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The visual system can only accurately represent a hand-
ful of objects at once. How do we cope with this severe
capacity limitation? One possibility is to use selective
attention to process only the most relevant incoming
information. A complementary strategy is to represent
sets of objects as a group or ensemble (e.g. represent the
average size of items). Recent studies have established
that the visual system computes accurate ensemble
representations across a variety of feature domains
and current research aims to determine how these repre-
sentations are computed, why they are computed and
where they are coded in the brain. Ensemble representa-
tions enhance visual cognition in many ways, making
ensemble coding a crucial mechanism for coping with
the limitations on visual processing.

Benefits of ensemble representation
Unlike artificial displays used in laboratory experiments,
where there is no reliable pattern across individual items,
the real world is highly structured and predictable [1,2].
For instance, at the object level, the visual field often
consists of collections of similar objects – faces in a crowd,
berries on a bush. At a more primitive feature level, natu-
ral images are highly regular in terms of their contrast and
intensity distributions [3,4], color distributions [5–8], re-
flectance spectra [9,10] and spatial structure [2,11–14].
Where there is structure, there is redundancy, and where
there is redundancy, there is an opportunity to form a
compressed and efficient representation of information
[15–17]. One way to capitalize on this structure and re-
dundancy is to represent collections of objects or features at
a higher level of description, describing distributions or
sets of objects as an ensemble rather than as individuals.

An ensemble representation is any representation that
is computed from multiple individual measurements, ei-
ther by collapsing across them or by combining them across
space and/or time. For instance, any summary statistic
(e.g. the mean) is an ensemble representation because it
collapses across individual measurements to provide a
single description of the set. People are remarkably accu-
rate at computing averages, including the mean size
[18,19], brightness [20], orientation [18,21,22] and location
of a collection of objects [23]; the average emotion [24],
gender [24] and identity [25] of faces in a crowd; and the
average number for a set of symbolically presented num-
bers [26,27]. These are all measures of central tendency for

a collection of objects. Other statistics that describe a set,
such as variance [28], skew and kurtosis, are also ensemble
representations, although the ability to compute and rep-
resent these statistics has been the focus of less attention
in recent research (but see [29,30] for reviews on earlier
research). Finally, the concept of ensemble representations
can be extended beyond first-order summary statistics, to
include higher-order summary statistics [31–33].

Ensemble representations have been explored under
various names in the literature, including ‘global features’
[32,34,35], ‘(w)holistic’ or ‘configural’ features [36–38], ‘sets’
[18,39] and ‘statistical properties’ or ‘statistical summa-
ries’ [19,40]. Each of these terms shares the notion that
multiple measurements are combined to give rise to a
higher level description. The term ‘ensemble representa-
tion’ is used here as an umbrella term encompassing these
different ideas. Although there is, as yet, no unifyingmodel
of ensemble representation across these domains, recent
research on ensemble representation is unified by a com-
mon principle: representing multiple objects as an ensem-
ble enhances visual cognition.

The power of averaging
How can computing ensemble representations help over-
come the severe capacity limitations of our visual system?
The answer lies in the power of averaging: simply put, the
average of multiple noisymeasurements can bemuchmore
precise than the individual measurements themselves. For
instance, one can measure reaction time with millisecond
precision evenwhen rounding reaction times to the nearest
100 ms (Box 1). The same principle is at play in the ‘wisdom
of crowds’ effect, in which people guess the weight of an ox
and the average response is closer to the correct answer
than are the individual guesses on average [41]. These
benefits arise because, when measurements are averaged,
random error in one individual measurement will tend to
cancel out uncorrelated random error in another measure-
ment. Thus, the benefits of averaging depend on the extent
to which the noise in individual measurements is correlat-
ed (less correlated, more benefit) and the number of indi-
vidual measurements averaged (more measurements,
more benefit). The benefit of averaging can be formalized
mathematically, given certain assumptions regarding the
noise in the individual measurements (Figure 1).

If the human visual system is capable of averaging, then
observers should be able to judge the average size of a set
more accurately than they can judge the individuals in the
set. This is exactly what was demonstrated by Dan Ariely’s
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influential research on the ability of people to perceive the
mean size of a set [18], which showed that observers can
estimate with high accuracy the average size of a set of
objects, even when they appear unable to report the size of
the individual objects in the set.

