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ABSTRACT—The representation of visual information in-
side the focus of attention is more precise than the repre-
sentation of information outside the focus of attention. We
found that the visual system can compensate for the cost
of withdrawing attention by pooling noisy local features
and computing summary statistics. The location of an
individual object is a local feature, whereas the center
of mass of several objects (centroid) is a summary feature
representing the mean object location. Three experiments
showed that withdrawing attention degraded the repre-
sentation of individual positions more than the represen-
tation of the centroid. It appears that information outside
the focus of attention can be represented at an abstract
level that lacks local detail, but nevertheless carries a
precise statistical summary of the scene.The term ensemble
features refers to a broad class of statistical summary fea-
tures that we propose collectively make up the represen-
tation of information outside the focus of attention.

As people go about their daily lives, they seem to effortlessly
manage the extremely rich and detailed stream of information

entering their eyes. For the most part, people successfully
navigate through busy intersections; find items of interest, such

as food or friends; and understand complex social situations—
all just by the simple act of looking. However, despite these

many successes, there are also countless demonstrations that
people fail to notice potentially important visual events, par-
ticularly when their attention is focused elsewhere. For exam-

ple, traffic accidents often involve drivers ‘‘not seeing’’ clearly
visible obstacles (e.g., McLay, Anderson, Sidaway, & Wilder,

1997). Such occurrences are typically interpreted as attentional

lapses: It seems that people have a severely limited ability to
perceive, understand, and act upon information that falls out-

side the current focus of attention.
Even when attention is focused intensely on a particular ob-

ject, however, people do not experience ‘‘blindness’’ for all other
visual information. The purpose of the current study was to probe

what type of representation can be maintained outside the focus
of attention. In so doing, we emphasized the distinction between
local visual features and statistical summary features. Local

visual features are properties that describe an individual item,
independently of other items. For example, the size and the

location of an individual object are local visual features. In
contrast, there are a variety of statistical summary features that

represent information at a more abstract level, collapsing across
local details (Ariely, 2001; Chong & Treisman, 2003, 2005b).
For the present study, we focused on relatively simple summary

features, such as the center of mass of a collection of objects
(henceforth, the ‘‘centroid’’), which is essentially the mean po-

sition of the group. Specifically, we tested the hypothesis that
withdrawing attention impairs perception of local features more
than it impairs the perception of summary features.

Object location was used as a test case for investigating
whether summary features can be represented more robustly

than local visual features outside the focus of attention. We used
a multiple-object-tracking task (Pylyshyn & Storm, 1988) in

which eight objects moved around the display. The primary task
was to attentively track a subset of four target objects while ig-
noring four distractor objects. This attentionally demanding

tracking task drew focal attention toward the targets and away
from the distractors (Intriligator & Cavanagh, 2001; Sears &

Pylyshyn, 2000). At a random time during each trial, all items
disappeared briefly (200 ms), and then all but one or four ran-
domly chosen targets or distractors reappeared. Participants had

to localize either the single missing item (individual test) or the
centroid of the missing group of items (centroid test). Because
distractors receive less attention than targets, we predicted that
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localizingmissing distractors would bemore difficult than localizing

missing targets. However, of principal interest was whether the
distractor centroid would be represented more robustly than the

individual distractor positions, indicating a relative sparing of
summary features outside the attentional focus.

Across three experiments, we varied the extent to which
subjects could selectively attend to targets. In Experiment 1, tar-
gets and distractors were physically identical and moved among

each other, making selective target processing most difficult. In
Experiment 2, targets were white and distractors were black, and

this separation of targets from distractors in feature space fa-
cilitated target selection. In Experiment 3, targets and dis-

tractors were again identical, but target selection was facilitated
by spatially separating targets from distractors, such that the
focus of attention was far removed from the distractors.We found

that selective processing of the targets improved in Experiments
2 and 3 relative to Experiment 1, to the extent that in Experi-

ments 2 and 3, participants performed at chance level when
asked to localize a single missing distractor. In contrast, we
found in all experiments that participants could accurately lo-

calize the distractor centroid, even when individual distractors
were localized at chance levels. This finding suggests that the

cost of withdrawing attention from distractors can be compen-
sated for by pooling together noisy local signals and computing

summary statistics.

GENERAL METHOD

Participants
Each experiment had a separate group of 8 participants who

were between the ages of 18 and 35, gave informed consent, and
were paid $10/hr for their participation.

