗ .

Lemma 2. Let u∗ = g(θ∗). The equilibrium property of action profile a∗ is robust

to inference if and only if u∗ ∈ Int
(
UNEa∗

)
.

Proof. Define h(µ) =
∫

Θ g(θ)dµ to be the map from (first-order) beliefs µ ∈ ∆(Θ)

into the expected payoff function under µ.

h(μ) = ∫g(θ)dμ

μ

Δ(Θ)

u

U

beliefs on Θ (first-order) complete information games

Fz h(Fz)

Figure 3: The map h takes first-order beliefs µ into expected payoff functions.
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Recall that every dataset z induces a set of plausible first-order beliefs Fz. The

following claim says that the equilibrium property of a∗ is robust to inference if and

only if with high probability the set of expected payoffs h(FZn) is contained within

UNEa∗ as n→∞.

Claim 2. The equilibrium property of a∗ is robust to inference if and only if

Pn
({

zn : h(Fzn) ⊆ UNEa∗
})
→ 1 as n→∞.

Proof. I will show that the strategy profile (σi)i∈I with

σi(ti) = a∗i ∀ i ∈ I, ∀ ti ∈ Tz

is a Bayesian Nash equilibrium if and only if h(Fz) ⊆ UNEa∗ . From this, the above

claim follows immediately.

Suppose h(Fz) ⊆ UNEa∗ . Then, for any payoff function u ∈ h(Fz),

ui(a
∗
i , a
∗
−i) ≥ ui(ai, a∗−i) ∀ i ∈ I and ai 6= a∗i . (3)

Fix an arbitrary agent i and type ti with common certainty in h(Fz), and define

µi := margΘ ti to be his first-order belief. By construction, µi assigns probability 1

to h(Fz), so it follows from (3) that∫
U
ui(a

∗
i , a
∗
−i) dg∗(µi) ≥

∫
U
ui(ai, a

∗
−i) dg∗(µi) ∀ ai 6= a∗i ,

where g∗(µ) denotes the pushforward measure of µ under mapping g. Repeating

this argument for all agents and all types with common certainty in h(Fz), it follows

that (σi)i∈I is indeed a Bayesian Nash equilibrium.

Now suppose to the contrary that h(Fz) * UNEa∗ and consider any payoff function

u that is in h(Fz) but not in UNEa∗ . Then, there exists some agent i for whom

ui(a
∗
i , a
∗
−i)− max

ai 6=a∗i
ui(ai, a

∗
−i) < 0.

Let ti be the type with common certainty in g−1(u). Then, agent i of type ti has a

profitable deviation to some ai 6= a∗i , so (σi)i∈I is not a Bayesian Nash equilibrium.

The final claim says that

Pn
({

zn : h(Fzn) ⊆ UNEa∗
})
→ 1 as n→∞

if and only if u∗ is in the interior of the set UNEa∗ . This is, loosely, because h(Fzn)

converges to the singleton set {u∗}; its proof is deferred to the appendix.

Claim 3. limn→∞ P
n
({

zn : h(Fzn) ⊆ UNEa∗
})

= 1 if and only if u∗ ∈ Int(UNEa∗ ).

The theorem directly follows from Lemmas 1 and 2.

20



5.3 Rationalizable Actions

When is the property of rationalizability of an action robust to inference? Theorem

1 suggests that the corresponding condition is strict rationalizability in the limit

complete information game. This intuition is roughly correct, but subtleties in

the procedure of elimination are relevant, and the theorem below will rely on two

different such procedures.

First, recall the usual definition for strict rationalizability, introduced in Dekel,

Fudenberg & Morris (2006). For every agent i and type ti, set R1
i (ti) = Ai. Then,

recursively define Rki (ti), for every k ≥ 2, such that ai ∈ Rki [ti] if and only if∫
Θ×T−i×A−i

(
ui(ai, a−i, θ)− ui(a′i, a−i, θ)

)
dπ > 0 ∀ a′i 6= ai (4)

for some distribution π ∈ ∆(Θ×T−i×A−i) satisfying (1) margΘ×T−i π = κti , and (2)

π
(
a−i ∈ Rk−1

−i [t−i]
)

= 1. That is, an action survives the k-th round of elimination

only if it is a strict best response to some distribution over opponent strategies

surviving the (k − 1)-th round of elimination. Let

R∞i [ti] =

∞⋂
k=0

Rki [ti]

be the set of player i actions that survive every round of elimination. Define tθ∗ to

be the type with common certainty in the true parameter θ∗. I will say that action

ai is strongly strict-rationalizable if ai ∈ R∞i [tθ∗ ], where strongly is used to contrast

with the definition below.

Notice that in this definition, every action that is never a strict best response (to

surviving opponent strategies) is eliminated at once. This choice has consequences

for the surviving set, since elimination of strategies that are never a strict best

response is an order-dependent process. Following, I introduce a new procedure, in

which actions are eliminated (at most) one at a time.

For every agent i, let W 1
i := Ai. Then, for k ≥ 2, recursively remove (at most)

one action in W k
i that is not a strict best reply to any opponent strategy α−i with

support in W k−1
−i . That is, either the set difference W k

i − W k+1
i is empty, or it

consists of a singleton action ai where there does not exist any α−i ∈ ∆
(
W k−1
−i

)
such that

ui(ai, α−i) > ui(a
′
i, α−i) ∀ a′i 6= ai.

That is, ai is not a strict best reply to any distribution over surviving opponent

actions. Let

W∞i =
⋂
k≥1

W k
i
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be the set of player i actions that survive every round of elimination, and say that

any set W∞i constructed in this way survives an order of weak strict-rationalizability.

Define W∞i to be the intersection of all sets W∞i surviving an order of weak strict-

rationalizability. I will say that an action ai is weakly strict-rationalizable if ai ∈
W∞i .26

Theorem 2. Assume NI and R. Then, the rationalizability of action a∗i for agent i

is robust to inference if a∗i is strongly strict-rationalizable, and only if a∗i is weakly

strict-rationalizable.

Remark 5. If there are two players, then the theorem above can be strengthened

as follows: Assume NI and R. Then, the rationalizability of action a∗i for agent i is

robust to inference if and only if a∗i is weakly strict-rationalizable.

Remark 6. The existence of actions that are strongly strict-rationalizable, but not

weakly strict-rationalizable, occurs only for a non-generic set of payoffs.27 See the

discussion preceding Figure 5.3 for a characterization of these intermediate cases.

Remark 7. Rationalizable actions that are robust to inference need not exist. For

example, in the degenerate game

a3 a4

a1 0, 0 0, 0

a2 0, 0 0, 0

all actions are rationalizable, but none are robust to inference.

Remark 8. Why is refinement obtained, in light of the results of Weinstein & Yildiz

(2007)? The key intuition is that the negative result in Weinstein & Yildiz (2007)

relies on construction of tail beliefs that put sufficient probability on payoff func-

tions with dominant actions. But under common inference, it is common certainty

that every player puts low probability on “most” payoff functions. So, with high

probability, contagion from “far-off” payoff functions with a dominant action cannot

begin.

A second explanation for why refinement is obtained is the following. One can

show that the perturbations considered in this paper are a subset of perturbations

in the uniform-weak topology, which is finer than the topology used in Weinstein &

Yildiz (2007). In particular, the sequences of types used to show failure of robustness

in Weinstein & Yildiz (2007) do not converge in the uniform-weak topology.

26The choice of weak to describe the latter procedure, and strong to describe the former, is

explained by Claim 4 (see Appendix B), which says that an action is strongly strict-rationalizable

only if it is weakly strict-rationalizable.
27The set of such payoffs is nowhere dense in the Euclidean topology on U .
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The broad structure of the proof follows that of Theorem 1, with several new

complications that I discuss below. Recall that as the quantity of data tends to infin-

ity, agents have common certainty in a (shrinking) neighborhood of the true payoffs.

Thus, a∗i is robust to inference if and only if common certainty in a sufficiently small

neighborhood of the true payoffs u∗ implies that the action a∗i is rationalizable for

player i.

A necessary condition for robustness to inference. In analogy with the set UNEa∗ ,

define URa∗i
to be the set of all complete information games in which a∗i is rational-

izable.28 Clearly, if u∗ is on the boundary of this set, then common certainty in a

neighborhood of u∗ (no matter how small) cannot guarantee rationalizability of a∗i .

Therefore, a necessary condition for robustness to inference is that u∗ must lie in

the interior of URa∗i
. The first lemma says that the interior of URa∗i

is characterized by

the set of actions that survive every process of weak strict-rationalizability.

Lemma 3. u ∈ Int
(
URa∗i

)
if and only if a∗i ∈ W∞i in the complete information game

with payoffs u.

Why is Int
(
URa∗i

)
characterized by this particular notion of strict rationalizabil-

ity, and not by others? I provide an example that illustrates why various other

natural candidates are not the right notion, and follow this with a brief intuition for

the proof of Lemma 3.