This type of averaging provides a potential mechanism
for coping with the severe limitations on attentional pro-
cessing. Attention appears to be a fluid and flexible re-
source: we can give full attention to a single item and
represent that item with high precision, or we can divide
our attention among many items but consequently repre-
sent each item with lower precision [42–44]. In general,
objects outside the focus of attention are perceived with
less clarity [45], lower contrast [46] and a weaker high-
frequency response [47,48]. Presumably all objects in the
visual field are represented with varying degrees of preci-
sion, depending on the amount of attention they receive. In
some cases, objects outside the focus of attention are so
poorly represented that it seems like we have no useful
information about them at all. However, it turns out to be

possible to combine that imprecise information to recover
an accurate measure of the group [23].

Figure 2 illustrates how attention might affect the
fidelity of ensemble representations. Inside the focus of
attention (red beams), individual items will be represented
with relatively high precision. The average of these items
will be represented with even higher precision, as expected
from the benefits of averaging. For items outside the focus
of attention, we assume that theymust be attended to some
extent to be perceived at all. For instance, the results of
inattentional blindness studies have shown that without
attention, there is little or no consciously accessible repre-
sentation of visual information [49–51]. These studies
typically aim for participants to completely withdraw at-
tention from the tested items, and in some cases observers
even actively inhibit information outside of the attentional
set [51]. However, when observers know they will be asked
about information outside the focus of attention, it is
probable that they diffusely attend to those items.
Figure 2 implies a parallel system with multiple foci of

Box 1. The power of averaging

Imagine you are running an experiment with an expected effect size
of 20 ms, which is not uncommon in behavioral research (e.g.
negative priming or simple detection tasks). Do you need to worry
about the sampling rate of your keyboard? First let us consider what
would happen if we simply rounded reaction times to the nearest
100 ms. By averaging multiple samples, individual errors owing to
rounding will tend to cancel each other out, and it is possible to
obtain millisecond precision in the estimate of the mean despite
rounding. Figure Ia shows the results of a simulation with ten virtual
subjects and only 30 trials per subject. The true average of the
population is 600 ms, and subjects are normally distributed around
this mean (i.e. each subject has their own true mean, but the average
across subjects will be 600 ms). For each simulated trial, reaction
time was simulated as the subject’s true mean plus 15% random
noise around their true mean. This is fairly typical of reaction time
data, but the simulation results do not depend crucially on this value.
The simulated reaction times were then rounded to the nearest
100 ms. When the true reaction times (from the simulation) are
compared to the rounded reaction times, the mean and variance of
the two data sets are nearly indistinguishable.

Now suppose your keyboard checks for a key once every 100 ms.
This would be equivalent to rounding each reaction time up to the
nearest 100 ms, which on the face of it sounds like it would add error
to the estimate of the mean and variance of each condition. Indeed, it
would lead to overestimates of the reaction time in each condition.
However, the relative difference between conditions could be
preserved. The simulation above was repeated with two conditions
in which the true mean between conditions was simulated so that
condition two was 20 ms slower than condition one on average.
Figure Ib shows the results of the simulation, in which condition two
was reliably slower than condition one for each individual subject,
and the 20 ms difference is significant at p < 0.05 using a standard
within-subject t-test. In general, whether the effect can be detected
thus will depend on the degree of rounding, the expected size of the
effect and the variability of the data.

For the present purpose, the important point is that, by averaging a
relatively modest number of trials, it is possible to overcome a great
deal of noise in individual estimates to obtain a precise representation
of the mean (Figure Ia) and to detect a subtle difference between two
conditions (Figure Ib).[()TD$FIG]
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Figure I. (a) The effect of rounding on estimating the mean and variance in a single condition. Error bars depict the standard deviation across subjects. (b) The effect of
rounding-up on the comparison of two conditions in which the true mean differs by 20 ms. Error bars depict the within-subject standard error of the mean.
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attention, plus diffuse attention spread over items outside
the foci of attention. However, a similar result could be
modeled with a single spotlight of attention that spends
more time in some locations than others. Either way this
diffuse attention results in extremely imprecise represen-
tations of the individual items, and yet averaging even just
three imprecise measurements results in a fairly precise
representation of the ensemble. If a large enough sample of
items is averaged together, then the ensemble representa-
tion for items outside the focus of attention can be nearly as
accurate as the ensemble representation for items inside
the focus of attention.