Apparatus
The experiments were run using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997). The display was 351! 281, viewed
from 57 cm.

Stimuli
The stimuli were eight circles (radius 5 0.351) that moved at a
constant rate of 41/s within a central region of the screen,

marked by a black, square outline (24.51! 24.51, line thickness
5 0.11; see Fig. 1). Two diagonal red lines connected the corners
of the square (line thickness 5 0.11), and the background was
gray. The circles’ direction of motion was constrained such that

items appeared to avoid one another, while otherwise moving
randomly about the display.

Procedure

Test Phase
Participants performed a multiple-object-tracking task followed

by a missing-item localization task (see Fig. 1). At the start of

each trial, eight circles appeared, and four of these items were

identified as tracking targets by flashing off and on for 2 s. Next,
all items moved for a random duration between 6 and 10 s. The

primary task was to attentively track the targets, counting the
number of times a target item touched or crossed one of the red

lines. Participants kept one running count collapsed across all
targets. This task was attentionally demanding and ensured that
participants were continuously focusing their attention on the

target items.
At the end of each trial, all the circles disappeared for 200ms,

and then some reappeared. In the individual-test condition, ei-
ther a single target or a single distractor was missing from the
final display. In the centroid-test condition, either all four targets
or all four distractors were missing. A cue that appeared at the
center of the screen informed participants of how many items

were missing (‘‘1’’ for individual tests, ‘‘4’’ for centroid tests).
Participants used the mouse to move a crosshair and clicked

either on the location of the single missing item or on the location
corresponding to the centroid of the four missing items. After
clicking on the selected position, participants typed in the

number of times targets had touched the red lines during the
trial. Although participants entered this number second, they

were instructed that the counting task was their primary task,
and that they should not sacrifice accuracy on the counting task

to perform the localization task. There were 80 trials, with con-
ditions randomly intermixed.

Guessing Phase
After the test phase, participants completed a guessing phase, in
which they were not required to track any targets. They were

simply shown test displays with either one or four items missing,
and were asked to guess where they thought the missing item or

items were located. These displays were generated in the same

Fig. 1. Illustration of the experimental procedure. At the beginning of
each trial, eight items appeared; four of the items were identified as
targets by flashing on and off. Then all items moved about the display, and
participants counted the total number of times a target circle touched a
red line. At an unpredictable time between 6 and 10 s from the onset of
motion, there was a 200-ms blank interval, followed by a final test display
consisting of stationary items. Either one item was missing (a randomly
selected target or distractor) or four items were missing (all the targets or
all the distractors). A single digit at the center of the display informed
participants of how many items were missing. Participants indicated
where the missing item or items were located, clicking directly on the
location of a single missing item or on the centroid of four missing items.
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way as in the test phase, but participants were shown only the

final frame. The data from this phase provided an estimate of how
well participants could guess where the missing items were

located on the basis of the configuration of the items present in
the test display, providing an empirical estimate of chance per-

formance.

EXPERIMENT 1: WITHDRAWING ATTENTION WITH
MULTIPLE-OBJECT TRACKING

Experiment 1 tested how well participants could judge the lo-
cation of individual items or the centroid of a group outside the

focus of attention. We hypothesized that the tracking task would
draw attention away from distractors, resulting in better local-

ization accuracy for targets than distractors, but that ability to
localize distractors would be better on centroid tests than on
individual tests.

Method
In Experiment 1, the targets and distractors were all black, so

that target selection was difficult.

Results and Discussion
Overall participants accurately performed the primary counting
task, typically missing one or two touches. Counting errors did

not vary systematically with the type of localization test (indi-
vidual vs. centroid),F(1, 7)5 2.06, p5 .194,Zp

2 ¼ :23, or with
the type of item that was missing (target vs. distractor), F < 1.
Error in the guessing phase, which provides an empirical esti-
mate of chance performance, averaged 10.01 (SEM 5 0.51) for
individual tests and 5.41 (SEM5 0.11) for centroid tests (see the
dashed lines in Fig. 2).

Localization accuracy revealed an important difference be-
tween individual tests and centroid tests. As Figure 2a illus-
trates, error in reporting the location of a single missing item was

significantly lower for targets than for distractors, t(7) 5 3.69,
p5 .008, r2 5 .66, and performance was better than chance for

both targets, t(7) 5 4.04, p 5 .005, r2 5 .70, and distractors,

t(7) 5 3.20, p 5 .015, r2 5 .59. Although performance was
better for targets than for distractors, which suggests that atten-

tion was more focused on the targets, the ability to identify dis-
tractor locations better than chance suggests that target selection

was imperfect, and that some attention may have been paid to
distractors. However, the amount of attention was not enough to
localize individual distractors as accurately as individual targets.