Consider the payoff matrices below:

(u1)

a3 a4

a1 1, 0 1, 0

a2 0, 0 0, 0

(u2)

a3 a4

a1 1, 0 1, 0

a2 0, 0 1, 0

If all strategies that are never a strict best reply are eliminated simultaneously

(corresponding to strong strict-rationalizablity), then a1 does not survive in either

game.29 If the criterion is survival of any process of iterated elimination of strategies

that are never a strict best reply, then a1 survives in both games.30 But u1 is in

28Here I abuse notation and write URa∗i
instead of URi,a∗i

.
29In the first round, both actions are eliminated for player 2, so a1 trivially cannot be a best

reply for player 1 to any surviving player 2 action.
30For example, the order of elimination

a3 a4
a1 1, 0 1, 0

a2 0, 0 0, 0

−→
a3 a4

a1 1, 0

a2 0, 0

−→
a3 a4

a1 1, 0

a2

in the first game, and

a3 a4
a1 1, 0 1, 0

a2 0, 0 1, 0

−→
a3 a4

a1 1, 0

a2 0, 0

−→
a3 a4

a1 1, 0

a2
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the interior of URa1 , while u2 is not,31 so neither of these notions provides the desired

differentiation.

Now, I provide a brief intuition for the “only-if” direction of Lemma 3. Suppose

that action a∗i fails to survive some iteration of weak strict-rationalizability. Then,

there is some sequence of sets (W k
i )k≥1 satisfying the recursive description in the

definition of weak strict-rationalizability, such that a∗i /∈ WK
i for K < ∞. To show

that a∗i is not robust to inference, I construct a sequence of payoffs un → u with the

property that a∗i fails to be rationalizable in every complete information game un,

for n sufficiently large. The key feature of this construction is translation of weak

dominance under the payoffs u to strict dominance under the payoffs un. This is

achieved by iteratively increasing the payoffs to every action that survives to W k+1
i

by ε, thus breaking ties in accordance with the selection in (W k
i )k≥1.

So, a necessary condition for robustness to inference is weak strict-rationalizability.

Next, I show that a sufficient condition is strong strict-rationalizability, and explain

the gap between these two conditions.

A sufficient condition for robustness to inference. The reason why weak strict-

rationalizability is not sufficient is because, unlike the analogous case for equilibrium,

common certainty in the set URa∗i
does not imply rationalizability of a∗i .

32 In fact,

even if beliefs are concentrated on a (vanishingly) small neighborhood of a payoff

function in Int(URa∗i
), it may be that a∗i fails to rationalizable. See Appendix D for

such an example.

in the second.
31Action a1 remains rationalizable in every complete information game with payoffs close to u1,

so u1 ∈ Int(URa1). In contrast, for arbitrary ε ≥ 0, the payoff matrix

(u′2)

a3 a4
a1 1, 0 1, ε

a2 0, 0 1 + ε, ε

is within ε of u2 (in the sup-norm), but a1 is not rationalizable in the complete information game

with payoffs u′2. So, the payoff u2 lies on the boundary of URa1 .
32A simple example is the following. Consider the following two payoffs:

(u1)

a3 a4
a1 1 0

a2
3
4

3
4

(u2)

a3 a4
a1 0 1

a2
3
4

3
4

Action a1 is rationalizable for agent 1 in both complete information games, so u1, u2 ∈ URa1 . But

action a1 is strictly dominated by action a2 if each game is equally likely, since in expectation

payoffs are

a3 a4

a1
1
2

1
2

a2
3
4

3
4
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Remark 9. This example shows moreover that weak strict-rationalizibility is not

lower hemi-continuous in the uniform-weak topology. Since strong strict-rationalizability

is lower-hemicontinuous in the uniform-weak topology (Dekel, Fudenberg & Morris

2006, Chen et al. 2010), this example suggests that subtleties in the definition of

strict rationalizability have potentially large implications for robustness.

The reason why common certainty of a shrinking set in URa∗i
need not imply

rationalizability of a∗i is because the chain of best responses rationalizing action a∗i
can vary across URa∗i

. In particular, it may be that the true payoffs u∗ lie on the

boundary between two open sets of payoff functions, each with different families

of rationalizable actions. See Figure 5.3 below for an illustration. These cases

are problematic because even though a∗i is rationalizable when agents (truly) have

common certainty in any payoff functions close to u∗, it may fail to be rationalizable

if agents (mistakenly) believe that payoff functions on different sides of the boundary

are common certainty.

On the other hand, if a∗i is strongly strict-rationalizable, then it can be justified

by a chain of strict best responses that remain constant on some neighborhood of

u∗. It can be shown in this case that common certainty in a vanishing neighborhood

of u∗ indeed implies rationalizability of a∗i . This provides the sufficient direction.

u1u2

u3

U

UR
a⇤
i

Figure 4: The set UR
a∗i

is partitioned such that every agent’s set of rationalizable actions

is constant across each element of the partition. There are three cases: (1) if u∗ is on the

boundary of UR
a∗i

(e.g. u1), then a∗i is not robust to inference; (2) if u∗ is in the interior of

UR
a∗i

, and moreover in the interior of a partition element (u2), then a∗i is certainly robust to

inference; (3) if u∗ in the interior of UR
a∗i

, but not in the interior of any partition element

(u3), then a∗i may not be robust to inference. See Appendix D for an example of the last

case.

6 How Much Data do Agents Need?

Theorems 1 and 2 characterize the persistence of equilibria and rationalizable actions

given sufficiently large quantities of data. But in practice, the quantity of data

that agents observe about payoff-relevant parameters is limited. Robustness to

25



inference is meaningful only if convergence obtains in the ranges of data that we

can reasonably expect agents to observe. Therefore, I ask next, how much data is

needed for reasonable guarantees on persistence?

This section addresses this question by providing lower bounds for pRn (i, ai) and

pNE
n (a). These bounds suggest a second, stronger criterion for equilibrium selection,

based in the quantity of data needed to reach a desired threshold probability. These

bounds also highlight the importance of various features of the solution and the

game, including the degree of strictness of the solution, and the complexity of the

inference problem.

6.1 Bayesian Nash Equilibrium

The following is a measure for the “degree of strictness” of a Nash equilibrium in

the complete information game with payoffs u∗ = g(θ∗). For any δ ≥ 0, say that

action profile a is a δ-strict Nash equilibrium33 if

u∗i (ai, a−i)− max
a′i 6=ai

u∗i (a
′
i, a−i) > δ ∀ i ∈ I.

Every strict Nash equilibrium a∗ admits the following cardinal measure of strictness:

δNEa = sup {δ : a is a δ-strict NE} ,

which represents the largest δ for which a is a δ-strict NE. This parameter describes

the amount of slack in the equilibrium a—action profile a remains an equilibrium

on at least a δNEa -neighborhood of the payoff function u∗.

Proposition 2. Suppose a∗ is a δ-strict Nash equilibrium for some δ ≥ 0. Then,

for every n ≥ 1,

pNEn (a∗) ≥ 1− 2

δNEa∗
EPn

(
sup
µ∈M
‖h(µZn)− u∗‖∞

)
(5)

where h(ν) =
∫

Θ g(θ)dν for every ν ∈ ∆(Θ).

Remark 10. Uniform consistency of M implies that supµ∈M ‖h(µZn) − u∗‖∞ → 0

a.s., so for any strict Nash equilibrium a∗, the bound in Proposition 2 converges

33Replacing the strict inequality > with a weak inequality ≥, this definition reverses the more

familiar concept of ε-equilibrium, which requires that

u∗i (ai, a−i)− max
a′i 6=ai

u∗i (a
′
i, a−i) ≥ −ε ∀ i, where ε ≥ 0.

The concept of ε-equilibrium was introduced to formalize a notion of approximate Nash equilibria

(violating the equilibrium conditions by no more than ε). I use δ-strict equilibrium to provide a

cardinal measure for the strictness of a Nash equilibrium (satisfying the conditions with δ to spare).
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to 1.34 This implies also that the gap between pNEn (a∗) and its lower bound in (5)

converges to 0 as the quantity of data n tends to infinity.

How can we interpret this bound? By assumption, action profile a∗ is an equi-

librium in the complete information game with payoffs u∗. But when n <∞, agents

may have heterogenous and incorrect beliefs. The probability with which a∗ persists

as an equilibrium under these modified beliefs is determined by two components:

1− 2

δNEa∗︸︷︷︸
(1)

EPn
(

sup
µ∈M
‖h(µZn)− u∗‖∞

)
︸ ︷︷ ︸

(2)

.

First, it depends on the fragility of the solution a∗ to introduction of heterogeneity

and error in beliefs. This is reflected in component (1): the bound is increasing

in the parameter δNEa∗ . Intuitively, equilibria that are “stricter” persist on a larger

neighborhood of the true payoffs u∗. It turns out that common certainty in the

δNEa∗ /2-neighborhood of u∗ is sufficient to imply that a∗ is an equilibrium (see Lemma

11).

Second, the probability pNEn (a∗) depends on the expected error in beliefs. This is

reflected in the second component: ‖µZn −u∗‖∞ is the (random) error in estimated

payoffs using a fixed inference rule µ ∈M ; so supµ∈M ‖µZn − u∗‖∞ is the (random)

supremum error across inference rules in M ; and (2) gives the expected supremum

error across inference rules in M . As n tends to infinity, this quantity tends to

zero,35 but the speed at which inference rules in M uniform converge to the truth

is determined by the “diversity” of inference rules in M , and by the statistical

complexity of the learning problem.