The mechanisms of averaging
Although there is general agreement that human obser-
vers can accurately represent ensemble features, many
questions remain regarding ‘how’ these ensemble repre-
sentations are computed, including: (i) Are individual
representations computed and then combined to form an
ensemble representation, or are ensemble representations
somehow computed without computing individuals? (ii) If
individual representations are computed, are they dis-
carded once the ensemble has been computed? (iii) How
many individual items are sampled and included in the
calculation of the mean? Is it just a few or could it be all of
them? (iv) Do all items contribute to the mean equally?

Are ensembles built up from representations of
individuals?
Ariely [18] proposed that the visual system performs a type
of compression, by creating an ensemble representation
and then discarding individual representations. Some
have interpreted this proposal to mean that the ensemble
representation is computed without first directly comput-
ing individual measurements. For instance, it is possible
that there is a ‘total activation map’ and a ‘number map’

and that mean size is computed by taking the total activa-
tion and dividing it by the number of items [52]. However,
Ariely’s use of the term ‘discard’ suggests that his intended
meaning was that the individual properties are computed,
combined and then discarded. This type of averagingmodel
has been supported by research on the computation of
mean orientation [21]. Addressing this question empirical-
ly is a challenge because it is possible to compute accurate
ensemble representations even from very imprecise indi-
vidual measurements. Consequently, a poor representa-
tion of individual items cannot be used as evidence for
mean computation without computing individuals – unless
the mean can be shown to be represented more accurately
than expected based on the number and fidelity of individ-
ual items represented.

Are individual representations discarded?
How do we explain such poor performance when observers
are required to report the properties of individualmembers
of a set? One possibility is that these properties are com-
puted and then discarded. An important alternative pos-
sibility is that the individual representations are not
discarded, but are simply so noisy and inaccurate that
observers cannot consistently identify individuals from
the set owing to this high level of noise. Alvarez and Oliva
found support for this possibility by modeling their results
[23], consistently finding that the accuracy of ensemble
judgments is perfectly predicted from the accuracy of
individual judgments – even when individuals appear to
be judged with near chance accuracy. This alternative
possibility fits with a framework in which the representa-
tion of an image is hierarchical, retaining information at
multiple levels of abstraction [35,53].
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Figure 2. Effect of attention on the fidelity of ensemble representations. Two sets
of items are depicted: one set inside the focus of attention (red beams) and one set
diffusely attended outside the focus of attention (pink region). For illustrative
purposes, both sets are composed of identical individuals, and thus both sets have
the same individual and mean representations. For items inside the focus of
attention, individual representations will be relatively precise (red curves). The
ensemble representation of the items inside the focus of attention will be even
more precise, owing to the benefits of averaging. For items outside the focus of
attention which are diffusely attended, the individual representations will be very
imprecise (gray curves). However, the benefits of averaging are so great that the
ensemble representation will be fairly precise, even when a relatively small
number of individual representations are averaged (just three in this example).
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Figure 1. Gaining precision at a higher level of abstraction. By taking individual
measurements and averaging them, it is possible to extract a higher-level
ensemble representation. If error is independent between the individual
representations, then the ensemble average will be more precisely represented
than the individuals in the set. This benefit can be quantified after making certain
assumptions. For instance, if each individual were represented with the same
degree of independent, Gaussian noise (standard deviation = s), then the average
of these individual estimates would have less noise, with a standard deviation
equal to s/Hn, where n is the number of individual measurements. The process is
depicted for the representation of object size, but the logic holds for any feature
dimension.
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How many items are sampled?
A great deal of enthusiasm surrounding studies on ensem-
ble representations stems from the possibility that there
are specialized ensemble processing mechanisms which
are separate from the mechanisms employed to represent
individual objects. However, this idea has spurred some
controversy in the area of research on mean size percep-
tion, where modeling study has shown that it is possible to
accurately estimate the mean by sampling a small subset
of items [54]. In some cases, the average of the set could be
accurately estimated by strategically sampling as few as
one or two items, and estimating the average of those items
alone [54]. Consistent with this subset sampling hypothe-
sis, the accuracy of the mean estimate is typically constant
as the number of items in the set increases beyond four
items [18,55,56], whereas the benefits of averaging should
accrue as more items are averaged together. This would be
expected if observers were sampling just a subset of the
items.