In contrast, there was no significant difference in localization
error for targets and distractors in the centroid-test condition, t(7)
5 1.07, p5 .321, r2 5 .14 (see Fig. 2b). Thus, despite noisy in-
dividual representations of distractor locations—as evidenced

by error on the individual tests—participants could determine
the location of the distractor centroid as well as the location of
the target centroid. Performance was again better than chance

for both targets, t(7)5 4.08, p5 .005, r25 .70, and distractors,
t(7) 5 5.48, p 5 .001, r2 5 .81.

Could this remarkable level of accuracy in localizing dis-
tractor centroids be achieved by sampling just one or two dis-
tractors and making an informed guess about where the centroid

would be located? To assess this possibility, we ran Monte Carlo
simulations to determine how well participants could judge the

location of the distractor centroid by pooling one, two, three, or
four noisy individual samples. We assumed that estimates of

individual item positions are noisy and estimated the amount of
noise from performance on the individual tests. The distribution
of errors was approximately normal, and so the model assumed

that each individual item position was represented with inde-
pendent, normally distributed noise with a standard deviation

estimated separately for each observer. For example, if each
distractor’s position could be estimated within 41 # 1.51 on
average for a given observer, we could simulate how accurately

the centroid of all four distractors could be determined if one,
two, three, or four estimates were averaged. The results of this

simulation suggested that, given how noisy the individual esti-
mates appeared to be, participants would have had to pool sig-

nals from all the distractors to achieve the level of accuracy we
observed. Guessing any four random positions on the screen and
pooling those estimates would not yield this level of perfor-

mance; only if these very noisy individual estimates were cen-
tered on the actual distractor positions would pooling them

enable participants to localize the centroids as accurately as
they did.1

It appears that observers can make accurate judgments about
distractors as a group by pooling information from all the in-
dividual distractors, even when the individual details of the

distractors are not represented accurately. This suggests that ob-
servers maintain some awareness of the summary features of

items appearing outside the focus of attention, even when local

Fig. 2. Results of Experiment 1: participants’ error (in degrees) in lo-
calizing (a) missing individual targets and distractors and (b) the centroid
of groups of missing targets and distractors. Error bars represent stan-
dard errors of the means.

1A supplementary appendix providing the details of all simulations reported
in this article can be obtained directly from the first author or downloaded on-
line at http://cvcl.mit.edu/george/Publications.htm.
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information is represented inaccurately. However, because the

targets and distractors were physically identical in Experiment
1, it is possible that participants could not completely filter out

the distractor items, or that distractors were occasionally con-
fused for targets, and therefore that distractors received enough

attention to improve localization of the distractor centroid. In-
deed, participants could localize distractors at better than chance
levels, which suggests that some attention ‘‘spilled over’’ to the

distractors. Experiments 2 and 3 tested how improving selective
processing of targets affects the localization of individuals and

their centroid.

EXPERIMENT 2: INCREASED TARGET SELECTION
USING A SALIENT FEATURE DIFFERENCE

Previous work has demonstrated that what people see depends

on how they tune their attention—their attentional set—such
that irrelevant information is more likely to be noticed or pro-

cessed if it matches the physical properties of attended items
(Most, Scholl, Clifford, & Simons, 2005; Most et al., 2001).
However, there appears to be little to no perception of infor-

mation that falls outside the attentional set. For instance, the
appearance of an irrelevant black item will go undetected when

participants attend to white items, especially if the distractors
are black (Most et al., 2001). In Experiment 2, we increased the

degree to which targets could be selectively attended by making
the targets white and the distractors black. Continuous tracking of
the targets was still required, because the primary task was to

count the number of times a target touched a red line in the
display. Of principal interest was whether participants would still

be capable of accurately judging the location of the distractor
centroid, evenwhen the distractors fall outside the attentional set.

Method
All aspects of the stimuli and procedure were the same as in

Experiment 1, except that the targets were white instead of
black.