This first feature, diversity, can be thought of as a property of the relationship

between inference rules in M to each other. Holding fixed the rate at which individ-

ual inference rules learn, the lower bound is lower when inference rules in M jointly

learn slower. How this occurs, and how much effect this can have on the analyst’s

confidence pNEn (a∗), is discussed in detail in Section 6.3.

This second feature, complexity, can be thought of as a property of the rela-

tionship between inference rules in M and the data. For example, in Section 2, the

probability p(n, r) decreases in the dimensionality of the data. More generally, when

finite-sample bounds for the uniform rate of convergence of inference rules in M are

available, they can plugged into the lower bound in Proposition 2. This technique

is illustrated below for a new set of inference rules M .

Example 6. Let us consider agents who use ordinary least-squares regression to

estimate a relationship between p covariates and a real-valued outcome variable.

34This follows from continuity of the map h (see Lemma 4).
35Since M is θ∗-uniform consistency and h is continuous.
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An observation is a tuple (xi, yi) ∈ Z := Rp × R, where

yi = xTi β + εi

with xi ∼i.i.d. N (0, Ip), εi ∼i.i.d. N (0, 1), and xi and εi independent. Suppose that

the first coordinate of the coefficient vector β, denoted β1, is payoff-relevant. That

is, Θ = R, and the true parameter is θ∗ = β1.

Recall that the least-squares estimate for the coefficient vector β is

β̂ = (XTX)−1XTY

where X is the matrix whose i-th row is given by xi, and Y is the matrix whose i-th

row is given by yi. Fix a sequence of constants φn that tends to 0. Let M consist

of the set of inference rules that map the data into a distribution with support in

Bφn(β̂1). That is, every inference rule maps the data into distribution with support

in the φn-neighborhood of the least-squares estimate for β1.

Corollary 1. Suppose the data-generating process and family of inference rules is as

described in the above example. Then, for every complete information game and

δ-strict Nash equilibrium a∗ (with δ ≥ 0),

pNEn (a∗) ≥ 1− 2K

δNEa∗

(
σ2p

(√
n+
√
p
)

+ φ2
n

)
and K is the Lipschitz constant36 of the map g : Θ→ U .

So we see that the lower bound is decreasing in the number of covariates p (i.e. the

analyst is less confident in predicting a∗ when the number of covariates is larger).

The proof can be found in the appendix.

6.2 Rationalizable Actions

We can now repeat the previous exercise for the solution concept of rationalizability.

The following is a measure for the “degree” of rationalizability of an action ai in

the complete information game with payoffs u∗. For any δ ≥ 0, say that the family

of sets (Rj)j∈I is closed under δ-best reply if for every agent j and action aj ∈ Rj ,
there is some distribution α−j ∈ ∆(R−j) such that

u∗j (aj , α−j) > u∗j (a
′
j , α−j) + δ ∀ a′j 6= aj . (6)

Say that action ai is δ-strict rationalizable for agent i if there exists some family

(Rj)j∈I , with ai ∈ Ri, that is closed under δ-best reply. Every strictly rationalizable

36Assuming the sup-norm on U and the Euclidean norm on Θ.
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action ai admits the following cardinal measure of the degree of strictness:

δRai = sup{δ : ai is δ-strict rationalizable}.37

This parameter describes the amount of slack in the rationalizability of action

ai—that is, action ai remains rationalizable for agent i on at least a δRai-neighborhood

of the payoff function u∗.

Remark 11. This definition is equivalent to requiring that ai survive a more general

version of strong strict-rationalizability, where the inequality in (4) is replaced by∫
Θ×T−i×A−i

(
ui(ai, a−i, θ)− ui(a′i, a−i, θ)

)
dπ > δ ∀ a′i 6= ai,

so that ai yields at least δ more than the next best action given the distribution

π.38

Proposition 3. Suppose action a∗i is δ-strict rationalizable for some δ > 0. Then,

for every n ≥ 1,

pRn (i, a∗i ) ≥ 1− 2

δRa∗i

EPn
(

sup
µ∈M
‖h(µZn)− u∗‖∞

)
,

where h(ν) =
∫
g(θ)dν for any ν ∈ ∆(Θ).

Proof. See appendix.

Again, we see that the lower bound is increasing in the “strictness” of the solu-

tion, as measured through the parameter δRa∗i
, and in the speed at which expected

payoffs using inference rules in M uniformly converge to the true payoffs u∗. As be-

fore, when finite-sample bounds are available, they can be used to derive closed-form

expressions for this bound.

Corollary 2. Suppose the data-generating process and family of inference rules are

as described in Example 6. Then, for every complete information game, agent i,

and δ-strict rationalizable action a∗i (with δ ≥ 0),

pRn (i, a∗i ) ≥ 1− 2K

δRa∗i

(
σ2p

(√
n+
√
p
)

+ φ2
n

)
where K is the Lipschitz constant39 of the map g : Θ→ U .

37I abuse notation here and write δRai instead of δRi,ai . Again, this parameter is defined only if ai
is δ-strict rationalizable for some δ ≥ 0.

38A similar procedure is introduced in Dekel, Fudenberg & Morris (2006). The above definition

makes the following modifications: first, the inequality to be strict; second, δ appears on the right-

hand side of the inequality, instead of −δ.
39Assuming the sup-norm on U and the Euclidean norm on Θ.
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6.3 Diversity across Inference Rules in M

I conclude this section with a brief discussion regarding the dependence of pNEn (a)

and pRn (i, ai) on the diversity across inference rules in M . To isolate this effect

from properties of individual inference rules, let us fix the marginal distributions

of µ(Zn) for every µ ∈ M , and vary the joint distribution of the random variables

(µ(Zn))µ∈M . Proposition 4 below provides upper and lower bounds for pNEn (a) and

pRn (i, ai). These bounds can be understood from the following simple example.

Example 7. Recall the game from Section 2 with payoffs

A NA

A θ, θ 0, 1
2

NA 1
2 , 0

1
2 ,

1
2

where Θ = {−1, 1}. Fix a quantity of data n <∞, and suppose that M consists of

two inference rules µ1, µ2 with marginal distributions

µ1(Zn) ∼ 1

4
δ−1 +

3

4
δ1

µ2(Zn) ∼ 3

4
δ−1 +

1

4
δ1

That is, with probability 1
4 , data zn is generated such that µ1(zn) is degenerate on

−1, and with probability 3
4 , data is generated such that µ1(zn) is degenerate on

1. (The distribution of µ2(Zn) is interpreted similarly.) Given these distributions,

what are the largest and smallest possible values of pNEn ((A,A))?

First observe that action profile (A,A) is an equilibrium if and only if data zn
is realized such that µ1(zn) = µ2(zn) = δ1. Otherwise, A is strictly dominated for

the agent with first-order belief δ−1. At one extreme, µ1(Zn) and µ2(Zn) may be

correlated such that µ1(zn) = δ1 for every dataset zn where µ2(zn) = δ1. Then,

pNEn (a) = Pr({zn : µ2(zn) = δ1}) =
1

4
.

If instead, µ1 and µ2 are independent, then

pNEn (a) = Pr({zn : µ1(zn) = δ1}) Pr({zn : µ2(zn) = δ1}) =

(
1

4

)(
3

4

)
<

1

4
.

This quantity is further reduced if µ2(zn) = δ1 implies that µ1(zn) = δ−1, in which

case pNEn (a) = 0.

These observations can be generalized as follows for arbitrary finite M . For

every inference rule µ and quantity of data n ≥ 1, define

pNEµ,n (a) := Pr
(
h (µZn) ∈ UNEa

)
(7)
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This is the probability that action profile a is a Nash equilibrium if every agent has

beliefs degenerate on the prediction of inference rule µ. Define pRµ,n(i, ai) analogously,

replacing UNEa with URai in (7).

Proposition 4. Suppose M is finite, and the marginal distributions (µ(Zn))µ∈M
are fixed. Then,

1−
∑
µ∈M

pNEµ,n (a) ≤ pNEn (a) ≤ 1− min
µ∈M

pNEµ,n (a)

and

1−
∑
µ∈M

pRµ,n(i, ai) ≤ pRn (i, ai) ≤ 1− min
µ∈M

pRµ,n(i, ai).

The upper bound corresponds to co-monotonic random variables, and the lower

bound, when attainable, corresponds to counter-monotonic random variables. In

the co-monotonic case, different inference rules err in inference of payoffs on the

same sets of data, whereas in the counter-monotonic case they err on datasets that

are as non-overlapping as possible.

7 Extensions

The following section provides brief comment on and extension to various inference

ruleing choices made in the main framework.

7.1 Misspecification

Proposition 1 shows that θ∗-uniform consistency is both necessary and sufficient for

common learning, and I assume in the remainder of the paper that the family of

inference rules M is θ∗-uniformly consistent. But continuity in equilibrium sets (and

rationalizable sets) does not require common learning. Can we obtain Theorems 1

and 2 under a weakening of this property?

In fact, it is neither necessary that individual inference rules are consistent,

nor necessary that inference rules uniformly converge. I introduce a relaxation of

uniform consistency below.

Definition 5 (Almost θ∗-uniform consistency.). For any ε ≥ 0, say that the class

of inference rules M is (ε, θ∗)-uniformly consistent if

lim
n→∞

sup
µ∈M

dP (µ(Zn), δθ∗) ≤ ε a.s.

where dP is the Prokhorov metric on ∆(Θ).
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This says that a class of inference rules is almost θ∗-uniformly consistent if the

set of plausible first order beliefs converges40 almost surely to a neighborhood of

the true parameter. Notice that uniform consistency is nested as the ε = 0 case.