However, there are several reasons to believe that
observers are not strategically subsampling when they
compute themean. In the case of crowded items, observers
simply cannot sample individual items, thus it is unlikely
that judgments for crowded displays [21] reflect a sam-
pling strategy. When items are not crowded, it has been
shown that intermixing conditions that would require
different sampling strategies does not impair performance
on mean size estimation [57], suggesting that subjects
either are not using a strategic sampling strategy or can
instantly deploy a new strategy based on some property of
the display. This latter possibility is unlikely, given that
the displays in [57] were only presented for 200 ms. One
study on perceiving the average facial expression has
shown that observers discount outliers when computing
the average, but a sampling strategy would show a large
effect of outliers [58]. Moreover, the accuracy of centroid
estimates suggests that ‘all’ of the itemsmust be averaged
to compute the centroid with the level of precision ob-
served, requiring the representation of aminimumof eight
individual items [23].

If observers are not strategically subsampling, the fact
that the precision of mean size estimation is constant with
the number of items beyond four presents a bit of a
mystery. One possibility is that the benefits of averaging
accrue quickly, and that onewould predict a steep improve-
ment in the precision of mean estimation from one to four
items, with a leveling off beyond four items [58]. Another
possibility is that the precision with which each individual
item is represented decreases as the number of items
increases, because each item receives less attention
[42,44] and/or because items are more crowded and appear
further in the periphery on average. If this were the case,
then the benefits from averaging additional items would be
offset by the decrease in precision with which the individ-
ual items are represented, as illustrated in Figure 3. This
account predicts that the slope of the function relating the
precision of mean judgments to the number of items would
depend on the degree to which the noise in individual items
increases with the number of items. In practice, this slope
is often fairly shallow or even flat [18,55,56]. This raises the
intriguing possibility that averaging perfectly offsets the

increase in noise that occurs as the number of items
increases.

Do all items contribute to the mean equally?
There is already some evidence that not all items contrib-
ute equally to the mean [58]. Intuitively, if some measures
are very unreliable, and other measures are very reliable,
we should give the more reliable measures more weight
when combining these measurements. In general, comput-
ing a weighted average in which more reliable estimates
are given greater weight will minimize the error in esti-
mates of the mean. To illustrate this point, Figure 4 shows
the results of a simulation in which the mean size of eight
items was estimated. Half of the individual item sizes were
estimated with high precision (low variance), whereas the
other half were estimated with low precision (high vari-
ance). The individual measurements were then averaged
using the standard equal-weight average or using a preci-
sion-weighted average in which each individual measure-
ment was weighted proportional to its precision. A total of
1000 trials were simulated, and for each trial error was
measured as the difference between the actual mean size
and the estimated mean size. The error distributions show
that error was lower for the precision-weighted average
than for the standard, equal-weighted average.
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Figure 3. Effect of set size on the fidelity of individual and ensemble
representations. The ensemble average should become more precise as the
number of individual items increases, because the benefits of averaging accrue
with each additional item averaged (with diminishing returns, of course). However,
if the precision with which individual items can be represented decreases with set
size, as depicted here, it is possible for this decrease to perfectly offset the benefits
of averaging so that the precision of the average remains constant with set size.
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Figure 4. Benefits of precision-weighted averaging. A standard equal-weighted
average will be less precise on average than a precision-weighted average in
which more reliable individual measurements are given more weight in the
average. Thus, if the precision of individual measurements is known, the optimal
strategy for computing the average is to combine individual measurements with
more weight given to more reliable individual measurements.
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Exactly how to implement precision-weighted averag-
ing depends on how the problem is formulated. When faced
with a group of samples to average, we could either assume
that each individual item is a sample drawn from a single
distribution or that each individual item is a sample drawn
from a separate distribution. If we assume that individual
measurements are separate samples from a single distri-
bution, and the goal is to estimate the central tendency of
the underlying distribution, then each measurement i
should weighted by1/si

2 (where si
2 is the variance for item

i). For instance, if one of the items has infinite variance, it
will be completely ignored. This type of weighted average
has been used extensively in the cue integration literature
to define the optimal strategy for combining cues that have
different degrees of reliability [59]. Alternatively, if the
items are considered samples from separate distributions,
and the goal is to estimate the mean of the sample, then
items should never be given zero weight in the average.
One strategy would be to compute the mean and variance
of the samples, and to adjust the mean towards more
reliable measures in proportion to their variance. In this
case, an item with infinite variance would be included in
the initial estimate of the mean, but there would be no
additional updating of the mean towards this item. This
strategy was employed in the simulations shown in
Figure 4.