Results and Discussion
Counting errors did not vary with the type of localization test
(individual vs. centroid), F< 1, or with the type of item that was

missing (target vs. distractor), F < 1. Error in the guessing
phase averaged 9.41 (SEM5 0.11) for individual tests and 5.31
(SEM5 0.11) for centroid tests (see the dashed lines in Fig. 3).
As in Experiment 1, localization accuracy showed different

patterns in the individual-test and centroid-test conditions. As

Figure 3a illustrates, error in reporting the location of a single
missing item was significantly lower for targets than for dis-
tractors, t(7) 5 4.44, p 5 .003, r2 5 .74. Error was below the

empirical chance estimate for targets, t(7)5 5.18, p5 .001, r25
.79, but, as expected, was not better than chance for distractors,

t(7) 5 1.00, p 5 .350, r2 5 .13. This indicates that the salient

feature difference was effective in enhancing selective target
processing.

As Figure 3b illustrates, in the centroid condition, there was a
significant difference in localization error for targets and dis-

tractors, t(7) 5 3.37, p 5 .012, r2 5 .62, but most important,
performance was better than chance for both targets, t(7)5 8.32,

p < .001, r2 5 .91, and distractors, t(7) 5 7.47, p < .001, r2 5
.89. Thus, even though the individual position of any single
distractor was so poorly represented that performance was at

chance for individual judgments, participants could determine
the location of the distractor centroid well above chance level.

Simulation results again suggested that participants would
have had to pool signals from all the distractors to achieve the
level of accuracy we observed. Thus, it appears that an accurate

representation of the distractor centroid can be attained by pool-
ing noisy local signals, even when target selection is facilitated

by a salient feature difference between targets and distractors.
Previous work suggests that attention is focally allocated to

targets in a multiple-object-tracking task and does not spread
over the space between targets (Intriligator & Cavanagh, 2001;
Sears & Pylyshyn, 2000), as if there were multiple, independent

foci of attention (Cavanagh & Alvarez, 2005). Nevertheless, the
targets in Experiments 1 and 2 were often distributed across the

display such that the ‘‘virtual polygon,’’ or convex hull, formed
by the targets encompassed several of the distractors. It is
possible that distractors frequently received diffuse attention in

these displays, and that this attention was insufficient for the
local computations necessary to accurately judge the individual

distractor locations, but sufficient for accurate judgments about
the centroid of the distractors (Chong & Treisman, 2005a). In

Experiment 3, we investigated this possibility.

EXPERIMENT 3: WITHDRAWING ATTENTION FROM
THE DISTRACTOR REGION

In Experiment 3, we attempted to withdraw participants’ atten-

tion from the region of space containing distractors by con-

Fig. 3. Results of Experiment 2: participants’ error (in degrees) in lo-
calizing (a) missing individual targets and distractors and (b) the centroid
of groups of missing targets and distractors. Error bars represent stan-
dard errors of the means.
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straining the targets and distractors to move in opposite halves of

the display. Targets were randomly constrained to move within
the top, bottom, left, or right half of the screen, and distractors

were constrained to move within the opposite half of the screen.
As in the previous experiments, continuous tracking of the tar-

gets was required, because the primary task was to count the
number of times targets touched a red line in the display.
However, the spatial separation between the targets and dis-

tractors ensured that distractors never fell within the convex hull
formed by the targets. Of principal interest was whether this

manipulation would eliminate participants’ ability to make ac-
curate judgments about the distractor centroid.

Method
All aspects of the stimuli and procedure were the same as in

Experiment 1, except that targets remained spatially separate
from the distractors for the entirety of each trial.

Results and Discussion
Counting errors did not vary systematically with the type of lo-
calization test (individual vs. centroid), F(1, 7) 5 2.53, p 5
.156,Zp

2 ¼ :27, or with the type of item that was missing (target

vs. distractor),F< 1. Error in the guessing phase was on average
7.91 (SEM5 0.51) for individual tests and 4.51 (SEM5 0.31) for
centroid tests (see the dashed lines in Fig. 4).
As Figure 4a illustrates, error in reporting the location of a

single missing item was significantly lower for targets than for
distractors, t(7)5 3.28, p5 .013, r25 .61. Error was below the
empirical chance estimate for targets, t(7) 5 4.26, p 5 .004,

r2 5 .72, but not for distractors, t < 1. As Figure 4b illustrates,
localization error in the centroid condition was significantly

lower for targets than for distractors, t(7)5 3.17, p5 .016, r25
.59, but centroid localization was better than chance for both

targets, t(7) 5 8.32, p < .001, r2 5 .88, and distractors, t(7) 5
2.76, p 5 .028, r2 5 .52. Thus, as in Experiment 2, the indi-
vidual position of any single distractor was so poorly represented

that performance was at chance for individual judgments, yet

participants could localize the distractor centroid well above
chance level.