The proofs of Theorems 1 and 2 are easily adapted to show the following result. (In

reading this, recall that if M is (ε, θ∗)-uniformly consistent, then it is also (ε′, θ∗)-

uniformly consistent for every ε′ > ε.)

Proposition 5. Assume NI and R.

1. The rationalizability of action a∗i is robust to inference if δRa∗i
> 0 and M is(

δRa∗i
, θ∗
)

-uniformly consistent.

2. The equilibrium property of a∗ is robust to inference if δNEa∗ > 0 and M is(
δNEa∗ , θ

∗)-uniformly consistent.

7.2 Private Data

In the main text, I assume that agents observe a common dataset. How do the main

results change if agents observe private data? Cripps et al. (2008) have shown that

if Z is unrestricted, then common learning may not occur even if |M | = 1 (so that

M contains a single inference rule). It is also known that strict Nash equilibria need

not be robust to higher-order uncertainty about opponent data (see e.g. Carlsson

& van Damme (1993), Kajii & Morris (1997)). Thus, extension to private data

requires restrictions on beliefs over opponent data that are beyond the scope of this

paper.

In the simplest extension, however, we may suppose that players observe different

datasets (zi)i∈I , independently drawn from the same distribution, but each has an

(incorrect) degenerate belief that all opponents have seen the same data that he

has. Then, Theorems 1 and 2 hold as stated, and the bounds in Propositions 2 and

3 are revised as follows.

Proposition 6. Suppose a∗ is a δ-strict Nash equilibrium for some δ > 0. Then,

for every n ≥ 1,

pNEn (a∗) ≥

(
1− 2

δNEa∗
EPn

(
sup
µ∈M
‖h(µZn)− u∗‖∞

))I
where I is the number of players. Suppose a∗i is δ-strict rationalizable for some δ.

Then, for every n ≥ 1,

pRn (i, a∗i ) ≥

(
1− 2

δRa∗i

EPn
(

sup
µ∈M
‖h(µZn)− u∗‖∞

))I
.

40In the Hausdorff distance induced by dP .
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7.3 Limit Uncertainty

In the main text, I assume that agents learn the true parameter as the quantity of

data n tends to infinity, so that the limit game is a complete information game. This

approach can be extended such that the limit game has incomplete information. Fix

a distribution ν ∈ ∆(Θ)—a limit common prior—and rewrite uniform consistency

as follows:

Definition 6 (Limit Common Prior.). The set of inference rules M has a limit

common prior ν if

sup
µ∈M

dP (µ(Zn), ν)→ 0 a.s.

where dP is the Prokhorov metric on ∆(Θ).

Then, taking u∗ := h(ν) to be the expected payoff under ν, all the results in

Section 5 follow without modification.

8 Related Literature

This paper makes a connection between the literature regarding robustness of equi-

librium to specification of agent beliefs, and the literature that studies agents who

learn from data. I discuss each of these literatures in turn.

8.1 Robustness of equilibrium and equilibrium refinements

The following question has been the focus of an extensive literature: Suppose an

analyst does not know the exact game that is being played. Which solutions in his

inference rule of the game can be guaranteed to be close to some solution in all

nearby games?

Early work on this question considered “nearby” to mean complete information

games with close payoffs (Selten 1975, Myerson 1978, Kohlberg & Mertens 1986).

Fudenberg, Kreps & Levine (1988) proposed consideration of nearby games in which

players themselves have uncertainty about the true game. This approach of embed-

ding a complete information game into games with incomplete information has since

been taken in several papers under different assumptions on beliefs. For example:

Carlsson & van Damme (1993) consider a class of incomplete information games in

which beliefs are generated by (correlated) observations of a noisy signal of payoffs

of the game. Kajii & Morris (1997) study incomplete information games in which

beliefs are induced by general information structures that place sufficiently high

ex-ante probability on the true payoffs.

I ask which solutions of a complete information game persist in nearby incom-

plete information games, where the definition of nearby that I use differs from the
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existing literature in the following ways: First, I place a strong restriction on (in-

terim) higher-order beliefs, which has the consequence that agents commonly learn

the true parameter. This contrasts with Carlsson & van Damme (1993) and Kajii &

Morris (1997), in which—even as perturbations become vanishingly small—agents

consider it possible that other agents have beliefs about the unknown parameter

that are very different from their own. In particular, failures of robustness due to

standard contagion arguments do not apply in my setting; thus, I obtain rather

different robustness results.41

Second, while the restriction I place on interim beliefs is stronger in the sense

described above, I do not require that these beliefs are consistent with a common

prior. This allows for common knowledge disagreement, which is not permitted in

either Carlsson & van Damme (1993) or Kajii & Morris (1997).

Finally, the class of perturbations that I consider are motivated by a learning

foundation (this aspect shares features with Dekel, Fudenberg & Levine (2004) and

Esponda (2013), but agents in this paper learn about payoffs only, and not actions).

I interpret the sequence of interim types as corresponding to learning from a fixed

number of observations. This motivates a departure from the literature in studying

solution sets not just in nearby games (large n), but also in far games (small n). In

particular, I suggest that we can characterize the degree of robustness by looking at

the persistence of solutions in small-n games.

8.2 Role of higher-order beliefs

A related literature studies the sensitivity of solutions to specification of higher-order

beliefs. Early papers in this literature (Mertens & Zamir 1985, Brandenburger &

Dekel 1993) considered types to be nearby if their beliefs were close up to order k

for large k (corresponding to the product topology on types). Several authors have

shown that this notion of close leads to surprising and counterintuitive conclusions,

in particular that strict equilibria and strictly rationalizable actions are fragile to

perturbations in beliefs (Rubinstein 1989, Weinstein & Yildiz 2007).

These findings have motivated new definitions of “nearby” types. Dekel, Fu-

denberg & Morris (2006) characterize the coarsest metric topology on types under

which the desired continuity properties hold. This topology is defined via strategic

properties of types, instead of directly on beliefs. Chen et al. (2010) subsequently

41For example, the construction of beliefs used in Weinstein & Yildiz (2007) to show failure of

robustness (Proposition 2) relies on construction of tail beliefs that place positive probability on an

opponent having a first-order belief that implies a dominant action. A similar device is employed

in Kajii & Morris (1997) to show that robust equilibria need not exist (see the negative example in

Section 3.1). These tail beliefs are not permitted under my approach. When the quantity of data

is taken to be sufficiently large, it is common certainty (with high probability) that all players have

first-order beliefs close to the true distribution, so the process of contagion cannot begin.
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developed a (finer) metric topology on types—the uniform-weak topology—which

is defined explicitly using properties of beliefs. In this topology, two types are con-

sidered close if they have similar first-order beliefs, attach similar probabilities to

other players having similar first-order beliefs, and so forth.

The perturbations in beliefs that I allow for are perturbations in the uniform-

weak topology. Specifically, the type spaces that I look at—that is, all type profiles

with common certainty in the predictions of a set of inference rules M—converge in

this topology to the singleton type space containing the type with common certainty

in the true parameter. Thus, robustness to inference can be interpreted as requiring

persistence across a subset of perturbations in the uniform-weak topology.42 A re-

lated study is taken in Morris, Takahashi & Tercieux (2012) and Morris & Takahashi

(N.d.), where approximate common certainty in the true parameter is considered,

instead of common certainty in a neighborhood of the true parameter.

8.3 Agents who learn from data

The set of papers including Gilboa & Schmeidler (2003), Billot, Gilboa, Samet

& Schmeidler (2005), Gilboa, Lieberman & Schmeidler (2006), Gayer, Gilboa &

Lieberman (2007), and Gilboa, Samuelson & Schmeidler (2013) propose an inductive

or case-based approach to inference ruleing economic decision-making. The present

paper can be interpreted as studying the strategic behaviors of case-based learners

when there is uncertainty over the inductive inference rules used by other agents.

There is also a body of work that studies asymptotic disagreement between

agents who learn from data. Cripps et al. (2008) study agents who use the same

Bayesian inference rule but observe different (private) sequences of data; Al-Najjar

(2009) study agents who use different frequentist inference rules to learn from data;

and Acemoglu, Chernozhukov & Yildiz (2015) study Bayesian agents who have

different priors over the signal-generating distribution. My inference rule of belief

formation shares many features with these inference rules, but the main object of

study is the convergence of equilibrium sets, instead of the convergence of beliefs.

Finally, Steiner & Stewart (2008) study the limiting equilibria of a sequence

of games in which agents use a kernel density estimator to infer payoffs from re-

lated games. This paper is conceptually very close, but there are several important

differences in the approach. For example, Steiner & Stewart (2008) suppose that

agents share a common inference rule and observe endogenous data (generated by

past, strategic actors), while I suppose that agents have different inference rules and

observe exogenous data. Additionally, the (common) inference rule in Steiner &

42The characterizations of robustness in this paper are possibly unchanged if agents have common

p-belief in the predictions of inference rules in M , where p → 1 as the quantity of data tends to

infinity. I leave verification of this for future work.
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Stewart (2008) is not indexed by the quantity of data, so the limit of their learning

process is a game with heterogeneous beliefs, whereas the limit of my process is a

game with common certainty of the true distribution.