For ensemble averaging mechanisms to employ this
type of precision-weighted averaging, the visual system
would either have to know the degree of reliability with
which items are represented or have a heuristic to calcu-
late it. Both of these routes are plausible. Some models of
visual perception model representations of individual
items as probabilistic [59–61], in which knowledge is stored
as a probability distribution that explicitly contains a
representation of the reliability/variance of the represen-
tation. Alternatively, certain heuristics could be employed
for estimating reliability, such as giving peripheral items
less weight because visual resolution is known to drop off
with eccentricity. Similarly, items inside the focus of at-
tention might be weighted more than items outside the
focus of attention because the precision with which items
are represented is proportional to the amount of attention
we give them. These heuristics would not be explicit repre-
sentations of reliability, but they are cues that are tightly
correlated with reliability, and thus they could be used to
weigh individual items as a proxy for reliability.

It has been suggested that attended items are given
more weight in the averaging of crowded orientation sig-
nals [62]. One study has shown that when attention is
drawn to a particular item in the set, the mean judgment is
biased towards that item [63]. One possible interpretation
of this finding is that attention enhances the resolution
with which the attended item is represented [42–44,48],
and that items are weighed by their precision or reliability
when computing the mean [40]. This possibility is specu-
lative and has not been directly tested in uncrowded dis-
plays.

Beyond spatial averaging
Recent research on ensemble representation has gone
beyond assessing the ability of observers to average visual

features across space, including: (i) the ability to average
features across time; (ii) the ability to represent other
ensemble properties, such as the number of items in a
set; (iii) the ability to represent spatial patterns; (iv) the
relationship between ensemble representation and crowd-
ing; and (v) the neural correlates of ensemble representa-
tion.

Computing ensemble representations across time
In addition to spatial structure, there is a great deal of
temporal structure and redundancy in the input to the
visual system, and thus it would be advantageous to be
able to also compute ensemble representations across time.
Recent research has shown that observers can judge the
mean size of a dynamically changing item or groups of
items [40], or the mean expression of a dynamically chang-
ing face [56]. These findings demonstrate that perceptual
averaging can operate over continuous and dynamic input,
and that averaging across time can be as precise as aver-
aging across space. Whether temporal averaging mechan-
isms constantly accumulate information or sample from
high information points, such as salient transitions or
discontinuities in the input stream, remains an open ques-
tion. However, there is some evidence that certain infor-
mation in a temporal sequence will be givenmore weight in
the average than other information, possibly related to the
amount of attention allocated to different points in the
temporal sequence [40].

Number as an ensemble representation
Perhaps the most basic summary description for a collec-
tion of items is the number of items in the set. Without
verbally counting, observers are able to estimate the ap-
proximate number of items in a set [64–66]. Similar to the
perception of mean properties, the ability to enumerate
items in a set occurs rapidly. It is also possible to extract
the number of items across multiple sets in parallel [39].
Surprisingly, there is even evidence that number is directly
perceived in the same way as other primary visual attri-
butes [67]. Burr and Ross [67] demonstrated that it is
possible to adapt to number in the same way that it is
possible to adapt to visual properties such as color, orien-
tation or motion. Number literally seems to be a ‘perceived
property’ of sets. The relationship between the mechan-
isms underlying number representation and perceptual
averaging is an important topic for future research.

Representing spatial patterns
Statistical summary representations, such as the mean or
number of items in a set, are extremely compact represen-
tations, collapsing the description of a set down to a single
number. However, images often consist of spatially distrib-
uted patterns of information, also referred to as spatial
regularities or spatial layout statistics. For example, nat-
ural images consist of regular distributions of orientation
and spatial frequency information [34,68]. In one study,
Oliva and Torralba [34] measured orientation energy at
different spatial scales over thousands of images and con-
ducted a principal components analysis on these measure-
ments. This analysis revealed that there are regularities in
the structure of natural images, with certain patterns of
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spatial frequency and orientation more likely to occur than
other patterns. A schematic of a common pattern is shown
in Figure 5, in which orientation signals tend to be more
similar to each other within the top and bottom halves of
the image than they are across the top and bottom halves.
It would be efficient for the visual system to capitalize on
the redundancy in natural images by using visual mechan-
isms that are tuned to the statistics of the natural world
[11,69]. Indeed, a great deal of research has suggested that
low-level sensory mechanisms are tuned to real-world
statistical regularities [17,70–72].