Spatially separating the targets from the distractors ensured
that distractors never fell within the convex hull formed by the

targets, and therefore prevented distractors from receiving con-
tinuous diffuse attention. Nevertheless, the results again showed
that participants could accurately judge the location of the

centroid of distractors with high accuracy, with performance
again well better than chance. Simulations suggested that this

level of accuracy could have been attained only if (a) noisy in-
dividual estimates from all the distractors were pooled together,

and (b) the noisy individual estimates were centered around the
actual positions of the distractors, and were not truly random
guesses. Thus, the distractor centroid can be represented accu-

rately even when targets and distractors are spatially separated,
such that target selection is facilitated and distractors are kept

far from the focus of attention.

GENERAL DISCUSSION

Visual information can be represented at multiple levels of
abstraction, from local details to abstract features that summa-

rize the local details. We used object location as a test case to
explore the representation of local versus summary visual fea-
tures outside the focus of attention. The location of an individual

object is a local detail, whereas the centroid of a collection of
objects is a simple summary feature that represents the objects

as a group. In an adapted multiple-object-tracking task, partici-
pants were required to attentively track a set of moving targets

while ignoring a set of moving distractors. During the tracking
task, all of the items disappeared briefly (200 ms), and then all
but one or four randomly chosen items reappeared; the second-

ary task was to localize the missing items. The results suggested
that although participants knew very little about the local details

of individual distractors, they could accurately report the cen-
troid of the distractors.
These findings are related to previous findings concerning

inattentional blindness and change blindness. Inattentional-
blindness studies have shown that without attention, there is

little or no consciously accessible representation of a scene
(Mack & Rock, 1998; Neisser & Becklen, 1975). These studies

typically aim for participants to completely withdraw attention
from the tested items, and sometimes even actively inhibit
information outside of the attentional set (Most et al., 2001). In

contrast, observers in our task were attempting to monitor
all information, but the primary task required them to focus

attention on a particular subset of that information. Thus,
we assume that our observers were aware of, and paying some
attention to, all information in the display. For this reason, our

study is more related to change-blindness studies, in which
displays consist of two alternating scenes that differ in one

aspect (e.g., a single item changes color). In such studies, ob-

Fig. 4. Results of Experiment 3: participants’ error (in degrees) in lo-
calizing (a) missing individual targets and distractors and (b) the centroid
of groups of missing targets and distractors. Error bars represent stan-
dard errors of the means.
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servers often fail to notice substantial differences between the

scenes, and this finding has been interpreted as reflecting a
failure to represent information outside the focus of attention

(Rensink, O’Regan, & Clark, 1997). However, these studies
have typically manipulated local features, such as the color or

orientation of an individual object. Less is known about howwell
summary visual features are represented outside the focus of
attention in the change-detection paradigm. The current results

suggest that changes to local feature information outside the
focus of attention are unlikely to be noticed, unless the changes

alter the summary statistics of the scene.
Previous work suggests that processing of summary statistics

is improved when observers spread their attention diffusely
(Chong & Treisman, 2005a), and Treisman (2006) has argued
that summary statistics are computed automatically when at-

tention is spread diffusely. The current results suggest that even
when attention is focally allocated to a subset of items, summary

features can be computed outside the focus of attention. Most
important, the representation of these summary features is more
robust to the withdrawal of attention than is the representation of

local visual features. Surprisingly, our experiments show that
even when local features are so poorly represented that they are

identified at chance levels, it is possible to pool estimates of
those local details and attain an accurate representation of

the group outside the focus of attention. However, whether
the centroid position of distractors is computed only when re-
quired by the task demands, or whether it is computed auto-

matically, remains an open question to be addressed by future
research.