8.4 Model uncertainty

Consideration of inference rule uncertainty in game theory is largely new, but sim-

ilar ideas have been advanced in several neighboring areas of economics. Eyster &

Piccione (2013) study an asset-pricing inference rule in which agents have differ-

ent incomplete theories of price formation. The set of papers including Hansen &

Sargent (2007), Hansen & Sargent (2010), Hansen & Sargent (2012), and Hansen

(2014), among others, consider the implications of inference rule uncertainty for var-

ious questions in macroeconomics. In their framework, a decision-maker considers

a set of inference rules (prior distributions) plausible, and uses a max-min criterion

for decision-making.

8.5 Epistemic game theory

I extensively use tools, results, and concepts from various papers in epistemic game

theory, including Monderer & Samet (1989), Brandenburger & Dekel (1993), Morris,

Rob & Shin (1995), Dekel, Fudenberg & Morris (2007), Chen et al. (2010). The

notion of common certainty in a set of first-order beliefs was studied earlier in

Battigalli & Sinischalchi (2003).

9 Discussion

Directions for future work include the following:

Endogenous data. In this paper, data is generated according to an exogenous

distribution. An important next step is to consider data generated by actions played

by past strategic actors. In this dynamic setting, past actions play a role in coordi-

nating future beliefs via the kind and quantity of data generated.

Optimal informational complexity design. Suppose a designer has control over

the complexity of information disclosed to agents in a strategic setting. Using the

approach developed in this paper, the designer’s choice of complexity influences

the commonality in beliefs across agents. When will he choose to disclose simpler

information, and when will he disclose information that is more complex? If the de-

signer’s interests are opposed to those of the agents, should a social planner regulate

the kind of information he can provide?

Confidence in predictions. An action profile is usually thought of as having the

binary quality of either being, or not being, a solution. The approach in this paper

may provide a way to qualify such statements with a level of confidence. In this
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paper, pn(a) describes the analyst’s confidence in predicting a given n observations.

I hope to extend these ideas towards construction of a cardinal measure for the

strength of equilibrium predictions across different games.
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Appendix A: Notation and Preliminaries

• If (X, d) is a metric space with A ⊆ X and x ∈ X, I write

d(A, x) = sup
x′∈A

d(x′, x).

• Int(A) is used for the interior of the set A.

• Recall that u ∈ U is a payoff matrix. For clarity, I will sometimes write ui
to denote the the payoffs in u corresponding to agent i, and u(a, θ) to denote

g(θ)(a).

• For any µ, ν ∈ ∆(Θ), the Wasserstein distance is given by

W1(µ, ν) = inf E(X,Y ),

where the expectation is taken with respect to a Θ×Θ-valued random variable

and the infimum is taken over all joint distributions of X × Y with marginals

µ and ν respectively.
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Appendix B: Preliminary Results

Lemma 4. The function

h(µ) =

∫
Θ
g(θ)dµ ∀ µ ∈ ∆(Θ)

is continuous.

Proof. By assumption, g is Lipschitz continuous; letK <∞ be its Lipschitz constant

(assuming the sup-metric on U). Suppose dP (µ, µ′) ≤ ε; then,

‖h(µ)− h(µ′)‖∞ =

∥∥∥∥∫
Θ
g(θ)d(µ− µ′)

∥∥∥∥
∞
≤ K sup

f∈BL1(Θ)

∥∥∥∥∫
Θ
f(θ)d(µ− µ′)

∥∥∥∥
∞

= KW1(µ, µ′)

≤ K(diam(Θ) + 1)dP (µ, µ′)

≤ K(diam(Θ) + 1)ε

using the assumption of Lipschitz continuity in the first inequality, and compactness

of Θ and the Kantorovich-Rubinstein dual representation of W1 in the following

equality. The second inequality follows from Theorem 2 in Gibbs & Su (2002). So

h is continuous.

Lemma 5. If dP (FZn , δθ∗)→ 0 a.s. , then also

dP (Conv (FZn) , δθ∗)→ 0 a.s.

where Conv(FZn) denotes the convex hull of FZn.

Proof. Fix any dataset zn, constant α ∈ [0, 1], and measures µ, µ′ ∈ Fzn . Again

using the dual representation,

W1(αµ+ (1− α)µ′, δθ∗) = sup
f∈BL1(Θ)

(∫
f(θ) d((αµ+ (1− α)µ′)− δθ∗)

)
= sup

f∈BL1(Θ)
α

(∫
f(θ) d(µ− δθ∗)

)
+ (1− α)

(∫
f(θ) d(µ′ − δθ∗)

)
≤ α sup

f∈BL1(Θ)

(∫
f(θ) d(µ− δθ∗)

)
+ (1− α) sup

f∈BL1(Θ)

(∫
f(θ) d(µ′ − δθ∗)

)
= αW1(µ, δθ∗) + (1− α)W1(µ′, δθ∗) ≤ sup

µ∈Fzn

W1(µ, δθ∗)
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Moreover, using Theorem 2 in Gibbs & Su (2002),

dP (αµ+ (1− α)µ′, δθ∗)
2 ≤W1(αµ+ (1− α)µ′, δθ∗),

and also

sup
µ∈Fzn

W1(µ, δθ∗) ≤ (1 + diam(Θ)) sup
µ∈Fzn

dP (µ, δθ∗).

Thus, for every dataset zn,

dP (Conv (Fzn) , δθ∗)
2 ≤ (1 + diam(Θ)) sup

µ∈Fzn

dP (µ, δθ∗),

where diam(Θ) is finite by compactness of Θ. So dP (FZn , δθ∗) → 0 a.s. implies

dP (Conv (FZn) , δθ∗)→ 0 a.s., as desired.

Claim 4. Fix any agent i, and let tθ∗ be the type with common certainty in θ∗.

If action ai is strongly strict-rationalizable for agent i with type tθ∗, then it is also

weakly strict-rationalizable for agent i in the complete information game with payoffs

u∗ = g(θ∗).

Proof. By induction. Trivially R1
j [tθ∗ ] = W 1

j = Aj for every agent j. If aj /∈ W 2
j ,

then it is not a strict best response to any distribution over opponent actions, so

also aj /∈ R2
j [tθ∗ ]. Thus,

R2
j [tθ∗ ] ⊆W 2

j ∀ j.

Now, suppose Rkj [tθ∗ ] ⊆ W k
j for every agent j, and consider any agent i and action

ai ∈ Rk+1
i [tθ∗ ]. By construction of the set Rk+1

i [tθ∗ ], there exists some distribution

π with margΘ×T−i π = κtθ∗ and π
(
a−i ∈ Rk−i[t−i]

)
= 1 such that∫

Θ×T−i×A−i
ui(ai, a−i, θ) dπ >

∫
Θ×T−i×A−i

ui(a
′
i, a−i, θ) dπ + δ ∀a′i 6= ai.

But since Rki [ti] ⊆W k
i , the distribution π also satisfies π

(
a−i ∈W k

i

)
= 1. So ai is a

δ-best response to some distribution π with support in the surviving set of weakly

strict-rationalizable actions, implying that ai ∈W k+1
i , as desired.
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Appendix C: Main Results

9.1 Proof of Claim 1

I use the following notation. For every dataset zn = {(xk, π(xk)}nk=1, define

F (zn) = {π̂(0) : π̂ ∈ Π and π̂(xk) = π(xk) ∀ k = 1, . . . n}

and let Tzn be the set of hierarchies of belief with common certainty in F (zn).

(See footnote 8 for the definition of Π.) Also, let t−1 be the type with common

certainty in −1, and let t1 be the type with common certainty in 1. Observe that

R is rationalizable for type t1 and not for type t−1.

Suppose F (zn) = {−1, 1}. Then t−1 ∈ Tzn , so there is a type in Tzn for whom

R is not rationalizable. Now suppose F (zn) = {1}. Then, the only permitted type

is t1, so R is trivially rationalizable for every type in Tzn . It follows that R is

rationalizable for every type in Tzn if and only if F (zn) = {1}; that is, if and only if

every inference rule π̂ ∈ Π that exactly fits zn predicts π̂(0) = 1. For what datasets

zn does this hold?

We can reduce this problem by looking at whether the smallest hyper-rectangle

that contains every successful observation also contains the origin. This will be the

case if and only if for every dimension k, there exist observations (xi, 1) and (xj , 1)

such that xki < 0 and xkj > 0 (that is, the k-th attribute is negative in some observed

high yield region, and positive in some observed high yield region). For every k, this

probability is

1−
[
2

(
2c− c′

2c

)n
−
(
c− c′

c

)n]
.

Realization of k-th attributes are independent across dimensions. Thus, the proba-

bility that this holds for every dimension is(
1−

[
2

(
2c− c′

2c

)n
−
(
c− c′

c

)n])r
as desired.

9.2 Proof of Proposition 1

The proof of this proposition follows from two lemmas. The first is a straightforward

generalization of Proposition 6 in Chen et al. (2010)43, and relates common learning

to convergence of types in the uniform-weak topology. The second lemma says that

for every dataset z, the distance between tiz and tθ∗ is upper bounded by dP (Fzn , δθ∗).