The representation of such spatial ensemble statistics is
robust to the withdrawal of attention, as would be expected
if these ensemble representations are computed by pooling
together local measurements [31]. For example, while
attending to a set of moving objects in the foreground,
changes to the background were only noticed when they
altered the ensemble structure of the display, not when the
ensemble structure remained the same, even though these
changes were perfectly matched in terms of the magnitude
of local change [31]. This suggests that the visual system
maintains an accurate representation of the spatial en-
semble statistics of a scene, even when attention is focused
on a subset of items in the visual field.

Ensemble representation and crowding
Items in the visual field are often spaced too closely for each
individual item to be resolved. For instance, it is unlikely
that one can perceive the individual letters three sentences
above or below this one. Yet, one can tell that there are
letters present, that these letters are grouped into several
words and so on. What is the nature of our perceptual
representation when looking at a crowded collection of

objects? There is a growing body of evidence suggesting
that one perceives the higher-order summary statistics of
information within the crowded region [21,73]. For a
crowded set of oriented items, one perceives the average
orientation [21]. For more complex patterns, such as a set
of letters, the perceived pattern appears to result from a
more complex statistical representation [73]. Balas and
colleagues generated stimuli using a model which uses the
joint statistics of cells which code for position, phase,
orientation and scale [73]. Any pattern, such as sets of
letters, can be passed through this model, resulting in a
synthetic image that is somewhat distorted, yet is statisti-
cally similar to the original. When directly viewed, the
original and the synthetic image look very different. How-
ever, identification performance with these synthetic
images correlates with identification performance for
crowded letters in the periphery, suggesting that percep-
tion in the periphery could consist of a similar statistical
representation. The relationship between ensemble repre-
sentation and crowding raises important questions regard-
ing whether ensemble coding occurs automatically and
whether it is perceptual in nature (Box 2).

Other studies suggest that there could be important
differences between ensemble representation and crowd-

Box 2. Automaticity and directly perceived ensemble

representations

A central question is whether the visual system automatically
computes ensemble representations without conscious intention or
effort, or whether they are computed voluntarily based on task
demands. If ensemble representations were automatically com-
puted, then we would conclude that there are dedicated mechan-
isms for computing and representing them. We might then focus on
identifying the core ensemble feature dimensions and assessing
their tuning properties. To understand such mechanisms, we can
bring to bear methods that have been employed to understand
perception, such as single-cell physiology, and perceptual adapta-
tion. If ensemble representations are not computed automatically,
but instead reflect a voluntary high-level judgment, then the
methods we would use, and questions we would ask, might be
somewhat different. For instance, physiology and adaptation are
unlikely to reveal much about these mechanisms and ensemble
representations would probably depend on task incentives and
observers’ goals. To understand such representations, we might
explore regularities in how observers make ensemble judgments
and turn our attention towards identifying consistent heuristics and
biases in ensemble judgments.

In addition to the distinction between automatic and voluntary,
there is an important distinction between ‘directly perceived’ and
‘read-out’ ensemble representations. In some cases the observer
directly perceives the ensemble representation. For example, when
a collection of items is presented in the periphery, their orientations
appear to be automatically averaged [28]. With such crowded items,
the perceptual experience is of ‘directly seeing’ the average
orientation (all items appear to have an orientation equal to the
mean of the group), with an accompanying loss of perceptual access
to the individual orientation signals. By contrast, when the same
display appears at the fovea, the oriented items are not crowded and
the orientation signals do not appear to be obligatorily averaged: it
is clear that the items have different orientations and none of them
appears to have an orientation that matches the average. However,
even for uncrowded displays, it is possible that ensemble repre-
sentations are automatically computed. For example, ensemble
representations appear to be automatically computed when the
primary task does not require it [77] and even when they impair task
performance [94].
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Figure 5. Spatial ensemble representations. Individual orientation measurements
can be combined to represent patterns of orientation information. For each
pattern, local orientation measurements are made (depicted as Gaussian curves
centered around the true orientation), but each individual measure has a high
degree of noise or uncertainty. Similar orientation signals are then pooled together
to characterize regions with similar orientation signals using the average
orientation. In the first column, the top half of the image has a mean orientation
of vertical, whereas the bottom half has the a mean orientation of horizontal. The
same is true for the image in the middle column. However, the pattern is flipped for
the third column, here the top half has a mean of horizontal and the bottom half
has a mean of vertical. Crucially, at the level of individual representations, the left
and middle columns are just as different from each other as the left and right
columns. However, at the ensemble level, the left and middle columns are more
similar to each other than the left and right columns.
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ing. For instance, crowding is greater in the upper visual
field than the lower visual field, whereas under the same
conditions the accuracy of ensemble judgments was the
same in the upper and lower visual field [74]. Thus, al-
though ensemble coding and crowding are closely related,
there could be important dissociations between them.