Although object location was particularly well suited for an
initial investigation into the representation of summary features
outside the focus of attention, it is important to recognize that

there are many other types of summary features. In general,
other researchers have referred to these features as global fea-

tures (Navon, 1977; Oliva & Torralba, 2001), holistic features
(Kimchi, 1992), or sets (Ariely, 2001; Chong & Treisman, 2003,

2005b). We refer to these types of features under the umbrella
term ensemble visual features. We use the term ensemble because
other terms carry certain connotations that do not accurately

represent our view of what counts as a summary statistic. Spe-
cifically, the terms global and holistic are often used inter-

changeably with low spatial frequency, and the term set is often
used to refer to collections of discrete objects. But ensemble
refers to any summary statistic that collapses across individual
image details, whether or not those details are contained within a
specific spatial-frequency band, and whether those details are

attached to discrete objects, parts, or a location in space. More-
over, an ensemble can include relatively simple features, such

as themean size or the centroid of a collection of objects, or more
complex features, such as particular combinations of local ori-
entation and spatial-frequency information (Parkes, Lund, An-

gelucci, Solomon, &Morgan, 2001; Torralba, Oliva, Castelhano,
& Henderson, 2006).

CONCLUSION

This study shows that information outside the focus of attention
remains consciously accessible in the form of an ensemble

representation that lacks local detail, but nevertheless carries a
precise statistical summary of the visual scene. Future work will

be necessary to determine which classes of ensemble features
are represented robustly outside the focus of attention. Of

particular interest are ensemble features that capture the sta-
tistics of the natural world and are likely to play a vital role in
everyday perception.
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APPENDIX

Simulations were conducted to determine whether the ob-
served error in localizing the target centroid or the distrac-
tor centroid could be achieved by sampling a subset of the
individual locations, and making an informed guess about
the centroid position. The most important assumption of
this model is that estimates of individual item positions are
noisy, and that this noise can be estimated from participants
performance on individual item tests. In each experiment,
participants were required to localize a single missing target
or distractor on some trials. The distribution of errors was
well approximated by a normal distribution, and the model
assumes that each individual item position was represented
with independent, normally distributed noise of this magni-
tude and standard deviation.

Simulation Methods

For a particular participant, individual estimates have an
average error (meanErr), and a standard deviation of errors
(stdErr). The accuracy of guessing the mean by pooling
different numbers of individual estimates was simulated as
follows.

1. A random set of 8 xy-coordinates were generated (4
targets and 4 distractors). These coordinates are referred
to here as actualX and actualY. The actualCentroidX and
actualCentroidY values were calculated by taking the mean
of the actualX and actualY values, respectively.

2. Noisy estimates of these individual locations were
generated as follows (modeling the participants’ internal
representations of the individual items).

errAngle = rand(0,359)
errMagnitude = meanErr + randn * (stdErr)
predictedX = actualX + magnitude*cos(angle/180*pi)
predictedY = actualY + magnitude*sin(angle/180*pi)

Where errAngle is a random integer between 0 and 359,
corresponding to the direction in which the error occurs
relative to the actual xy position, errMagnitude is the
size of the error (normally distributed with an average of

meanErr and a standard deviation of stdErr), predictedX is
the predicted x position, and predictedY is the predicted y
position.

3. Predicted centroid locations were generated by averaging
1, 2, 3, or 4 of these noisy local estimates.

predictedCentroidX=average(predictedX1,predictedX2...)
predictedCentroidY=average(predictedY1,predictedY2...)

4. The error in these centroid estimates was calculated

errX = predictedCentroidX-actualCentroidX
errY = predictedCentroidY-actualCentroidY
predErrMagnitude = sqrt(errX*errX + errY*errY)

Where errX is the error in the X position, errY is the error
in the Y position, and predErrMagnitude corresponds to the
magnitude of the prediction error.

Simulation Results
Figure A1 shows the simulation results for each experi-

ment. The y-axis shows the predicted error in degrees, and
the x-axis shows the number of individual positions sam-
pled to predict the centroid position. For reference, the
dashed lines show actual error in centroid localization av-
eraged across participants. Each panel shows two prediction
functions: circles show predictions calculated from noisy es-
timates centered around actual item positions, as described
above, whereas triangles show predictions calculated from
noisy estimates centered around completely random loca-
tions. This latter curve was generated to demonstrate that it is
not possible to localize the centroid as accurately as partici-
pants did just by randomly guessing. The top panels show the
results of the model simulation for target items. As the num-
ber of individual targets sampled increases, error in predict-
ing the centroid decreases. However, only when sampling
all 4 targets does predicted performance reach the actual per-
formance level observed in each experiment. This suggests
that information from all 4 targets is required to estimate the
centroid as accurately as participants actually did, given the
noise observed in estimates of the individual locations. The
results were qualitatively identical for target simulations and
distractor simulations.
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