Throughout, I use tθ∗ to denote the type with common certainty in θ∗.

43This lemma appears in Chen et al. (2010) for the case in which Θ is a finite set and d0 is

the discrete metric, but generalizes to any complete and separable metric space (Θ, d0) when the

definition of common learning is replaced by Definition 2.
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Lemma 6. Agent i commonly learns θ∗ if and only if

dUWi (tiZn , tθ∗)→ 0 a.s. as n→∞.

Thus, the problem of determining whether an agent i commonly learns θ is equivalent

to that of determining whether his random type tiZn almost surely converges to tθ∗

in the uniform-weak topology.

Lemma 7. For every dataset z.

dUWi (tiz, tθ∗) ≤ dP (Fz, δθ∗) (8)

Proof. Fix any dataset z. It is useful to decompose the set of types Tz into the

Cartesian product
∏∞
k=1H

k
z , where H1

z = Fz and for each k > 1, Hk
z is recursively

defined

Hk
z =

{
tk ∈ T k :

(
margTk−1 tk

)
(Hk−1

z ) = 1 and margΘ t
k ∈ H1

z

}
; (9)

that is, Hk
z consists of the k-th order beliefs of types in Tz. First, I show that every

k-th order belief in the set Hk
z is within dP (Fz, δθ∗) (in the dk metric44) of the k-th

order belief of tθ∗ .

Claim 5. Define δ∗ = dP (Fz, δθ∗). For every k ≥ 1,

Hk
z ⊆

{
tkθ∗
}δ∗

:=
{
tk ∈ T k : dk (t, tθ∗) ≤ δ

}
.

Proof. Fix any t ∈ Tz. By construction of Tz, the first-order belief of type t is in

the set Fz. So it is immediate that

d1(t, tθ∗) ≤ dP (Fz, δθ) = δ∗. (10)

Now suppose Hk
z ⊆

{
tkθ∗
}δ∗

. Then, since tk+1
({
tkθ∗
}δ∗) ≥ tk+1(Hk

z ) = 1 from (9),

and tk+1
θ∗

(
{tkθ∗}

)
by definition of the type tθ∗ , it follows that

tk+1
θ∗ (E) ≤ tk+1(Eδ

∗
) + δ∗

for every measurable E ⊆ T k. Using this and (10),

dk+1(t, tθ∗) ≤ δ∗. (11)

as desired.

So dk(t, tθ∗) ≤ δ∗ for every k, implying dUWi (t, tθ∗) = supk≥1 d
k(t, tθ∗) ≤ δ∗.

44See Section 3.2.

42



Thus, the question of convergence of types is reduced to the question of convergence

in distributions over Θ. The remainder of the argument is now completed:

Fix any map ti : z 7→ tiz such that tiz ∈ Tz for every z. Suppose M is uniformly

consistent; then supµ∈M d (µZn , δθ∗)→ 0 a.s.45. It follows from Lemma 6 that

dUWi (tiZn , tθ∗)→ 0 a.s.,

so that agent i’s (interim) type tiZn almost surely converges to tθ∗ . Using Lemma 7,

agent i commonly learns θ.

For the other direction, suppose M is not uniformly consistent. Then, there

exist constants ε, δ > 0 such that for n sufficiently large,

sup
µ∈M

d (µ(zn), δθ∗)) > ε (12)

for every zn in a set Z∗n of Pn-measure δ. Define the map ti such that for every

dataset zn ∈ Z∗n, agent i’s first-order belief is µ(zn) for some µ ∈ M satisfying

d(µ(zn), δθ∗) > ε (existence guaranteed by (12)). Then d1(tiZn , tθ∗) 9 0, so also

dUWi (tiZn , tθ∗) 9 0, and it follows from Lemma 6 that agent i does not commonly

learn θ.

9.3 Proof of Claim 3

I prove this claim in two parts. Recall that UNEa is the set of all complete information

games in which a is a Nash equilibrium. Thus, the set h−1
(
UNEa

)
is the set of all

distributions over Θ that induce an expected payoff in UNEa . The first claim says

that δθ∗ ∈ Int
(
h−1

(
UNEa

))
if and only if h(FZn) is almost surely contained in UNEa

as the quantity of data n tends to infinity.

Claim 6. limn→∞ h (FZn) ⊆ UNEa a.s. if and only if δθ∗ ∈ Int
(
h−1

(
UNEa

))
.

Proof. Sufficiency. Suppose δθ∗ ∈ Int
(
h−1

(
UNEa

))
. Recall that under uniform

consistency, W1(FZn , δθ∗)→ 0 a.s., so that

lim
n→∞

FZn ⊆ V a.s.

for every open set V with δθ∗ ∈ V . This implies in particular that

lim
n→∞

FZn ⊆ h−1(UNEa ) a.s.

Using continuity of h (see Lemma 4), it follows from the continuous mapping theorem

that

lim
n→∞

h (FZn) ⊆ UNEa a.s.

45Uniform convergence in W1 implies uniform convergence in the Prokhorov metric d. See for

example Gibbs & Su (2002).
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as desired.

Necessity. Suppose δθ∗ /∈ Int(h−1(UNEa )). Under assumption NI, there exists a

constant δ > 0 independent of n, and a set Z∗n of measure δ, such that

δθ∗ ∈ Int(Fzn) ∀ zn ∈ Z∗n.

Consider any dataset zn ∈ Z∗n. Since δθ∗ /∈ Int
(
h−1

(
UNEa

))
, necessarily Fzn *

h−1
(
UNEa

)
. It follows that

lim
n→∞

Pn
({

zn : h (Fzn) ⊆ UNEa

})
< 1

as desired.

Claim 7. δθ∗ ∈ Int
(
h−1

(
UNEa

))
if and only if u∗ ∈ Int

(
UNEa

)
.

Proof. Suppose u∗ ∈ Int
(
UNEa

)
. Then, there is an open set V such that

u∗ ∈ V ⊆ UNEa .

Since h is continuous (see Lemma 4), h−1(V ) is an open set in ∆(Θ). So

δθ∗ ∈ h−1(V ) ⊆ h−1
(
UNEa

)
implying that δθ∗ ∈ Int

(
h−1

(
UNEa

))
, as desired.

For the other direction, suppose towards contradiction that δθ∗ ∈ Int
(
h−1

(
UNEa

))
but u∗ /∈ Int

(
UNEa

)
. Since u∗ is on the boundary of UNEa , there exists some agent

i and action a′i 6= ai such that

u∗i (a
′
i, a−i) ≥ u∗i (a′i, a−i).

Under assumption 4, g(Θ) has nonempty intersection with S(i, ai), so there exists

some θ ∈ g−1(S(i, ai)). For every ε > 0, define

µε = (1− ε)δθ∗ + εδθ.

The expected payoff under µε satisfies∫
U
ui(a

′
i, a−i) dg∗(µε) >

∫
U
ui(ai, a−i) dg∗(µε)

where g∗(ν) denotes the push forward measure of ν ∈ ∆(Θ) under the map g. So

ai is not a best response to a−i given beliefs µε over Θ, and therefore h(µε) /∈ UNEa .

This implies also µε /∈ h−1
(
UNEa

)
. Thus the sequence µε → δθ∗ and has the property

that µε /∈ h−1
(
UNEa

)
for every ε, so δθ∗ /∈ Int(h−1(UNEa )), as desired.
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9.4 Proof of Theorem 2

Only if: Define URa∗i
⊆ U to consist of all payoffs u such that a∗i is rationalizable for

player i in the complete information game with payoffs u.

Lemma 8. u ∈ Int
(
URa∗i

)
if and only if a∗i survives every round of weak strict-

rationalizability in the complete information game with payoffs u.

Proof. Only if: Suppose a∗i fails to survive some iteration of weak strict-rationalizability.

Then, there exists a sequence of sets
(
W k
j

)
k≥1

for every agent j satisfying the re-

cursive description in Section 5.1, such that a∗i /∈ WK
i for some K < ∞. To show

that u /∈ Int
(
URa∗i

)
, I construct a sequence of payoff functions un with un → u (in

the sup-metric) such that a∗i is not rationalizable in any complete information game

with payoffs along this sequence, for n sufficiently large.

For every n ≥ 1, define the payoff function un as follows. For every agent j, let

un,1j satisfy

un,1j (aj , a−j) = uj(aj , a−j) + ε/n ∀ aj ∈W k−1
j and ∀ a−j ∈ A−j

un,1j (aj , a−j) = uj(aj , a−j) otherwise.

Recursively for k ≥ 1, let un,kj satisfy

un,kj (aj , a−j) = un,k−1
j (aj , a−j) + ε/n ∀ aj ∈W k−1

j and ∀ a−j ∈ A−j
un,kj (aj , a−j) = un,k−1

j (aj , a−j) otherwise.

Define un such that unj := un,Kj for every player j.

I claim that a∗i is not rationalizable in the complete information game with

payoff function un, for any n sufficiently large. To show this, let us construct for

every player j the sets (Sk,nj )k≥1 of actions surviving k rounds of iterated elimina-

tion of strictly dominated strategies given payoff function un, and show that for n

sufficiently large, Sk,nj = W k
j for all k and every player j. I will use the following

intermediate results.