Neural correlates of ensemble representation
Relatively little research has explored the neural mechan-
isms of ensemble representation. Perhaps the most basic
question we can ask is whether there are brain regions
with neurons dedicated to computing ensemble represen-
tations (above and beyond the computation of individual
object representations). Extensive research suggests that
the parietal cortex plays an important role in the repre-
sentation of number [75]. However, much less research has
been done to explore the representation of perceptual
averages, such as mean size, mean facial expression or
mean orientation. Future research in this area would
provide important insight into the nature of ensemble
coding, as well as the functional organization of the visual
cortex.

Additional benefits of computing ensemble
representations
The present article has focused on one primary benefit of
ensemble representation: the ability to combine imprecise
individual measurements to construct an accurate repre-
sentation of the group, or ensemble. However, computing
ensemble representations could yield many related bene-
fits [18,76], which are discussed here.

Information compression
Compression is the process of recoding data so that it takes
fewer bits of information to represent that data. To the
extent that the encoding scheme distorts or loses informa-
tion, the compression is said to be lossy. For instance, TIFF
image encoding uses a form of lossless compression, where-
as JPEG image encoding is a lossy form of image compres-
sion – although the information lost occurs at such a high
spatial frequency that human observers typically cannot
detect this loss. Ariely [18] proposed that reducing the
representation of a set to the mean, and discarding indi-
vidual representations, would be a sensible form of lossy
compression for the human visual system: it leaves avail-
able an informative global percept which could potentially
be used to navigate and choose regions of interest for
further analysis. However, this form of compression would
only be economical if ensemble representations and indi-
vidual representations were ‘competing’ in some sense.
Otherwise, in terms of compression, there is no advantage
to discarding the individual representations, and one
might as well extract the ensemble and retain the individ-
ual representations. There is some evidence that ensemble
representations take the samememory space as individual
representations [39], although other studies suggest that
ensemble representations and noisy individual represen-
tations are maintained concurrently and that these levels
are mutually informative [77,78]. These findings suggest
that ensemble representations and individual representa-
tions probably do not compete for storage, at least not in a

mutually exclusive manner. However, none of these previ-
ous studies directly pitted ensemble memory versus indi-
vidual memory and assessed possible trade-offs between
them. Future research will be necessary to explore the
extent to which ensemble representations and individual
representations compete in memory. In terms of perceptu-
al representations, it seems clear that individual and
ensemble representations can be maintained simulta-
neously [23].

Whether ensemble coding is lossy or lossless depends
on the fate of lower-level, individual representations.
However, at the level of the ensemble representation, it
is clear the data have been transformed into a more
compressed form. It is possible that this format is more
conducive to memory storage and learning. Ensemble
representations are more precise than the lower-level
representations composing them. Thus, there can be
higher specificity of response at the ensemble level than
at lower levels of representation. Such sparse coding has
several advantages [79,80], including minimizing overlap
between representations stored inmemory [81] and learn-
ing associations in neural networks [82]. The extent to
which observers can learn over ensemble representations
of the type described in the present article is an important
topic for future research, because it could bridge the gap
between research on ensemble coding in visual cognition
with the vast field of research on sparse coding and
memory.

Ensemble representations as a basis for statistical
inference and outlier detection
Another potential benefit to building an ensemble repre-
sentation is to enable statistical inferences [83], including
estimating the parameters of the distribution (mean, vari-
ance, range, shape), setting confidence intervals on those
parameter estimates and classifying items into groups. A
special case of classification is outlier detection, and an
ensemble representation is ideal for this purpose [18,76].
For instance, if a set is well described by a distribution
along an arbitrary dimension, say with a mean of 20 and
standard deviation of 3, then an item with a value of 30
along this dimension is unlikely to be a member of the set.
The ensemble representation would enable labeling this
item as an outlier or even as a member of a different group.
Outlier detection has been extensively studied using the
visual search paradigm, in which the question has been
whether an oddball item will instantly ‘pop out’ from a
larger set of homogeneous items [84]. Items that are very
different from the set, say a red item among green items,
are said to be salient, and are easy to find in a visual search
task [85,86]. Interestingly, computational models of salien-
cy focus on ‘local differences’ between each item and its
neighbors [87]. However, one could imagine displays in
which the local context of a search target remained un-
changed, but more distant items varied to either increase
or decrease the degree to which the target appeared to be a
member of the overall set. Finding that outlier status
guides visual search above and beyond its effects on local
saliency would provide strong support for the idea that
ensemble representations play an important role in outlier
detection.
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Although it would be interesting if ensemble represen-
tations could enable rapid outlier detection, this finding is
not necessary to support the idea that ensemble represen-
tations play an important role in classifying and grouping
items. For instance, a face with a unique facial expression
does not pop-out in a visual search task [88]. However,
recent research shows that an outlier face is given reduced
weight in the ensemble representation of a group of faces
[58], even though observers often fail to perceive the outli-
er. This finding is consistent with the possibility that the
ensemble representation enables labeling of items, but
could also indicate that the ensemble computation gives
outliers lower weight without attaching a classification
label. The role of ensemble representations in determining
set membership has not yet been extensively studied, and
research in this area can potentially bridge the gap be-
tween study on ensemble representation, statistical infer-
ence and perceptual grouping.

Building a ‘gist’ representation that can guide the focus
of attention
As detailed in previous sections, the power of averaging
makes it possible to combine imprecise local measure-
ments to yield a relatively precise representation of the
ensemble (Figure 1). Moreover, it is possible to combine
individual measurements to describe spatial patterns of
information (Figure 5). A primary benefit of computing
either type of ensemble representation is to provide a
precise and accurate representation of the ‘gist’ of infor-
mation outside the focus of attention. Without focused
attention, our representations of visual information are
highly imprecise [23]. If wewere to simply discard or ignore
these noisy representations, our conscious visual experi-
ence would be limited to only those items currently within
the focus of attention. Indeed, some have argued that this
is the nature of conscious visual experience [89,90]. In such
a system, attention would be ‘flying blind’, without access
to any information about what location or region to focus on
next.

Although locally imprecise, ensemble representations
provide an accurate representation of higher-level patterns
and regularities outside the focus of attention [23,31].
These patterns and regularities are highly diagnostic of
the type of scene one is viewing [14], and therefore they are
useful for determining which environment one is currently
located within. Over experience, observers appear to learn
associations between these ensemble representations and
the location of objects in the visual field. For instance,
observers appear to use global contextual information to
guide the deployment of attention to locations likely to
contain the target of a visual search task [33,91–93].Thus,
rather than flying blind, the visual system can compute
ensemble representations, providing a sense of the gist of
information outside the focus of attention, and guiding the
deployment of attention to important regions of a scene.

In terms of forming a complete representation of a
scene, gist representation and outlier detection probably
work in tandem. For instance, when holding a scene in
workingmemory, observers appear to encode the gist of the
scene plus individual items that cannot be incorporated
into the summary for the rest of the scene (i.e. outliers) [78].

Benefits of building a hierarchical representation of a
scene
There are distinct computational advantages to building a
hierarchical representation of a scene. In particular, by
integrating information across levels of representation, it
is possible to increase the accuracy of lower-level repre-
sentations. It appears that observers automatically con-
struct this type of representation when asked to hold a
scene in working memory [77,78]. For instance, when
recalling the size of an individual item from a display,
the remembered size was biased towards the mean size of
the set of items in the same color, and towards the overall
mean size of all items in the display [77]. These results
were well captured by a Bayesian model in which obser-
vers integrate information at multiple levels of abstrac-
tion to inform their judgment about the size of the tested
item.

Concluding remarks
Traditional research on visual cognition has typically
assessed the limits of visual perception and memory for
individual objects, often using random and unstructured
displays. However, there is a great deal of structure and
redundancy in real-world images, presenting an opportu-
nity to represent groups of objects as an ensemble. Because
ensemble representations summarize the properties of a
group, they are necessarily spatially and temporally im-
precise. Nevertheless, such ensemble representations con-
fer several important benefits. Much of the previous
research on ensemble representation has focused on the
fact that the human visual system is capable of computing
accurate ensemble representations. However, the field is
moving towards a focus on investigating the mechanisms
that enable ensemble coding, the nature of the ensemble
representation, the utility of ensemble representations and
the neural mechanisms underlying ensemble coding. This
future research promises to uncover important new prop-
erties of the representations underlying visual cognition
and to further demonstrate how representing ensembles
enhances visual cognition.
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