Claim 8. There exists γ > 0 such that for any u′ satisfying ‖u′−u‖∞ < γ, and for

any agent j, if

uj(aj , a−j) > max
a′j 6=aj

uj(aj , a−j)

then

u′j(aj , a−j) > max
a′j 6=aj

u′j(aj , a−j).

Proof. Let γ = 1
2 mini∈I minai∈Ai

∣∣∣ui(ai, a−i)−maxa′i 6=ai ui(a
′
i, a−i)

∣∣∣, which exists

by finiteness of I and action sets Ai. The claim follows immediately.
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Corollary 3. Let N = εK/γ. Then, for every n ≥ N , if

uj(aj , a−j) > max
a′j 6=aj

uj(aj , a−j)

then

un,kj (aj , a−j) > max
a′j 6=aj

un,kj (aj , a−j)

for every k ≥ 1.

Proof. Directly follows from Claim 8, since for every j,

‖un,kj − uj‖∞ ≤ ‖unj − uj‖∞ ≤
εK

n

by construction.

The remainder of the proof proceeds by induction. Trivially, S0,n
j = W 0

j = Aj
for every j and n. Now consider any agent j and action aj ∈ Aj . Suppose there

exists some strategy α−j ∈ ∆(A−j) such that

uj (aj , α−j)− max
a′j 6=aj

uj
(
a′j , α−j

)
> 0,

so that aj is a strict best response to α−j under u. Then aj ∈ W 1
j , and for n ≥ N ,

also aj ∈ S1,n
j (using Corollary 3). Suppose aj is never a strict best response, but

there exists α−j ∈ ∆(A−j) such that

uj (aj , α−j)− max
a′j 6=aj

uj
(
a′j , α−j

)
= 0.

If aj ∈W 1
j , then

unj (aj , α−j)− max
a′j 6=aj

unj
(
a′j , α−j

)
≥ uj (aj , α−j)− max

a′j 6=aj
uj
(
a′j , α−j

)
,

so also ai ∈ S1,n
i for n ≥ N . If aj /∈ W j , then for n ≥ N , there exists an action

a′j 6= aj such that uj

(
a′j , α−j

)
= uj (aj , α−j), but uni

(
a′j , α−j

)
> unj (aj , α−j). So

aj /∈ S1,n
j . No other actions survive to either W 1

j or S1,n
j . Thus S1,n

j = W 1
j for all

n ≥ N .

This argument can be repeated for arbitrary k. Suppose Sk,nj = W k
j for every

j and n ≥ N , and consider any action aj ∈ Sk,nj . If there exists some strategy

α−j ∈ ∆(Sk,n−j ) such that

uj (aj , α−j)− max
a′j 6=aj

ui
(
a′j , α−j

)
> 0,
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then aj ∈ W k+1
j , and for n ≥ N , also aj ∈ Sk+1,n

j (using Corollary 3). Suppose aj

is not a strict best response to any α−j ∈ ∆(Sk,n−j ), but there exists α−j ∈ ∆(Sk,n−j )

such that

uj (aj , α−j)− max
a′j 6=aj

uj
(
a′j , α−j

)
= 0.

Then, if aj ∈ W k+1
j , action aj is a strict best response to a−j under un, so aj ∈

Sk+1,n
j . Otherwise, if aj /∈ W k+1

j , then there exists some a′j ∈ W k+1
j such that

unj (a′j , α−j) > unj (aj , α−j), so also aj /∈ Sk+1,n
j . No other actions survive to either

W k+1
j or Sk+1,n

j , so Sk+1,n
j = W k+1

j for n ≥ N . Therefore Sk,nj = W k
j for every

k and n ≥ N , and in particular SK,nj = WK
j for n ≥ N . Since aj /∈ WK

j , also

aj /∈ S∞,nj for n sufficiently large, as desired.

Finally, notice that by construction ‖un − u‖∞ ≤ εK
n , which can be rewritten

‖un(ε′) − u‖∞ ≤ ε′

where n(ε′) := εK
ε′ . Thus, for every ε′ ≥ 0, the payoff function u

n(ε′)
i ∈ Bε′(u), but ai

is not rationalizable in the complete information game with payoff function u
n(ε′)
i .

So u /∈ Int
(
URa∗i

)
, as desired.

If: Suppose u /∈ Int
(
URa∗i

)
. Consider any sequence of payoff functions un → u.

Since action sets are finite, there is a finite number of possible orders of elimination.

This implies existence of a subsequence along which the same order of iterated

elimination of strategies removes a∗i . Choose any one-at-time iteration of this order

of elimination. Then, a∗i fails to survive this order of elimination given the limiting

payoffs u, so it is not weakly strict-rationalizable.

Next, I show that ai is robust to inference only if the true payoff function u∗ is

in the interior of URa∗i
.

Lemma 9. a∗i is robust to inference only if u∗ ∈ Int
(
URa∗i

)
.

Proof. The following claim will be useful.

Claim 9. u∗ ∈ Int
(
URa∗i

)
if and only if δθ∗ ∈ Int(h−1(Ua)).

Proof. See proof of Claim 6.

Suppose u∗ /∈ Int(URa∗i
); then, using Claim 9, also δθ∗ /∈ Int(h−1(URa∗i

)). Under

assumption NI, there is a constant ε > 0 such that δθ∗ ∈ Int(Fzn) for at least an

ε-measure of datasets. Consider any such such dataset. Then, δθ∗ /∈ Int
(
h−1(URa∗i

)
)

,

implies that Fzn * h−1(Ua). Fix any u ∈ Fzn\h−1(URa∗i
). Then a∗i is not rationaliz-

able in the complete information game with payoffs u, so it is also not rationalizable

for the type with common certainty in u.
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If: If a∗i is strongly strict-rationalizable, then there exists a family of sets (V k
j )j∈I

is closed under δ-strict best reply for some δ ≥ 0; that is, for every aj ∈ V k
j , there

exists a distribution α−j ∈ ∆(V k
−j) such that

u∗j (aj , α−j) > max
a′j 6=aj

u∗j (a
′
j , α−j) + δ.

Recall the following fixed-point property of the set of rationalizable actions:

Lemma 10 (Dekel, Fudenberg & Morris (2007)). Fix any type profile (tj)j∈I . Con-

sider any family of sets Vj ⊆ Aj such that every action aj ∈ Vj is a best reply

to a distribution π ∈ ∆(Θ × T−j × A−j) that satisfies margΘ×T−j π = g(tj) and

π(a−j ∈ V−j [t−j ]) = 1. Then, Vj ⊆ S∞j [tj ] for every agent j.

Fix any ε > 0. Then, for every agent j and type tj with common certainty in Bε(u
∗),

we have that∫
uj(aj , α−j , θ)dκj(tj)− max

a′j 6=aj

∫
uj(a

′
j , α−j , θ)dκj(tj)

≥ inf
u∈Bε(u∗)

(
uj(aj , α−j)− max

a′j 6=aj
uj(a

′
j , α−j)

)
≥ δ − 2ε,

which is positive for any ε ≤ δ/2. So the family of sets (V k
j )j∈I satisfies the condi-

tions in Lemma 10 when ε is sufficiently small, and it follows that a∗i ∈ S∞i [tj ], as

desired.

9.5 Proof of Proposition 2

To simplify notation, set δ := δNEa∗ . By assumption, δ ≥ 0.

Lemma 11. Bδ/2(u∗) ⊆ UNEa∗ .

Proof. Consider any payoff function u′ satisfying

‖u′ − u∗‖∞ ≤
δ

2
. (13)

Then for every agent i,

u′i(a
∗
i , a
∗
−i)− u′i(a′i, a∗−i) = u′i(a

∗
i , a
∗
−i)− u∗i (a∗i , a∗−i)︸ ︷︷ ︸
≥−δ/2

+ u∗i (a
∗
i , a
∗
−i)− u∗i (a′i, a∗−i)︸ ︷︷ ︸

>δ

+u∗i (a
′
i, a
∗
−i)− u′i(a′i, a∗−i)︸ ︷︷ ︸
≥−δ/2

≥ 0.
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where u∗i (a
∗
i , a
∗
−i)− u∗i (a′i, a∗−i) > δ follows from the assumption that a∗ is a δ-strict

NE in the complete information game with payoffs u∗, and the other two bounds

follow from 13. So a∗ is a NE in the complete information game with payoffs u′,

implying that u′ ∈ UNEa∗ .

It follows from Lemma 2 that common certainty in Bδ/2(u∗) is a sufficient con-

dition for a∗ to be a Bayesian Nash equilibrium. Thus,

pNE
n (a∗) ≥ Pn

({
zn : h(Fzn) ⊆ Bδ/2(u∗)

})
= Pn

({
zn : sup

µ∈M
‖h(µzn)− u∗‖∞ ≤ δ/2

})

= 1− Pn
({

zn : sup
µ∈M
‖h(µzn)− u∗‖∞ > δ/2

})

≥ 1− 2

δ
EPn

(
sup
µ∈M
‖h(µzn)− u∗‖∞

)
using Markov’s inequality in the final line.

9.6 Proof of Proposition 3

To simplify notation, set δ := δRa∗i
. By assumption, δ ≥ 0.

Lemma 12. Bδ/2(u∗) ⊆ URa∗i .

Proof. Consider any payoff function u′ satisfying

‖u′ − u∗‖∞ ≤
δ

2
. (14)

By definition of δRa∗i
, there exists a family of sets (Ri)i∈I with the property that for

every agent j and action aj ∈ Rj , there is an action α−j [aj ] ∈ ∆(R−j) satisfying

u∗i (aj , α−j [ai]) > u∗i (a
′
j , α−j [aj ]) + δ ∀ a′j 6= aj . (15)

I will show that (Rj)j∈I satisfies the conditions in Lemma 10 for any type profile

(tj)j∈I , where every tj has common certainty in Bδ/2(u∗). Fix an arbitrary agent

j, and type tj with common certainty in Bδ/2(u∗). Define the distribution π ∈
∆(Θ×T−j×A−j) such that margΘ×T−j π = κj(tj) and margA−j π = α−j [aj ], noting

that since α−j [aj ] ∈ ∆(R−j), this implies also that π(a−j ∈ R−j) = 1.

Since by assumption, tj has common certainty in Bδ/2(u∗), the support of

margΘ κ(tj) is contained in Bδ/2(u∗). So the expected payoff from playing aj exceeds

the expected payoff from playing a′j 6= aj by at least

inf
u∈Bδ/2(u∗)

(
u(aj , α−j)− u(a′j , α−j)

)
≥ −δ

2
(16)
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It follows that∫
uj(aj , α−j ,θ) dπ −

∫
uj(a

′
j , α−j , θ) dπ =

∫
uj(aj , α−j , θ) dπ − u∗j (aj , α−j , θ)︸ ︷︷ ︸

≥− 1
2
δ

+ u∗(aj , α−j , θ)− u∗(a′j , α−j , θ)︸ ︷︷ ︸
>δ

+

∫
u∗j (a

′
j , α−j , θ) dπ − uj(a′j , α−j , θ)︸ ︷︷ ︸

≥− 1
2
δ

≥ 0,

using the inequalities in (15) and (16). It follows that aj is a best response to α−j
given distribution π. Repeating this argument for every agent j, action aj ∈ Rj ,
and type tj with common certainty in Bδ/2(u∗), it follows from Lemma 10 that

Rj ⊆ S∞j [tj ] for every agent j. Since a∗i ∈ Ri, also a∗i ∈ S∞i [ti], as desired.

It follows from this lemma that Fz ⊆ Bδ/2(u∗) is a sufficient condition for a∗i to

be rationalizable in every game in G(z). Thus,

pRn (i, a∗i ) ≥ Pn
({

zn : h(Fzn) ⊆ Bδ/2(u∗)
})

= Pn

({
zn : sup

µ∈M
‖h(µz)− u∗‖∞ ≤ δ/2

})

= 1− Pn
({

zn : sup
µ∈M
‖h(µz)− u∗‖∞ > δ/2

})

≥ 1− 2

δ
EPn

(
sup
µ∈M
‖h(µzn)− u∗‖∞

)

using Markov’s inequality in the final line.

Proof of Corollary 1

From properties of the least-squares estimator,

E
(
|β̂1 − β1|2

)
= Var(β̂j) ≤

∑
j

Var(β̂j)

= σ2
∑
k

E
((

XTX
)−1

kk

)
= σ2E

(
tr
(
XTX

)−1
)

= σ2E

(∑
i

λ−1
i

)
≤ σ2p(

√
n+
√
p)
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where the final line follows from Gordon’s theorem for Gaussian matrices (see e.g.

Vershynin (2012)). Let K be the Lipschitz constant of the map g : Θ→ U (assuming

the sup-norm on U and the Euclidean norm on Θ),

E

(
sup
µ∈M
‖h(µZn)− u∗‖∞

)
≤ KE

(
|β̂1 − β1|2 + φ2

n

)
≤ K

(
σ2p

(√
n+
√
p
)

+ φ2
n

)
and the desired bound follows directly from Proposition 2.

Proof of Proposition 4

The argument below is for Nash equilibrium; the argument for rationalizability

follows analogously. For every inference rule µ ∈M , define

Xn
µ = 1

(
h (µZn) /∈ UNEa

)
to take value 1 if the expected payoff under the (random) distribution µ(Zn) is

outside the set UNEa . Write Fnµ for the marginal distribution of random variable

Xn
µ , and FnM for the joint distribution of random variables (Xn

µ )µ∈M . Enumerate

the inference rules in M by µ1, . . . , µk.

By Sklar’s theorem, there exists a copula C : [0, 1]k → [0, 1] such that

FnM (x1, . . . , xk) = C
(
Fnµ1(x1), . . . , Fnµk(xk)

)
for every x1, . . . , xk. Using the Frechet-Hoeffding bound,

1−K +
K∑
k=1

Fnµk(xk) ≤ C
(
Fnµ1(x1), . . . , Fnµk(xk)

)
≤ min

k∈{1,...,K}
Fnµk(xk).

From Lemma 2, pNEn (a) = FnM (0, . . . , 0). It follows that

1−K +

K∑
i=1

Fnµk(0) ≤ pNEn (a) ≤ min
k∈{1,...,K}

Fnµk(0). (17)

Finally, since every Xn
µ ∼ Ber(1− pnµ), (17) implies

1−
∑
µ∈M

pNEµ,n ≤ pNEn (a) ≤ 1− min
µ∈M

pNEµ,n

as desired.
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Appendix D: An example illustrating the fragility of weak

strict-rationalizability

In the following, I present a game in which an action is weakly strict-rationalizable,

but fails to be rationalizable along a sequence of perturbed types in the uniform-

weak topology.

Consider a game with four players. Each has two actions, a and b. Throughout I

will use, for example, abab to denote choice of a by players 1 and 3, and b by players

2 and 4. Let payoffs be defined as follows. Player 1’s payoffs satisfy

u1(axxx) =

{
1 if xxx = aaa or bbb

0 otherwise.

u1(bxxx) =

{
0 if xxx = aaa or bbb

1 otherwise.

That is, player 1 wants to play a if players 2-4 are all playing a or all playing b, and

he wants to play b otherwise. The payoffs to players 2-4 are independent of player

1’s action. They are described below (where rows correspond to player 2’s actions,

columns to player 3, and choice of matrices to player 4), with player 1’s payoffs

omitted, so that the first coordinate corresponds to player 2’s payoff:

a b

a 1, 1, 0 0, 0, 0

b 0, 0, 0 0, 0, 0

a b

a 0, 0, 0 0, 0, 0

b 0, 0, 0 1, 1, 0

(18)

(a) (b)

That is, if player 4 chooses action a, then players 2 and 3 prefer coordination on a;

and if player 4 chooses b, then players 2 and 3 prefer coordination on b.

Let us first consider the case in which the true payoffs are common certainty, so

that this is a game of complete information (denote the payoffs by u). Then, a is

rationalizable for player 1. Not only is it rationalizable, but:

• there is a constant ε > 0 such that a is rationalizable for player 1 in every

game u′ with ‖u′ − u‖∞ ≤ ε; that is, rationalizability is preserved on an open

set of complete information games.

• a is weakly strict-rationalizable.

• although a is not strongly strict-rationalizable, it fails to survive this pro-

cess for the reason that none of player 4’s actions survive the first round of

elimination.46

46In particular, a is strongly strict-rationalizable in either game in which one of player 4’s actions

is dropped.
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Let t1 be the type with common certainty in u. I will now show that there

exists a sequence of types tn1 such that tn1 → t1 in the uniform-weak topology, but a

fails to be rationalizable for agent 1 infinitely many times along this sequence. The

sequence of types tn1 will moreover have the property that every tn1 believes that an

εn-neighborhood of u is common certainty, where εn → 0 as n→∞.
Define tn1 to satisfy two conditions. First, player 1 is certain47 that: player 2 is

certain that the payoffs in (18) are

a b

a 1, 1,−εn 0, 0,−εn
b 0, 0,−εn 0, 0,−εn

a b

a −εn,−εn, 0 0,−εn, 0
b 0, 0, 0 1, 1, 0

(19)

(a) (b)

and player 2 is certain, moreover, that player 4 is certain of these payoffs. Second,

player 1 is certain that: player 3 is certain that the payoffs in (18) are

a b

a 1, 1, 0 0, 0, 0

b −εn,−εn, 0 −εn,−εn, 0

a b

a 0, 0,−εn 0, 0,−εn
b 0, 0,−εn 1, 1,−εn

(20)

(a) (b)

and player 3 is certain, moreover, that player 4 is certain of these payoffs.

Let us now consider the rationalizable actions for players 2 and 3. If player 4

is certain that payoffs are as in (19), then action b is his uniquely rationalizable

action. So player 2, with the beliefs described above, believes with probability 1

that player 4 will play b. Since he is himself certain of the payoffs in (19), action

b is his uniquely rationalizable action. By a similar argument, if player 4 is certain

that payoffs are as in (20), then action a is uniquely rationalizable. So player 3,

with the beliefs described above, believes with probability 1 that player 4 will play

a, and thus considers a to be his uniquely rationalizable action as well.

So player 1 is certain that player 2 will play b and that player 3 will play a. It

follows that his uniquely rationalizable action is b. Since this argument is valid for

every εn > 0, action a is not rationalizable for player 1 of type tni for any n. But

every tni believes that Bεn(u) is common certainty, so tni → ti in the uniform-weak

topology.

47Believes with probability 1.
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